src/hugo/fib_heap.h
author ladanyi
Fri, 28 May 2004 07:48:16 +0000
changeset 666 410a1419e86b
parent 491 4804c967543d
child 857 4e948fd205f7
permissions -rw-r--r--
Added a short tutorial on using graphs.
alpar@255
     1
// -*- C++ -*-
alpar@255
     2
jacint@373
     3
#ifndef HUGO_FIB_HEAP_H
jacint@373
     4
#define HUGO_FIB_HEAP_H
alpar@255
     5
klao@491
     6
///\ingroup auxdat
alpar@255
     7
///\file
alpar@255
     8
///\brief Fibonacci Heap implementation.
alpar@255
     9
alpar@255
    10
#include <vector>
alpar@255
    11
#include <functional>
alpar@255
    12
#include <math.h>
alpar@255
    13
alpar@255
    14
namespace hugo {
alpar@255
    15
  
alpar@430
    16
  /// \addtogroup auxdat
alpar@430
    17
  /// @{
alpar@430
    18
jacint@373
    19
  /// An implementation of the Fibonacci Heap.
jacint@373
    20
jacint@373
    21
  /**
jacint@387
    22
     This class implements the \e Fibonacci \e heap data structure. A \e heap
jacint@387
    23
     is a data structure for storing items with specified values called \e
jacint@387
    24
     priorities, such that finding the item with minimum priority with respect
jacint@387
    25
     to \e Compare is efficient. In a heap one can change the priority of an
jacint@387
    26
     item, add or erase an item, etc.
jacint@373
    27
jacint@387
    28
     The methods \ref increase and \ref erase are not efficient in a Fibonacci
jacint@387
    29
     heap. In case of many calls to these operations, it is better to use a
jacint@387
    30
     \e binary \e heap.
jacint@373
    31
     
jacint@387
    32
     \param Item The type of the items to be stored.  
jacint@387
    33
     \param Prio The type of the priority of the items.
jacint@387
    34
     \param ItemIntMap A read and writable Item int map, for the usage of
jacint@373
    35
     the heap.
jacint@387
    36
     \param Compare A class for the comparison of the priorities. The
jacint@373
    37
     default is \c std::less<Prio>.
jacint@373
    38
jacint@373
    39
  */
jacint@373
    40
jacint@373
    41
#ifdef DOXYGEN
jacint@373
    42
  template <typename Item, 
jacint@373
    43
	    typename Prio, 
jacint@373
    44
	    typename ItemIntMap, 
jacint@373
    45
	    typename Compare>
jacint@373
    46
#else
jacint@373
    47
  template <typename Item, 
jacint@373
    48
	    typename Prio, 
jacint@373
    49
	    typename ItemIntMap, 
alpar@255
    50
	    typename Compare = std::less<Prio> >
jacint@373
    51
#endif
alpar@255
    52
  class FibHeap {
jacint@387
    53
  public:     
alpar@255
    54
    typedef Prio PrioType;
alpar@255
    55
    
jacint@373
    56
  private:
alpar@255
    57
    class store;
alpar@255
    58
    
alpar@255
    59
    std::vector<store> container;
alpar@255
    60
    int minimum;
alpar@255
    61
    ItemIntMap &iimap;
alpar@255
    62
    Compare comp;
alpar@255
    63
    int num_items;
jacint@373
    64
    
alpar@255
    65
  public:
alpar@255
    66
    enum state_enum {
alpar@255
    67
      IN_HEAP = 0,
alpar@255
    68
      PRE_HEAP = -1,
alpar@255
    69
      POST_HEAP = -2
alpar@255
    70
    };
alpar@255
    71
    
jacint@373
    72
    FibHeap(ItemIntMap &_iimap) : minimum(0), iimap(_iimap), num_items() {} 
jacint@373
    73
    FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), 
alpar@255
    74
      iimap(_iimap), comp(_comp), num_items() {}
alpar@255
    75
    
jacint@373
    76
    ///The number of items stored in the heap.
jacint@373
    77
jacint@373
    78
    /**
jacint@387
    79
       Returns the number of items stored in the heap.
jacint@373
    80
    */
jacint@373
    81
    int size() const { return num_items; }
jacint@373
    82
jacint@373
    83
    ///Checks if the heap stores no items.
alpar@255
    84
    
jacint@373
    85
    /**
jacint@387
    86
       Returns \c true iff the heap stores no items.
jacint@373
    87
    */
jacint@373
    88
    bool empty() const { return num_items==0; }
jacint@373
    89
jacint@387
    90
    ///\c item gets to the heap with priority \c value independently if \c item was already there.
jacint@373
    91
jacint@373
    92
    /**
jacint@387
    93
       This method calls \ref push(\c item, \c value) if \c item is not
jacint@387
    94
       stored in the heap and it calls \ref decrease(\c item, \c value) or
jacint@387
    95
       \ref increase(\c item, \c value) otherwise.
jacint@373
    96
    */
jacint@387
    97
    void set (Item const item, PrioType const value); 
jacint@373
    98
    
jacint@373
    99
    ///Adds \c item to the heap with priority \c value. 
jacint@373
   100
    
jacint@373
   101
    /**
jacint@373
   102
       Adds \c item to the heap with priority \c value. 
jacint@373
   103
       \pre \c item must not be stored in the heap. 
jacint@373
   104
    */
jacint@387
   105
    void push (Item const item, PrioType const value);
jacint@373
   106
    
jacint@373
   107
    
jacint@373
   108
    ///Returns the item having the minimum priority w.r.t.  Compare.
jacint@373
   109
    
jacint@373
   110
    /**
jacint@373
   111
       This method returns the item having the minimum priority w.r.t.  Compare. 
jacint@373
   112
       \pre The heap must be nonempty.
jacint@373
   113
    */
jacint@373
   114
    Item top() const { return container[minimum].name; }
jacint@373
   115
    
jacint@373
   116
jacint@373
   117
    ///Returns the minimum priority w.r.t.  Compare.
jacint@373
   118
jacint@373
   119
    /**
jacint@373
   120
       It returns the minimum priority w.r.t.  Compare.
jacint@373
   121
       \pre The heap must be nonempty.
jacint@373
   122
    */
jacint@373
   123
    PrioType prio() const { return container[minimum].prio; }
jacint@373
   124
    
jacint@373
   125
jacint@373
   126
    ///Returns the priority of \c item.
jacint@373
   127
jacint@373
   128
    /**
jacint@373
   129
       It returns the priority of \c item.
jacint@373
   130
       \pre \c item must be in the heap.
jacint@373
   131
    */
jacint@387
   132
    PrioType& operator[](const Item& item) { 
jacint@387
   133
      return container[iimap[item]].prio; 
jacint@387
   134
    }
jacint@373
   135
    
jacint@373
   136
    ///Returns the priority of \c item.
jacint@373
   137
    
jacint@373
   138
    /**
jacint@373
   139
       It returns the priority of \c item.
jacint@373
   140
       \pre \c item must be in the heap.
jacint@373
   141
    */
jacint@387
   142
    const PrioType& operator[](const Item& item) const { 
jacint@387
   143
      return container[iimap[item]].prio; 
alpar@255
   144
    }
alpar@255
   145
alpar@255
   146
jacint@373
   147
    ///Deletes the item with minimum priority w.r.t.  Compare.
alpar@255
   148
jacint@373
   149
    /**
jacint@373
   150
    This method deletes the item with minimum priority w.r.t. 
jacint@373
   151
    Compare from the heap.
jacint@373
   152
    \pre The heap must be non-empty.
jacint@373
   153
    */
jacint@373
   154
    void pop();
jacint@373
   155
jacint@373
   156
    ///Deletes \c item from the heap.
jacint@373
   157
jacint@373
   158
    /**
jacint@373
   159
       This method deletes \c item from the heap, if \c item was already
jacint@373
   160
       stored in the heap. It is quite inefficient in Fibonacci heaps.
jacint@373
   161
    */
jacint@387
   162
    void erase (const Item& item); 
jacint@373
   163
jacint@373
   164
    ///Decreases the priority of \c item to \c value.
jacint@373
   165
jacint@373
   166
    /**
jacint@373
   167
       This method decreases the priority of \c item to \c value.
jacint@373
   168
       \pre \c item must be stored in the heap with priority at least \c
jacint@373
   169
       value w.r.t.  Compare.
jacint@373
   170
    */
jacint@387
   171
    void decrease (Item item, PrioType const value); 
jacint@373
   172
jacint@373
   173
jacint@373
   174
    ///Increases the priority of \c item to \c value.
jacint@373
   175
jacint@373
   176
    /**
jacint@373
   177
       This method sets the priority of \c item to \c value. Though
jacint@373
   178
       there is no precondition on the priority of \c item, this
jacint@387
   179
       method should be used only if there is a need to really \e increase
jacint@373
   180
       (w.r.t.  Compare) the priority of \c item, because this
jacint@373
   181
       method is inefficient.
jacint@373
   182
    */
jacint@387
   183
    void increase (Item item, PrioType const value) {
jacint@387
   184
      erase(item);
jacint@387
   185
      push(item, value);
jacint@373
   186
    }
jacint@373
   187
jacint@373
   188
jacint@387
   189
    ///Tells if \c item is in, was already in, or has never been in the heap.
jacint@373
   190
jacint@373
   191
    /**
jacint@373
   192
       This method returns PRE_HEAP if \c item has never been in the
jacint@373
   193
       heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
jacint@373
   194
       otherwise. In the latter case it is possible that \c item will
jacint@373
   195
       get back to the heap again.
jacint@373
   196
    */
jacint@387
   197
    state_enum state(const Item &item) const {
jacint@387
   198
      int i=iimap[item];
jacint@387
   199
      if( i>=0 ) {
jacint@387
   200
	if ( container[i].in ) i=0;
jacint@387
   201
	else i=-2; 
jacint@387
   202
      }
jacint@387
   203
      return state_enum(i);
jacint@387
   204
    }    
jacint@387
   205
    
jacint@387
   206
  private:
jacint@387
   207
    
jacint@387
   208
    void balance();
jacint@387
   209
    void makeroot(int c);
jacint@387
   210
    void cut(int a, int b);
jacint@387
   211
    void cascade(int a);
jacint@387
   212
    void fuse(int a, int b);
jacint@387
   213
    void unlace(int a);
jacint@373
   214
jacint@373
   215
jacint@387
   216
    class store {
jacint@387
   217
      friend class FibHeap;
jacint@387
   218
      
jacint@387
   219
      Item name;
jacint@387
   220
      int parent;
jacint@387
   221
      int left_neighbor;
jacint@387
   222
      int right_neighbor;
jacint@387
   223
      int child;
jacint@387
   224
      int degree;  
jacint@387
   225
      bool marked;
jacint@387
   226
      bool in;
jacint@387
   227
      PrioType prio;
jacint@387
   228
      
jacint@387
   229
      store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
jacint@387
   230
    };
jacint@387
   231
  };    
jacint@387
   232
 
jacint@387
   233
jacint@373
   234
jacint@373
   235
    // **********************************************************************
jacint@373
   236
    //  IMPLEMENTATIONS
jacint@373
   237
    // **********************************************************************
jacint@373
   238
    
jacint@387
   239
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   240
    typename Compare>
jacint@387
   241
  void FibHeap<Item, Prio, ItemIntMap, Compare>::set 
jacint@387
   242
  (Item const item, PrioType const value) 
jacint@387
   243
  {
jacint@387
   244
    int i=iimap[item];
jacint@387
   245
    if ( i >= 0 && container[i].in ) {
jacint@387
   246
      if ( comp(value, container[i].prio) ) decrease(item, value); 
jacint@387
   247
      if ( comp(container[i].prio, value) ) increase(item, value); 
jacint@387
   248
    } else push(item, value);
jacint@387
   249
  }
alpar@255
   250
    
jacint@387
   251
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   252
    typename Compare>
jacint@387
   253
  void FibHeap<Item, Prio, ItemIntMap, Compare>::push 
jacint@387
   254
  (Item const item, PrioType const value) {
jacint@387
   255
      int i=iimap[item];      
alpar@255
   256
      if ( i < 0 ) {
alpar@255
   257
	int s=container.size();
jacint@387
   258
	iimap.set( item, s );	
alpar@255
   259
	store st;
jacint@387
   260
	st.name=item;
alpar@255
   261
	container.push_back(st);
alpar@255
   262
	i=s;
alpar@255
   263
      } else {
alpar@255
   264
	container[i].parent=container[i].child=-1;
alpar@255
   265
	container[i].degree=0;
alpar@255
   266
	container[i].in=true;
alpar@255
   267
	container[i].marked=false;
alpar@255
   268
      }
alpar@255
   269
alpar@255
   270
      if ( num_items ) {
alpar@255
   271
	container[container[minimum].right_neighbor].left_neighbor=i;
alpar@255
   272
	container[i].right_neighbor=container[minimum].right_neighbor;
alpar@255
   273
	container[minimum].right_neighbor=i;
alpar@255
   274
	container[i].left_neighbor=minimum;
alpar@255
   275
	if ( comp( value, container[minimum].prio) ) minimum=i; 
alpar@255
   276
      } else {
alpar@255
   277
	container[i].right_neighbor=container[i].left_neighbor=i;
alpar@255
   278
	minimum=i;	
alpar@255
   279
      }
alpar@255
   280
      container[i].prio=value;
alpar@255
   281
      ++num_items;
alpar@255
   282
    }
alpar@255
   283
    
jacint@387
   284
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   285
    typename Compare>
jacint@387
   286
  void FibHeap<Item, Prio, ItemIntMap, Compare>::pop() {
alpar@255
   287
      /*The first case is that there are only one root.*/
alpar@255
   288
      if ( container[minimum].left_neighbor==minimum ) {
alpar@255
   289
	container[minimum].in=false;
alpar@255
   290
	if ( container[minimum].degree!=0 ) { 
alpar@255
   291
	  makeroot(container[minimum].child);
alpar@255
   292
	  minimum=container[minimum].child;
alpar@255
   293
	  balance();
alpar@255
   294
	}
alpar@255
   295
      } else {
alpar@255
   296
	int right=container[minimum].right_neighbor;
alpar@255
   297
	unlace(minimum);
alpar@255
   298
	container[minimum].in=false;
alpar@255
   299
	if ( container[minimum].degree > 0 ) {
alpar@255
   300
	  int left=container[minimum].left_neighbor;
alpar@255
   301
	  int child=container[minimum].child;
alpar@255
   302
	  int last_child=container[child].left_neighbor;
alpar@255
   303
	
alpar@255
   304
	  makeroot(child);
alpar@255
   305
	  
alpar@255
   306
	  container[left].right_neighbor=child;
alpar@255
   307
	  container[child].left_neighbor=left;
alpar@255
   308
	  container[right].left_neighbor=last_child;
alpar@255
   309
	  container[last_child].right_neighbor=right;
alpar@255
   310
	}
alpar@255
   311
	minimum=right;
alpar@255
   312
	balance();
alpar@255
   313
      } // the case where there are more roots
alpar@255
   314
      --num_items;   
alpar@255
   315
    }
alpar@255
   316
jacint@387
   317
jacint@387
   318
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   319
    typename Compare>
jacint@387
   320
  void FibHeap<Item, Prio, ItemIntMap, Compare>::erase 
jacint@387
   321
  (const Item& item) {
jacint@387
   322
      int i=iimap[item];
alpar@255
   323
      
alpar@255
   324
      if ( i >= 0 && container[i].in ) { 	
alpar@255
   325
	if ( container[i].parent!=-1 ) {
alpar@255
   326
	  int p=container[i].parent;
alpar@255
   327
	  cut(i,p);	    
alpar@255
   328
	  cascade(p);
alpar@255
   329
	}
alpar@255
   330
	minimum=i;     //As if its prio would be -infinity
alpar@255
   331
	pop();
alpar@255
   332
      }
jacint@387
   333
  }
alpar@255
   334
    
jacint@387
   335
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   336
    typename Compare>
jacint@387
   337
  void FibHeap<Item, Prio, ItemIntMap, Compare>::decrease 
jacint@387
   338
  (Item item, PrioType const value) {
jacint@387
   339
      int i=iimap[item];
alpar@255
   340
      container[i].prio=value;
alpar@255
   341
      int p=container[i].parent;
alpar@255
   342
      
alpar@255
   343
      if ( p!=-1 && comp(value, container[p].prio) ) {
alpar@255
   344
	cut(i,p);	    
alpar@255
   345
	cascade(p);
alpar@255
   346
      }      
alpar@255
   347
      if ( comp(value, container[minimum].prio) ) minimum=i; 
jacint@387
   348
  }
jacint@387
   349
 
alpar@255
   350
jacint@387
   351
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   352
    typename Compare>
jacint@387
   353
  void FibHeap<Item, Prio, ItemIntMap, Compare>::balance() {      
alpar@255
   354
alpar@255
   355
    int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
alpar@255
   356
  
alpar@255
   357
    std::vector<int> A(maxdeg,-1); 
alpar@255
   358
    
alpar@255
   359
    /*
alpar@255
   360
     *Recall that now minimum does not point to the minimum prio element.
alpar@255
   361
     *We set minimum to this during balance().
alpar@255
   362
     */
alpar@255
   363
    int anchor=container[minimum].left_neighbor; 
alpar@255
   364
    int next=minimum; 
alpar@255
   365
    bool end=false; 
alpar@255
   366
    	
alpar@255
   367
       do {
alpar@255
   368
	int active=next;
alpar@255
   369
	if ( anchor==active ) end=true;
alpar@255
   370
	int d=container[active].degree;
alpar@255
   371
	next=container[active].right_neighbor;
alpar@255
   372
alpar@255
   373
	while (A[d]!=-1) {	  
alpar@255
   374
	  if( comp(container[active].prio, container[A[d]].prio) ) {
alpar@255
   375
	    fuse(active,A[d]); 
alpar@255
   376
	  } else { 
alpar@255
   377
	    fuse(A[d],active);
alpar@255
   378
	    active=A[d];
alpar@255
   379
	  } 
alpar@255
   380
	  A[d]=-1;
alpar@255
   381
	  ++d;
alpar@255
   382
	}	
alpar@255
   383
	A[d]=active;
alpar@255
   384
       } while ( !end );
alpar@255
   385
alpar@255
   386
alpar@255
   387
       while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
alpar@255
   388
       int s=minimum;
alpar@255
   389
       int m=minimum;
alpar@255
   390
       do {  
alpar@255
   391
	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
alpar@255
   392
	 s=container[s].right_neighbor;
alpar@255
   393
       } while ( s != m );
alpar@255
   394
    }
alpar@255
   395
jacint@387
   396
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   397
    typename Compare>
jacint@387
   398
  void FibHeap<Item, Prio, ItemIntMap, Compare>::makeroot 
jacint@387
   399
  (int c) {
alpar@255
   400
      int s=c;
alpar@255
   401
      do {  
alpar@255
   402
	container[s].parent=-1;
alpar@255
   403
	s=container[s].right_neighbor;
alpar@255
   404
      } while ( s != c );
alpar@255
   405
    }
jacint@387
   406
  
jacint@387
   407
  
jacint@387
   408
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   409
    typename Compare>
jacint@387
   410
  void FibHeap<Item, Prio, ItemIntMap, Compare>::cut 
jacint@387
   411
  (int a, int b) {    
jacint@387
   412
    /*
jacint@387
   413
     *Replacing a from the children of b.
jacint@387
   414
     */
jacint@387
   415
    --container[b].degree;
alpar@255
   416
    
jacint@387
   417
    if ( container[b].degree !=0 ) {
jacint@387
   418
      int child=container[b].child;
jacint@387
   419
      if ( child==a ) 
jacint@387
   420
	container[b].child=container[child].right_neighbor;
jacint@387
   421
      unlace(a);
jacint@387
   422
    }
jacint@387
   423
    
jacint@387
   424
    
jacint@387
   425
    /*Lacing a to the roots.*/
jacint@387
   426
    int right=container[minimum].right_neighbor;
jacint@387
   427
    container[minimum].right_neighbor=a;
jacint@387
   428
    container[a].left_neighbor=minimum;
jacint@387
   429
    container[a].right_neighbor=right;
jacint@387
   430
    container[right].left_neighbor=a;
jacint@387
   431
    
jacint@387
   432
    container[a].parent=-1;
jacint@387
   433
    container[a].marked=false;
jacint@387
   434
  }
jacint@387
   435
  
alpar@255
   436
jacint@387
   437
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   438
    typename Compare>
jacint@387
   439
  void FibHeap<Item, Prio, ItemIntMap, Compare>::cascade 
jacint@387
   440
  (int a) 
alpar@255
   441
    {
alpar@255
   442
      if ( container[a].parent!=-1 ) {
alpar@255
   443
	int p=container[a].parent;
alpar@255
   444
	
alpar@255
   445
	if ( container[a].marked==false ) container[a].marked=true;
alpar@255
   446
	else {
alpar@255
   447
	  cut(a,p);
alpar@255
   448
	  cascade(p);
alpar@255
   449
	}
alpar@255
   450
      }
alpar@255
   451
    }
alpar@255
   452
alpar@255
   453
jacint@387
   454
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   455
    typename Compare>
jacint@387
   456
  void FibHeap<Item, Prio, ItemIntMap, Compare>::fuse 
jacint@387
   457
  (int a, int b) {
alpar@255
   458
      unlace(b);
alpar@255
   459
      
alpar@255
   460
      /*Lacing b under a.*/
alpar@255
   461
      container[b].parent=a;
alpar@255
   462
alpar@255
   463
      if (container[a].degree==0) {
alpar@255
   464
	container[b].left_neighbor=b;
alpar@255
   465
	container[b].right_neighbor=b;
alpar@255
   466
	container[a].child=b;	
alpar@255
   467
      } else {
alpar@255
   468
	int child=container[a].child;
alpar@255
   469
	int last_child=container[child].left_neighbor;
alpar@255
   470
	container[child].left_neighbor=b;
alpar@255
   471
	container[b].right_neighbor=child;
alpar@255
   472
	container[last_child].right_neighbor=b;
alpar@255
   473
	container[b].left_neighbor=last_child;
alpar@255
   474
      }
alpar@255
   475
alpar@255
   476
      ++container[a].degree;
alpar@255
   477
      
alpar@255
   478
      container[b].marked=false;
alpar@255
   479
    }
alpar@255
   480
jacint@387
   481
  
jacint@387
   482
  /*
jacint@387
   483
   *It is invoked only if a has siblings.
jacint@387
   484
   */
jacint@387
   485
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   486
    typename Compare>
jacint@387
   487
  void FibHeap<Item, Prio, ItemIntMap, Compare>::unlace 
jacint@387
   488
  (int a) {      
alpar@255
   489
      int leftn=container[a].left_neighbor;
alpar@255
   490
      int rightn=container[a].right_neighbor;
alpar@255
   491
      container[leftn].right_neighbor=rightn;
alpar@255
   492
      container[rightn].left_neighbor=leftn;
jacint@387
   493
  }
alpar@255
   494
  
alpar@430
   495
  ///@}
alpar@430
   496
alpar@255
   497
} //namespace hugo
alpar@477
   498
alpar@477
   499
#endif //HUGO_FIB_HEAP_H
alpar@477
   500