deba@1698
|
1 |
/* -*- C++ -*-
|
deba@1698
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@1956
|
5 |
* Copyright (C) 2003-2006
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@1698
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@1698
|
8 |
*
|
deba@1698
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@1698
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@1698
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@1698
|
12 |
*
|
deba@1698
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@1698
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@1698
|
15 |
* purpose.
|
deba@1698
|
16 |
*
|
deba@1698
|
17 |
*/
|
deba@1698
|
18 |
|
deba@1698
|
19 |
#ifndef LEMON_TOPOLOGY_H
|
deba@1698
|
20 |
#define LEMON_TOPOLOGY_H
|
deba@1698
|
21 |
|
deba@1698
|
22 |
#include <lemon/dfs.h>
|
deba@1740
|
23 |
#include <lemon/bfs.h>
|
deba@1698
|
24 |
#include <lemon/graph_utils.h>
|
deba@1750
|
25 |
#include <lemon/graph_adaptor.h>
|
deba@1750
|
26 |
#include <lemon/maps.h>
|
deba@1698
|
27 |
|
alpar@2260
|
28 |
#include <lemon/concepts/graph.h>
|
alpar@2260
|
29 |
#include <lemon/concepts/ugraph.h>
|
deba@1698
|
30 |
#include <lemon/concept_check.h>
|
deba@1698
|
31 |
|
deba@1750
|
32 |
#include <lemon/bin_heap.h>
|
deba@2038
|
33 |
#include <lemon/bucket_heap.h>
|
deba@1750
|
34 |
|
deba@1750
|
35 |
#include <stack>
|
deba@1750
|
36 |
#include <functional>
|
deba@1750
|
37 |
|
deba@1750
|
38 |
/// \ingroup topology
|
deba@1698
|
39 |
/// \file
|
deba@1698
|
40 |
/// \brief Topology related algorithms
|
deba@1698
|
41 |
///
|
deba@1698
|
42 |
/// Topology related algorithms
|
deba@1698
|
43 |
|
deba@1698
|
44 |
namespace lemon {
|
deba@1698
|
45 |
|
deba@1750
|
46 |
/// \ingroup topology
|
deba@1750
|
47 |
///
|
deba@1750
|
48 |
/// \brief Check that the given undirected graph is connected.
|
deba@1750
|
49 |
///
|
deba@1750
|
50 |
/// Check that the given undirected graph connected.
|
deba@1750
|
51 |
/// \param graph The undirected graph.
|
deba@1750
|
52 |
/// \return %True when there is path between any two nodes in the graph.
|
alpar@1807
|
53 |
/// \note By definition, the empty graph is connected.
|
klao@1909
|
54 |
template <typename UGraph>
|
klao@1909
|
55 |
bool connected(const UGraph& graph) {
|
alpar@2260
|
56 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
57 |
typedef typename UGraph::NodeIt NodeIt;
|
alpar@1807
|
58 |
if (NodeIt(graph) == INVALID) return true;
|
klao@1909
|
59 |
Dfs<UGraph> dfs(graph);
|
deba@1750
|
60 |
dfs.run(NodeIt(graph));
|
deba@1750
|
61 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
62 |
if (!dfs.reached(it)) {
|
deba@1750
|
63 |
return false;
|
deba@1750
|
64 |
}
|
deba@1750
|
65 |
}
|
deba@1750
|
66 |
return true;
|
deba@1750
|
67 |
}
|
deba@1750
|
68 |
|
deba@1750
|
69 |
/// \ingroup topology
|
deba@1750
|
70 |
///
|
deba@1750
|
71 |
/// \brief Count the number of connected components of an undirected graph
|
deba@1750
|
72 |
///
|
deba@1750
|
73 |
/// Count the number of connected components of an undirected graph
|
deba@1750
|
74 |
///
|
deba@1793
|
75 |
/// \param graph The graph. It should be undirected.
|
deba@1750
|
76 |
/// \return The number of components
|
alpar@1807
|
77 |
/// \note By definition, the empty graph consists
|
alpar@1807
|
78 |
/// of zero connected components.
|
klao@1909
|
79 |
template <typename UGraph>
|
klao@1909
|
80 |
int countConnectedComponents(const UGraph &graph) {
|
alpar@2260
|
81 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
82 |
typedef typename UGraph::Node Node;
|
klao@1909
|
83 |
typedef typename UGraph::Edge Edge;
|
deba@1750
|
84 |
|
deba@1750
|
85 |
typedef NullMap<Node, Edge> PredMap;
|
deba@1750
|
86 |
typedef NullMap<Node, int> DistMap;
|
deba@1750
|
87 |
|
deba@1750
|
88 |
int compNum = 0;
|
klao@1909
|
89 |
typename Bfs<UGraph>::
|
deba@1750
|
90 |
template DefPredMap<PredMap>::
|
deba@1750
|
91 |
template DefDistMap<DistMap>::
|
deba@1750
|
92 |
Create bfs(graph);
|
deba@1750
|
93 |
|
deba@1750
|
94 |
PredMap predMap;
|
deba@1750
|
95 |
bfs.predMap(predMap);
|
deba@1750
|
96 |
|
deba@1750
|
97 |
DistMap distMap;
|
deba@1750
|
98 |
bfs.distMap(distMap);
|
deba@1750
|
99 |
|
deba@1750
|
100 |
bfs.init();
|
klao@1909
|
101 |
for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) {
|
deba@1750
|
102 |
if (!bfs.reached(n)) {
|
deba@1750
|
103 |
bfs.addSource(n);
|
deba@1750
|
104 |
bfs.start();
|
deba@1750
|
105 |
++compNum;
|
deba@1750
|
106 |
}
|
deba@1750
|
107 |
}
|
deba@1750
|
108 |
return compNum;
|
deba@1750
|
109 |
}
|
deba@1750
|
110 |
|
deba@1750
|
111 |
/// \ingroup topology
|
deba@1750
|
112 |
///
|
deba@1750
|
113 |
/// \brief Find the connected components of an undirected graph
|
deba@1750
|
114 |
///
|
deba@1750
|
115 |
/// Find the connected components of an undirected graph.
|
deba@1750
|
116 |
///
|
deba@1763
|
117 |
/// \image html connected_components.png
|
deba@1763
|
118 |
/// \image latex connected_components.eps "Connected components" width=\textwidth
|
deba@1763
|
119 |
///
|
deba@1793
|
120 |
/// \param graph The graph. It should be undirected.
|
deba@1793
|
121 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
deba@1750
|
122 |
/// the number of the connected components minus one. Each values of the map
|
deba@1750
|
123 |
/// will be set exactly once, the values of a certain component will be
|
deba@1750
|
124 |
/// set continuously.
|
deba@1750
|
125 |
/// \return The number of components
|
deba@1763
|
126 |
///
|
klao@1909
|
127 |
template <class UGraph, class NodeMap>
|
klao@1909
|
128 |
int connectedComponents(const UGraph &graph, NodeMap &compMap) {
|
alpar@2260
|
129 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
130 |
typedef typename UGraph::Node Node;
|
klao@1909
|
131 |
typedef typename UGraph::Edge Edge;
|
alpar@2260
|
132 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
deba@1750
|
133 |
|
deba@1750
|
134 |
typedef NullMap<Node, Edge> PredMap;
|
deba@1750
|
135 |
typedef NullMap<Node, int> DistMap;
|
deba@1750
|
136 |
|
deba@1750
|
137 |
int compNum = 0;
|
klao@1909
|
138 |
typename Bfs<UGraph>::
|
deba@1750
|
139 |
template DefPredMap<PredMap>::
|
deba@1750
|
140 |
template DefDistMap<DistMap>::
|
deba@1750
|
141 |
Create bfs(graph);
|
deba@1750
|
142 |
|
deba@1750
|
143 |
PredMap predMap;
|
deba@1750
|
144 |
bfs.predMap(predMap);
|
deba@1750
|
145 |
|
deba@1750
|
146 |
DistMap distMap;
|
deba@1750
|
147 |
bfs.distMap(distMap);
|
deba@1750
|
148 |
|
deba@1750
|
149 |
bfs.init();
|
klao@1909
|
150 |
for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) {
|
deba@1750
|
151 |
if(!bfs.reached(n)) {
|
deba@1750
|
152 |
bfs.addSource(n);
|
deba@1750
|
153 |
while (!bfs.emptyQueue()) {
|
deba@1750
|
154 |
compMap.set(bfs.nextNode(), compNum);
|
deba@1750
|
155 |
bfs.processNextNode();
|
deba@1750
|
156 |
}
|
deba@1750
|
157 |
++compNum;
|
deba@1750
|
158 |
}
|
deba@1750
|
159 |
}
|
deba@1750
|
160 |
return compNum;
|
deba@1750
|
161 |
}
|
deba@1750
|
162 |
|
deba@1750
|
163 |
namespace _topology_bits {
|
deba@1750
|
164 |
|
deba@1750
|
165 |
template <typename Graph, typename Iterator >
|
deba@1750
|
166 |
struct LeaveOrderVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
167 |
public:
|
deba@1750
|
168 |
typedef typename Graph::Node Node;
|
deba@1750
|
169 |
LeaveOrderVisitor(Iterator it) : _it(it) {}
|
deba@1750
|
170 |
|
deba@1750
|
171 |
void leave(const Node& node) {
|
deba@1750
|
172 |
*(_it++) = node;
|
deba@1750
|
173 |
}
|
deba@1750
|
174 |
|
deba@1750
|
175 |
private:
|
deba@1750
|
176 |
Iterator _it;
|
deba@1750
|
177 |
};
|
deba@1750
|
178 |
|
deba@1750
|
179 |
template <typename Graph, typename Map>
|
deba@1750
|
180 |
struct FillMapVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
181 |
public:
|
deba@1750
|
182 |
typedef typename Graph::Node Node;
|
deba@1750
|
183 |
typedef typename Map::Value Value;
|
deba@1750
|
184 |
|
deba@1750
|
185 |
FillMapVisitor(Map& map, Value& value)
|
deba@1750
|
186 |
: _map(map), _value(value) {}
|
deba@1750
|
187 |
|
deba@1750
|
188 |
void reach(const Node& node) {
|
deba@1750
|
189 |
_map.set(node, _value);
|
deba@1750
|
190 |
}
|
deba@1750
|
191 |
private:
|
deba@1750
|
192 |
Map& _map;
|
deba@1750
|
193 |
Value& _value;
|
deba@1750
|
194 |
};
|
deba@1750
|
195 |
|
deba@1750
|
196 |
template <typename Graph, typename EdgeMap>
|
deba@1750
|
197 |
struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
198 |
public:
|
deba@1750
|
199 |
typedef typename Graph::Node Node;
|
deba@1750
|
200 |
typedef typename Graph::Edge Edge;
|
deba@1750
|
201 |
|
deba@1750
|
202 |
StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap,
|
deba@1750
|
203 |
int& cutNum)
|
deba@1750
|
204 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
|
deba@1750
|
205 |
_compMap(graph), _num(0) {
|
deba@1750
|
206 |
}
|
deba@1750
|
207 |
|
deba@1750
|
208 |
void stop(const Node&) {
|
deba@1750
|
209 |
++_num;
|
deba@1750
|
210 |
}
|
deba@1750
|
211 |
|
deba@1750
|
212 |
void reach(const Node& node) {
|
deba@1750
|
213 |
_compMap.set(node, _num);
|
deba@1750
|
214 |
}
|
deba@1750
|
215 |
|
deba@1750
|
216 |
void examine(const Edge& edge) {
|
deba@1750
|
217 |
if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) {
|
deba@1750
|
218 |
_cutMap.set(edge, true);
|
deba@1750
|
219 |
++_cutNum;
|
deba@1750
|
220 |
}
|
deba@1750
|
221 |
}
|
deba@1750
|
222 |
private:
|
deba@1750
|
223 |
const Graph& _graph;
|
deba@1750
|
224 |
EdgeMap& _cutMap;
|
deba@1750
|
225 |
int& _cutNum;
|
deba@1750
|
226 |
|
deba@1750
|
227 |
typename Graph::template NodeMap<int> _compMap;
|
deba@1750
|
228 |
int _num;
|
deba@1750
|
229 |
};
|
deba@1750
|
230 |
|
deba@1750
|
231 |
}
|
deba@1750
|
232 |
|
deba@1750
|
233 |
|
deba@1750
|
234 |
/// \ingroup topology
|
deba@1750
|
235 |
///
|
deba@1750
|
236 |
/// \brief Check that the given directed graph is strongly connected.
|
deba@1750
|
237 |
///
|
deba@1750
|
238 |
/// Check that the given directed graph is strongly connected. The
|
deba@1750
|
239 |
/// graph is strongly connected when any two nodes of the graph are
|
alpar@1817
|
240 |
/// connected with directed paths in both direction.
|
deba@1750
|
241 |
/// \return %False when the graph is not strongly connected.
|
deba@1750
|
242 |
/// \see connected
|
deba@1750
|
243 |
///
|
alpar@1807
|
244 |
/// \note By definition, the empty graph is strongly connected.
|
deba@1750
|
245 |
template <typename Graph>
|
deba@1750
|
246 |
bool stronglyConnected(const Graph& graph) {
|
alpar@2260
|
247 |
checkConcept<concepts::Graph, Graph>();
|
deba@1750
|
248 |
|
deba@1750
|
249 |
typedef typename Graph::Node Node;
|
deba@1750
|
250 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1750
|
251 |
|
deba@2082
|
252 |
if (NodeIt(graph) == INVALID) return true;
|
deba@2082
|
253 |
|
deba@1750
|
254 |
using namespace _topology_bits;
|
deba@1750
|
255 |
|
deba@1750
|
256 |
typedef DfsVisitor<Graph> Visitor;
|
deba@1750
|
257 |
Visitor visitor;
|
deba@1750
|
258 |
|
deba@1750
|
259 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@1750
|
260 |
dfs.init();
|
deba@1750
|
261 |
dfs.addSource(NodeIt(graph));
|
deba@1750
|
262 |
dfs.start();
|
deba@1750
|
263 |
|
deba@1750
|
264 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
265 |
if (!dfs.reached(it)) {
|
deba@1750
|
266 |
return false;
|
deba@1750
|
267 |
}
|
deba@1750
|
268 |
}
|
deba@1750
|
269 |
|
deba@1750
|
270 |
typedef RevGraphAdaptor<const Graph> RGraph;
|
deba@1750
|
271 |
RGraph rgraph(graph);
|
deba@1750
|
272 |
|
deba@1750
|
273 |
typedef DfsVisitor<Graph> RVisitor;
|
deba@1750
|
274 |
RVisitor rvisitor;
|
deba@1750
|
275 |
|
deba@1750
|
276 |
DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
|
deba@1750
|
277 |
rdfs.init();
|
deba@1750
|
278 |
rdfs.addSource(NodeIt(graph));
|
deba@1750
|
279 |
rdfs.start();
|
deba@1750
|
280 |
|
deba@1750
|
281 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
282 |
if (!rdfs.reached(it)) {
|
deba@1750
|
283 |
return false;
|
deba@1750
|
284 |
}
|
deba@1750
|
285 |
}
|
deba@1750
|
286 |
|
deba@1750
|
287 |
return true;
|
deba@1750
|
288 |
}
|
deba@1750
|
289 |
|
deba@1750
|
290 |
/// \ingroup topology
|
deba@1750
|
291 |
///
|
deba@1750
|
292 |
/// \brief Count the strongly connected components of a directed graph
|
deba@1750
|
293 |
///
|
deba@1750
|
294 |
/// Count the strongly connected components of a directed graph.
|
deba@1750
|
295 |
/// The strongly connected components are the classes of an equivalence
|
deba@1750
|
296 |
/// relation on the nodes of the graph. Two nodes are connected with
|
deba@1750
|
297 |
/// directed paths in both direction.
|
deba@1750
|
298 |
///
|
deba@1793
|
299 |
/// \param graph The graph.
|
deba@1750
|
300 |
/// \return The number of components
|
alpar@1807
|
301 |
/// \note By definition, the empty graph has zero
|
alpar@1807
|
302 |
/// strongly connected components.
|
deba@1750
|
303 |
template <typename Graph>
|
deba@1750
|
304 |
int countStronglyConnectedComponents(const Graph& graph) {
|
alpar@2260
|
305 |
checkConcept<concepts::Graph, Graph>();
|
deba@1750
|
306 |
|
deba@1750
|
307 |
using namespace _topology_bits;
|
deba@1750
|
308 |
|
deba@1750
|
309 |
typedef typename Graph::Node Node;
|
deba@1750
|
310 |
typedef typename Graph::Edge Edge;
|
deba@1750
|
311 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1750
|
312 |
typedef typename Graph::EdgeIt EdgeIt;
|
deba@1750
|
313 |
|
deba@1750
|
314 |
typedef std::vector<Node> Container;
|
deba@1750
|
315 |
typedef typename Container::iterator Iterator;
|
deba@1750
|
316 |
|
deba@1750
|
317 |
Container nodes(countNodes(graph));
|
deba@1750
|
318 |
typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
|
deba@1750
|
319 |
Visitor visitor(nodes.begin());
|
deba@1750
|
320 |
|
deba@1750
|
321 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@1750
|
322 |
dfs.init();
|
deba@1750
|
323 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
324 |
if (!dfs.reached(it)) {
|
deba@1750
|
325 |
dfs.addSource(it);
|
deba@1750
|
326 |
dfs.start();
|
deba@1750
|
327 |
}
|
deba@1750
|
328 |
}
|
deba@1750
|
329 |
|
deba@1750
|
330 |
typedef typename Container::reverse_iterator RIterator;
|
deba@1750
|
331 |
typedef RevGraphAdaptor<const Graph> RGraph;
|
deba@1750
|
332 |
|
deba@1750
|
333 |
RGraph rgraph(graph);
|
deba@1750
|
334 |
|
deba@1750
|
335 |
typedef DfsVisitor<Graph> RVisitor;
|
deba@1750
|
336 |
RVisitor rvisitor;
|
deba@1750
|
337 |
|
deba@1750
|
338 |
DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
|
deba@1750
|
339 |
|
deba@1750
|
340 |
int compNum = 0;
|
deba@1750
|
341 |
|
deba@1750
|
342 |
rdfs.init();
|
deba@1750
|
343 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
deba@1750
|
344 |
if (!rdfs.reached(*it)) {
|
deba@1750
|
345 |
rdfs.addSource(*it);
|
deba@1750
|
346 |
rdfs.start();
|
deba@1750
|
347 |
++compNum;
|
deba@1750
|
348 |
}
|
deba@1750
|
349 |
}
|
deba@1750
|
350 |
return compNum;
|
deba@1750
|
351 |
}
|
deba@1750
|
352 |
|
deba@1750
|
353 |
/// \ingroup topology
|
deba@1750
|
354 |
///
|
deba@1750
|
355 |
/// \brief Find the strongly connected components of a directed graph
|
deba@1750
|
356 |
///
|
deba@1750
|
357 |
/// Find the strongly connected components of a directed graph.
|
deba@1750
|
358 |
/// The strongly connected components are the classes of an equivalence
|
deba@1750
|
359 |
/// relation on the nodes of the graph. Two nodes are in relationship
|
deba@1750
|
360 |
/// when there are directed paths between them in both direction.
|
deba@1750
|
361 |
///
|
deba@1763
|
362 |
/// \image html strongly_connected_components.png
|
deba@1763
|
363 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
|
deba@1763
|
364 |
///
|
deba@1793
|
365 |
/// \param graph The graph.
|
deba@1793
|
366 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
deba@1750
|
367 |
/// the number of the strongly connected components minus one. Each values
|
deba@1750
|
368 |
/// of the map will be set exactly once, the values of a certain component
|
deba@1750
|
369 |
/// will be set continuously.
|
deba@1750
|
370 |
/// \return The number of components
|
deba@1763
|
371 |
///
|
deba@1750
|
372 |
template <typename Graph, typename NodeMap>
|
deba@1750
|
373 |
int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
alpar@2260
|
374 |
checkConcept<concepts::Graph, Graph>();
|
deba@1750
|
375 |
typedef typename Graph::Node Node;
|
deba@1750
|
376 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@2260
|
377 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
deba@1750
|
378 |
|
deba@1750
|
379 |
using namespace _topology_bits;
|
deba@1750
|
380 |
|
deba@1750
|
381 |
typedef std::vector<Node> Container;
|
deba@1750
|
382 |
typedef typename Container::iterator Iterator;
|
deba@1750
|
383 |
|
deba@1750
|
384 |
Container nodes(countNodes(graph));
|
deba@1750
|
385 |
typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
|
deba@1750
|
386 |
Visitor visitor(nodes.begin());
|
deba@1750
|
387 |
|
deba@1750
|
388 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@1750
|
389 |
dfs.init();
|
deba@1750
|
390 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
391 |
if (!dfs.reached(it)) {
|
deba@1750
|
392 |
dfs.addSource(it);
|
deba@1750
|
393 |
dfs.start();
|
deba@1750
|
394 |
}
|
deba@1750
|
395 |
}
|
deba@1750
|
396 |
|
deba@1750
|
397 |
typedef typename Container::reverse_iterator RIterator;
|
deba@1750
|
398 |
typedef RevGraphAdaptor<const Graph> RGraph;
|
deba@1750
|
399 |
|
deba@1750
|
400 |
RGraph rgraph(graph);
|
deba@1750
|
401 |
|
deba@1750
|
402 |
int compNum = 0;
|
deba@1750
|
403 |
|
deba@1750
|
404 |
typedef FillMapVisitor<RGraph, NodeMap> RVisitor;
|
deba@1750
|
405 |
RVisitor rvisitor(compMap, compNum);
|
deba@1750
|
406 |
|
deba@1750
|
407 |
DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
|
deba@1750
|
408 |
|
deba@1750
|
409 |
rdfs.init();
|
deba@1750
|
410 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
deba@1750
|
411 |
if (!rdfs.reached(*it)) {
|
deba@1750
|
412 |
rdfs.addSource(*it);
|
deba@1750
|
413 |
rdfs.start();
|
deba@1750
|
414 |
++compNum;
|
deba@1750
|
415 |
}
|
deba@1750
|
416 |
}
|
deba@1750
|
417 |
return compNum;
|
deba@1750
|
418 |
}
|
deba@1750
|
419 |
|
deba@1750
|
420 |
/// \ingroup topology
|
deba@1750
|
421 |
///
|
deba@1750
|
422 |
/// \brief Find the cut edges of the strongly connected components.
|
deba@1750
|
423 |
///
|
deba@1750
|
424 |
/// Find the cut edges of the strongly connected components.
|
deba@1750
|
425 |
/// The strongly connected components are the classes of an equivalence
|
deba@1750
|
426 |
/// relation on the nodes of the graph. Two nodes are in relationship
|
deba@1750
|
427 |
/// when there are directed paths between them in both direction.
|
deba@1750
|
428 |
/// The strongly connected components are separated by the cut edges.
|
deba@1750
|
429 |
///
|
deba@1793
|
430 |
/// \param graph The graph.
|
deba@1793
|
431 |
/// \retval cutMap A writable node map. The values will be set true when the
|
deba@1793
|
432 |
/// edge is a cut edge.
|
deba@1750
|
433 |
///
|
deba@1750
|
434 |
/// \return The number of cut edges
|
deba@1750
|
435 |
template <typename Graph, typename EdgeMap>
|
deba@1750
|
436 |
int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
alpar@2260
|
437 |
checkConcept<concepts::Graph, Graph>();
|
deba@1750
|
438 |
typedef typename Graph::Node Node;
|
deba@1750
|
439 |
typedef typename Graph::Edge Edge;
|
deba@1750
|
440 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@2260
|
441 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
|
deba@1750
|
442 |
|
deba@1750
|
443 |
using namespace _topology_bits;
|
deba@1750
|
444 |
|
deba@1750
|
445 |
typedef std::vector<Node> Container;
|
deba@1750
|
446 |
typedef typename Container::iterator Iterator;
|
deba@1750
|
447 |
|
deba@1750
|
448 |
Container nodes(countNodes(graph));
|
deba@1750
|
449 |
typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
|
deba@1750
|
450 |
Visitor visitor(nodes.begin());
|
deba@1750
|
451 |
|
deba@1750
|
452 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
deba@1750
|
453 |
dfs.init();
|
deba@1750
|
454 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
455 |
if (!dfs.reached(it)) {
|
deba@1750
|
456 |
dfs.addSource(it);
|
deba@1750
|
457 |
dfs.start();
|
deba@1750
|
458 |
}
|
deba@1750
|
459 |
}
|
deba@1750
|
460 |
|
deba@1750
|
461 |
typedef typename Container::reverse_iterator RIterator;
|
deba@1750
|
462 |
typedef RevGraphAdaptor<const Graph> RGraph;
|
deba@1750
|
463 |
|
deba@1750
|
464 |
RGraph rgraph(graph);
|
deba@1750
|
465 |
|
deba@1750
|
466 |
int cutNum = 0;
|
deba@1750
|
467 |
|
deba@1750
|
468 |
typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor;
|
deba@1750
|
469 |
RVisitor rvisitor(rgraph, cutMap, cutNum);
|
deba@1750
|
470 |
|
deba@1750
|
471 |
DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
|
deba@1750
|
472 |
|
deba@1750
|
473 |
rdfs.init();
|
deba@1750
|
474 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
deba@1750
|
475 |
if (!rdfs.reached(*it)) {
|
deba@1750
|
476 |
rdfs.addSource(*it);
|
deba@1750
|
477 |
rdfs.start();
|
deba@1750
|
478 |
}
|
deba@1750
|
479 |
}
|
deba@1750
|
480 |
return cutNum;
|
deba@1750
|
481 |
}
|
deba@1750
|
482 |
|
deba@1698
|
483 |
namespace _topology_bits {
|
deba@1698
|
484 |
|
deba@1750
|
485 |
template <typename Graph>
|
deba@1800
|
486 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
|
deba@1698
|
487 |
public:
|
deba@1750
|
488 |
typedef typename Graph::Node Node;
|
deba@1750
|
489 |
typedef typename Graph::Edge Edge;
|
klao@1909
|
490 |
typedef typename Graph::UEdge UEdge;
|
deba@1698
|
491 |
|
deba@1800
|
492 |
CountBiNodeConnectedComponentsVisitor(const Graph& graph, int &compNum)
|
deba@1750
|
493 |
: _graph(graph), _compNum(compNum),
|
deba@1750
|
494 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@1750
|
495 |
|
deba@1750
|
496 |
void start(const Node& node) {
|
deba@1750
|
497 |
_predMap.set(node, INVALID);
|
deba@1750
|
498 |
}
|
deba@1750
|
499 |
|
deba@1750
|
500 |
void reach(const Node& node) {
|
deba@1750
|
501 |
_numMap.set(node, _num);
|
deba@1750
|
502 |
_retMap.set(node, _num);
|
deba@1750
|
503 |
++_num;
|
deba@1750
|
504 |
}
|
deba@1750
|
505 |
|
deba@1750
|
506 |
void discover(const Edge& edge) {
|
deba@1750
|
507 |
_predMap.set(_graph.target(edge), _graph.source(edge));
|
deba@1750
|
508 |
}
|
deba@1750
|
509 |
|
deba@1750
|
510 |
void examine(const Edge& edge) {
|
deba@1750
|
511 |
if (_graph.source(edge) == _graph.target(edge) &&
|
deba@1750
|
512 |
_graph.direction(edge)) {
|
deba@1750
|
513 |
++_compNum;
|
deba@1750
|
514 |
return;
|
deba@1750
|
515 |
}
|
deba@1750
|
516 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
|
deba@1750
|
517 |
return;
|
deba@1750
|
518 |
}
|
deba@1750
|
519 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
deba@1750
|
520 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
|
deba@1698
|
521 |
}
|
deba@1698
|
522 |
}
|
deba@1698
|
523 |
|
deba@1750
|
524 |
void backtrack(const Edge& edge) {
|
deba@1750
|
525 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@1750
|
526 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@1750
|
527 |
}
|
deba@1750
|
528 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
deba@1750
|
529 |
++_compNum;
|
deba@1750
|
530 |
}
|
deba@1750
|
531 |
}
|
deba@1750
|
532 |
|
deba@1750
|
533 |
private:
|
deba@1750
|
534 |
const Graph& _graph;
|
deba@1750
|
535 |
int& _compNum;
|
deba@1750
|
536 |
|
deba@1750
|
537 |
typename Graph::template NodeMap<int> _numMap;
|
deba@1750
|
538 |
typename Graph::template NodeMap<int> _retMap;
|
deba@1750
|
539 |
typename Graph::template NodeMap<Node> _predMap;
|
deba@1750
|
540 |
int _num;
|
deba@1750
|
541 |
};
|
deba@1750
|
542 |
|
deba@1750
|
543 |
template <typename Graph, typename EdgeMap>
|
deba@1800
|
544 |
class BiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
545 |
public:
|
deba@1750
|
546 |
typedef typename Graph::Node Node;
|
deba@1750
|
547 |
typedef typename Graph::Edge Edge;
|
klao@1909
|
548 |
typedef typename Graph::UEdge UEdge;
|
deba@1750
|
549 |
|
deba@1800
|
550 |
BiNodeConnectedComponentsVisitor(const Graph& graph,
|
deba@1750
|
551 |
EdgeMap& compMap, int &compNum)
|
deba@1750
|
552 |
: _graph(graph), _compMap(compMap), _compNum(compNum),
|
deba@1750
|
553 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@1750
|
554 |
|
deba@1750
|
555 |
void start(const Node& node) {
|
deba@1750
|
556 |
_predMap.set(node, INVALID);
|
deba@1750
|
557 |
}
|
deba@1750
|
558 |
|
deba@1750
|
559 |
void reach(const Node& node) {
|
deba@1750
|
560 |
_numMap.set(node, _num);
|
deba@1750
|
561 |
_retMap.set(node, _num);
|
deba@1750
|
562 |
++_num;
|
deba@1750
|
563 |
}
|
deba@1750
|
564 |
|
deba@1750
|
565 |
void discover(const Edge& edge) {
|
deba@1750
|
566 |
Node target = _graph.target(edge);
|
deba@1750
|
567 |
_predMap.set(target, edge);
|
deba@1750
|
568 |
_edgeStack.push(edge);
|
deba@1750
|
569 |
}
|
deba@1750
|
570 |
|
deba@1750
|
571 |
void examine(const Edge& edge) {
|
deba@1750
|
572 |
Node source = _graph.source(edge);
|
deba@1750
|
573 |
Node target = _graph.target(edge);
|
deba@1750
|
574 |
if (source == target && _graph.direction(edge)) {
|
deba@1750
|
575 |
_compMap.set(edge, _compNum);
|
deba@1750
|
576 |
++_compNum;
|
deba@1750
|
577 |
return;
|
deba@1750
|
578 |
}
|
deba@1750
|
579 |
if (_numMap[target] < _numMap[source]) {
|
deba@1750
|
580 |
if (_predMap[source] != _graph.oppositeEdge(edge)) {
|
deba@1750
|
581 |
_edgeStack.push(edge);
|
deba@1750
|
582 |
}
|
deba@1750
|
583 |
}
|
deba@1750
|
584 |
if (_predMap[source] != INVALID &&
|
deba@1750
|
585 |
target == _graph.source(_predMap[source])) {
|
deba@1750
|
586 |
return;
|
deba@1750
|
587 |
}
|
deba@1750
|
588 |
if (_retMap[source] > _numMap[target]) {
|
deba@1750
|
589 |
_retMap.set(source, _numMap[target]);
|
deba@1750
|
590 |
}
|
deba@1750
|
591 |
}
|
deba@1750
|
592 |
|
deba@1750
|
593 |
void backtrack(const Edge& edge) {
|
deba@1750
|
594 |
Node source = _graph.source(edge);
|
deba@1750
|
595 |
Node target = _graph.target(edge);
|
deba@1750
|
596 |
if (_retMap[source] > _retMap[target]) {
|
deba@1750
|
597 |
_retMap.set(source, _retMap[target]);
|
deba@1750
|
598 |
}
|
deba@1750
|
599 |
if (_numMap[source] <= _retMap[target]) {
|
deba@1750
|
600 |
while (_edgeStack.top() != edge) {
|
deba@1750
|
601 |
_compMap.set(_edgeStack.top(), _compNum);
|
deba@1750
|
602 |
_edgeStack.pop();
|
deba@1750
|
603 |
}
|
deba@1750
|
604 |
_compMap.set(edge, _compNum);
|
deba@1750
|
605 |
_edgeStack.pop();
|
deba@1750
|
606 |
++_compNum;
|
deba@1750
|
607 |
}
|
deba@1750
|
608 |
}
|
deba@1750
|
609 |
|
deba@1750
|
610 |
private:
|
deba@1750
|
611 |
const Graph& _graph;
|
deba@1750
|
612 |
EdgeMap& _compMap;
|
deba@1750
|
613 |
int& _compNum;
|
deba@1750
|
614 |
|
deba@1750
|
615 |
typename Graph::template NodeMap<int> _numMap;
|
deba@1750
|
616 |
typename Graph::template NodeMap<int> _retMap;
|
deba@1750
|
617 |
typename Graph::template NodeMap<Edge> _predMap;
|
klao@1909
|
618 |
std::stack<UEdge> _edgeStack;
|
deba@1750
|
619 |
int _num;
|
deba@1750
|
620 |
};
|
deba@1750
|
621 |
|
deba@1750
|
622 |
|
deba@1750
|
623 |
template <typename Graph, typename NodeMap>
|
deba@1800
|
624 |
class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
625 |
public:
|
deba@1750
|
626 |
typedef typename Graph::Node Node;
|
deba@1750
|
627 |
typedef typename Graph::Edge Edge;
|
klao@1909
|
628 |
typedef typename Graph::UEdge UEdge;
|
deba@1750
|
629 |
|
deba@1800
|
630 |
BiNodeConnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap,
|
deba@1750
|
631 |
int& cutNum)
|
deba@1750
|
632 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
|
deba@1750
|
633 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@1750
|
634 |
|
deba@1750
|
635 |
void start(const Node& node) {
|
deba@1750
|
636 |
_predMap.set(node, INVALID);
|
deba@1750
|
637 |
rootCut = false;
|
deba@1750
|
638 |
}
|
deba@1750
|
639 |
|
deba@1750
|
640 |
void reach(const Node& node) {
|
deba@1750
|
641 |
_numMap.set(node, _num);
|
deba@1750
|
642 |
_retMap.set(node, _num);
|
deba@1750
|
643 |
++_num;
|
deba@1750
|
644 |
}
|
deba@1750
|
645 |
|
deba@1750
|
646 |
void discover(const Edge& edge) {
|
deba@1750
|
647 |
_predMap.set(_graph.target(edge), _graph.source(edge));
|
deba@1750
|
648 |
}
|
deba@1750
|
649 |
|
deba@1750
|
650 |
void examine(const Edge& edge) {
|
deba@1750
|
651 |
if (_graph.source(edge) == _graph.target(edge) &&
|
deba@1750
|
652 |
_graph.direction(edge)) {
|
deba@1750
|
653 |
if (!_cutMap[_graph.source(edge)]) {
|
deba@1750
|
654 |
_cutMap.set(_graph.source(edge), true);
|
deba@1750
|
655 |
++_cutNum;
|
deba@1750
|
656 |
}
|
deba@1750
|
657 |
return;
|
deba@1750
|
658 |
}
|
deba@1750
|
659 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
|
deba@1750
|
660 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
deba@1750
|
661 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
|
deba@1750
|
662 |
}
|
deba@1750
|
663 |
}
|
deba@1750
|
664 |
|
deba@1750
|
665 |
void backtrack(const Edge& edge) {
|
deba@1750
|
666 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@1750
|
667 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@1750
|
668 |
}
|
deba@1750
|
669 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
deba@1750
|
670 |
if (_predMap[_graph.source(edge)] != INVALID) {
|
deba@1750
|
671 |
if (!_cutMap[_graph.source(edge)]) {
|
deba@1750
|
672 |
_cutMap.set(_graph.source(edge), true);
|
deba@1750
|
673 |
++_cutNum;
|
deba@1750
|
674 |
}
|
deba@1750
|
675 |
} else if (rootCut) {
|
deba@1750
|
676 |
if (!_cutMap[_graph.source(edge)]) {
|
deba@1750
|
677 |
_cutMap.set(_graph.source(edge), true);
|
deba@1750
|
678 |
++_cutNum;
|
deba@1750
|
679 |
}
|
deba@1750
|
680 |
} else {
|
deba@1750
|
681 |
rootCut = true;
|
deba@1750
|
682 |
}
|
deba@1750
|
683 |
}
|
deba@1750
|
684 |
}
|
deba@1750
|
685 |
|
deba@1750
|
686 |
private:
|
deba@1750
|
687 |
const Graph& _graph;
|
deba@1750
|
688 |
NodeMap& _cutMap;
|
deba@1750
|
689 |
int& _cutNum;
|
deba@1750
|
690 |
|
deba@1750
|
691 |
typename Graph::template NodeMap<int> _numMap;
|
deba@1750
|
692 |
typename Graph::template NodeMap<int> _retMap;
|
deba@1750
|
693 |
typename Graph::template NodeMap<Node> _predMap;
|
klao@1909
|
694 |
std::stack<UEdge> _edgeStack;
|
deba@1750
|
695 |
int _num;
|
deba@1750
|
696 |
bool rootCut;
|
deba@1750
|
697 |
};
|
deba@1750
|
698 |
|
deba@1750
|
699 |
}
|
deba@1750
|
700 |
|
klao@1909
|
701 |
template <typename UGraph>
|
klao@1909
|
702 |
int countBiNodeConnectedComponents(const UGraph& graph);
|
deba@1750
|
703 |
|
deba@1750
|
704 |
/// \ingroup topology
|
deba@1750
|
705 |
///
|
deba@1767
|
706 |
/// \brief Checks the graph is bi-node-connected.
|
deba@1750
|
707 |
///
|
deba@1767
|
708 |
/// This function checks that the undirected graph is bi-node-connected
|
deba@1767
|
709 |
/// graph. The graph is bi-node-connected if any two undirected edge is
|
deba@1750
|
710 |
/// on same circle.
|
deba@1750
|
711 |
///
|
deba@1750
|
712 |
/// \param graph The graph.
|
deba@1767
|
713 |
/// \return %True when the graph bi-node-connected.
|
deba@1750
|
714 |
/// \todo Make it faster.
|
klao@1909
|
715 |
template <typename UGraph>
|
klao@1909
|
716 |
bool biNodeConnected(const UGraph& graph) {
|
deba@1800
|
717 |
return countBiNodeConnectedComponents(graph) == 1;
|
deba@1750
|
718 |
}
|
deba@1750
|
719 |
|
deba@1750
|
720 |
/// \ingroup topology
|
deba@1750
|
721 |
///
|
deba@1750
|
722 |
/// \brief Count the biconnected components.
|
deba@1750
|
723 |
///
|
deba@1767
|
724 |
/// This function finds the bi-node-connected components in an undirected
|
deba@1750
|
725 |
/// graph. The biconnected components are the classes of an equivalence
|
deba@1750
|
726 |
/// relation on the undirected edges. Two undirected edge is in relationship
|
deba@1750
|
727 |
/// when they are on same circle.
|
deba@1750
|
728 |
///
|
deba@1750
|
729 |
/// \param graph The graph.
|
deba@1750
|
730 |
/// \return The number of components.
|
klao@1909
|
731 |
template <typename UGraph>
|
klao@1909
|
732 |
int countBiNodeConnectedComponents(const UGraph& graph) {
|
alpar@2260
|
733 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
734 |
typedef typename UGraph::NodeIt NodeIt;
|
deba@1750
|
735 |
|
deba@1750
|
736 |
using namespace _topology_bits;
|
deba@1750
|
737 |
|
klao@1909
|
738 |
typedef CountBiNodeConnectedComponentsVisitor<UGraph> Visitor;
|
deba@1750
|
739 |
|
deba@1750
|
740 |
int compNum = 0;
|
deba@1750
|
741 |
Visitor visitor(graph, compNum);
|
deba@1750
|
742 |
|
klao@1909
|
743 |
DfsVisit<UGraph, Visitor> dfs(graph, visitor);
|
deba@1750
|
744 |
dfs.init();
|
deba@1750
|
745 |
|
deba@1750
|
746 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
747 |
if (!dfs.reached(it)) {
|
deba@1750
|
748 |
dfs.addSource(it);
|
deba@1750
|
749 |
dfs.start();
|
deba@1750
|
750 |
}
|
deba@1750
|
751 |
}
|
deba@1750
|
752 |
return compNum;
|
deba@1750
|
753 |
}
|
deba@1750
|
754 |
|
deba@1750
|
755 |
/// \ingroup topology
|
deba@1750
|
756 |
///
|
deba@1767
|
757 |
/// \brief Find the bi-node-connected components.
|
deba@1750
|
758 |
///
|
deba@1767
|
759 |
/// This function finds the bi-node-connected components in an undirected
|
deba@1767
|
760 |
/// graph. The bi-node-connected components are the classes of an equivalence
|
deba@1750
|
761 |
/// relation on the undirected edges. Two undirected edge are in relationship
|
deba@1750
|
762 |
/// when they are on same circle.
|
deba@1750
|
763 |
///
|
deba@1763
|
764 |
/// \image html node_biconnected_components.png
|
deba@1767
|
765 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
|
deba@1763
|
766 |
///
|
deba@1750
|
767 |
/// \param graph The graph.
|
klao@1909
|
768 |
/// \retval compMap A writable uedge map. The values will be set from 0
|
deba@1793
|
769 |
/// to the number of the biconnected components minus one. Each values
|
deba@1750
|
770 |
/// of the map will be set exactly once, the values of a certain component
|
deba@1750
|
771 |
/// will be set continuously.
|
deba@1750
|
772 |
/// \return The number of components.
|
deba@1763
|
773 |
///
|
klao@1909
|
774 |
template <typename UGraph, typename UEdgeMap>
|
klao@1909
|
775 |
int biNodeConnectedComponents(const UGraph& graph,
|
klao@1909
|
776 |
UEdgeMap& compMap) {
|
alpar@2260
|
777 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
778 |
typedef typename UGraph::NodeIt NodeIt;
|
klao@1909
|
779 |
typedef typename UGraph::UEdge UEdge;
|
alpar@2260
|
780 |
checkConcept<concepts::WriteMap<UEdge, int>, UEdgeMap>();
|
deba@1750
|
781 |
|
deba@1750
|
782 |
using namespace _topology_bits;
|
deba@1750
|
783 |
|
klao@1909
|
784 |
typedef BiNodeConnectedComponentsVisitor<UGraph, UEdgeMap> Visitor;
|
deba@1750
|
785 |
|
deba@1750
|
786 |
int compNum = 0;
|
deba@1750
|
787 |
Visitor visitor(graph, compMap, compNum);
|
deba@1750
|
788 |
|
klao@1909
|
789 |
DfsVisit<UGraph, Visitor> dfs(graph, visitor);
|
deba@1750
|
790 |
dfs.init();
|
deba@1750
|
791 |
|
deba@1750
|
792 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
793 |
if (!dfs.reached(it)) {
|
deba@1750
|
794 |
dfs.addSource(it);
|
deba@1750
|
795 |
dfs.start();
|
deba@1750
|
796 |
}
|
deba@1750
|
797 |
}
|
deba@1750
|
798 |
return compNum;
|
deba@1750
|
799 |
}
|
deba@1750
|
800 |
|
deba@1750
|
801 |
/// \ingroup topology
|
deba@1750
|
802 |
///
|
deba@1767
|
803 |
/// \brief Find the bi-node-connected cut nodes.
|
deba@1750
|
804 |
///
|
deba@1767
|
805 |
/// This function finds the bi-node-connected cut nodes in an undirected
|
deba@1767
|
806 |
/// graph. The bi-node-connected components are the classes of an equivalence
|
deba@1750
|
807 |
/// relation on the undirected edges. Two undirected edges are in
|
deba@1750
|
808 |
/// relationship when they are on same circle. The biconnected components
|
deba@1750
|
809 |
/// are separted by nodes which are the cut nodes of the components.
|
deba@1750
|
810 |
///
|
deba@1750
|
811 |
/// \param graph The graph.
|
deba@1793
|
812 |
/// \retval cutMap A writable edge map. The values will be set true when
|
deba@1750
|
813 |
/// the node separate two or more components.
|
deba@1750
|
814 |
/// \return The number of the cut nodes.
|
klao@1909
|
815 |
template <typename UGraph, typename NodeMap>
|
klao@1909
|
816 |
int biNodeConnectedCutNodes(const UGraph& graph, NodeMap& cutMap) {
|
alpar@2260
|
817 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
818 |
typedef typename UGraph::Node Node;
|
klao@1909
|
819 |
typedef typename UGraph::NodeIt NodeIt;
|
alpar@2260
|
820 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
|
deba@1750
|
821 |
|
deba@1750
|
822 |
using namespace _topology_bits;
|
deba@1750
|
823 |
|
klao@1909
|
824 |
typedef BiNodeConnectedCutNodesVisitor<UGraph, NodeMap> Visitor;
|
deba@1750
|
825 |
|
deba@1750
|
826 |
int cutNum = 0;
|
deba@1750
|
827 |
Visitor visitor(graph, cutMap, cutNum);
|
deba@1750
|
828 |
|
klao@1909
|
829 |
DfsVisit<UGraph, Visitor> dfs(graph, visitor);
|
deba@1750
|
830 |
dfs.init();
|
deba@1750
|
831 |
|
deba@1750
|
832 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
833 |
if (!dfs.reached(it)) {
|
deba@1750
|
834 |
dfs.addSource(it);
|
deba@1750
|
835 |
dfs.start();
|
deba@1750
|
836 |
}
|
deba@1750
|
837 |
}
|
deba@1750
|
838 |
return cutNum;
|
deba@1750
|
839 |
}
|
deba@1750
|
840 |
|
deba@1750
|
841 |
namespace _topology_bits {
|
deba@1750
|
842 |
|
deba@1750
|
843 |
template <typename Graph>
|
deba@1800
|
844 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
845 |
public:
|
deba@1750
|
846 |
typedef typename Graph::Node Node;
|
deba@1750
|
847 |
typedef typename Graph::Edge Edge;
|
klao@1909
|
848 |
typedef typename Graph::UEdge UEdge;
|
deba@1750
|
849 |
|
deba@1800
|
850 |
CountBiEdgeConnectedComponentsVisitor(const Graph& graph, int &compNum)
|
deba@1750
|
851 |
: _graph(graph), _compNum(compNum),
|
deba@1750
|
852 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@1750
|
853 |
|
deba@1750
|
854 |
void start(const Node& node) {
|
deba@1750
|
855 |
_predMap.set(node, INVALID);
|
deba@1750
|
856 |
}
|
deba@1750
|
857 |
|
deba@1750
|
858 |
void reach(const Node& node) {
|
deba@1750
|
859 |
_numMap.set(node, _num);
|
deba@1750
|
860 |
_retMap.set(node, _num);
|
deba@1750
|
861 |
++_num;
|
deba@1750
|
862 |
}
|
deba@1750
|
863 |
|
deba@1750
|
864 |
void leave(const Node& node) {
|
deba@1750
|
865 |
if (_numMap[node] <= _retMap[node]) {
|
deba@1750
|
866 |
++_compNum;
|
deba@1750
|
867 |
}
|
deba@1750
|
868 |
}
|
deba@1750
|
869 |
|
deba@1750
|
870 |
void discover(const Edge& edge) {
|
deba@1750
|
871 |
_predMap.set(_graph.target(edge), edge);
|
deba@1750
|
872 |
}
|
deba@1750
|
873 |
|
deba@1750
|
874 |
void examine(const Edge& edge) {
|
deba@1750
|
875 |
if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
|
deba@1750
|
876 |
return;
|
deba@1750
|
877 |
}
|
deba@1750
|
878 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@1750
|
879 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@1750
|
880 |
}
|
deba@1750
|
881 |
}
|
deba@1750
|
882 |
|
deba@1750
|
883 |
void backtrack(const Edge& edge) {
|
deba@1750
|
884 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@1750
|
885 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@1750
|
886 |
}
|
deba@1750
|
887 |
}
|
deba@1750
|
888 |
|
deba@1750
|
889 |
private:
|
deba@1750
|
890 |
const Graph& _graph;
|
deba@1750
|
891 |
int& _compNum;
|
deba@1750
|
892 |
|
deba@1750
|
893 |
typename Graph::template NodeMap<int> _numMap;
|
deba@1750
|
894 |
typename Graph::template NodeMap<int> _retMap;
|
deba@1750
|
895 |
typename Graph::template NodeMap<Edge> _predMap;
|
deba@1750
|
896 |
int _num;
|
deba@1750
|
897 |
};
|
deba@1750
|
898 |
|
deba@1750
|
899 |
template <typename Graph, typename NodeMap>
|
deba@1800
|
900 |
class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
901 |
public:
|
deba@1750
|
902 |
typedef typename Graph::Node Node;
|
deba@1750
|
903 |
typedef typename Graph::Edge Edge;
|
klao@1909
|
904 |
typedef typename Graph::UEdge UEdge;
|
deba@1750
|
905 |
|
deba@1800
|
906 |
BiEdgeConnectedComponentsVisitor(const Graph& graph,
|
deba@1750
|
907 |
NodeMap& compMap, int &compNum)
|
deba@1750
|
908 |
: _graph(graph), _compMap(compMap), _compNum(compNum),
|
deba@1750
|
909 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@1750
|
910 |
|
deba@1750
|
911 |
void start(const Node& node) {
|
deba@1750
|
912 |
_predMap.set(node, INVALID);
|
deba@1750
|
913 |
}
|
deba@1750
|
914 |
|
deba@1750
|
915 |
void reach(const Node& node) {
|
deba@1750
|
916 |
_numMap.set(node, _num);
|
deba@1750
|
917 |
_retMap.set(node, _num);
|
deba@1750
|
918 |
_nodeStack.push(node);
|
deba@1750
|
919 |
++_num;
|
deba@1750
|
920 |
}
|
deba@1750
|
921 |
|
deba@1750
|
922 |
void leave(const Node& node) {
|
deba@1750
|
923 |
if (_numMap[node] <= _retMap[node]) {
|
deba@1750
|
924 |
while (_nodeStack.top() != node) {
|
deba@1750
|
925 |
_compMap.set(_nodeStack.top(), _compNum);
|
deba@1750
|
926 |
_nodeStack.pop();
|
deba@1750
|
927 |
}
|
deba@1750
|
928 |
_compMap.set(node, _compNum);
|
deba@1750
|
929 |
_nodeStack.pop();
|
deba@1750
|
930 |
++_compNum;
|
deba@1750
|
931 |
}
|
deba@1750
|
932 |
}
|
deba@1750
|
933 |
|
deba@1750
|
934 |
void discover(const Edge& edge) {
|
deba@1750
|
935 |
_predMap.set(_graph.target(edge), edge);
|
deba@1750
|
936 |
}
|
deba@1750
|
937 |
|
deba@1750
|
938 |
void examine(const Edge& edge) {
|
deba@1750
|
939 |
if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
|
deba@1750
|
940 |
return;
|
deba@1750
|
941 |
}
|
deba@1750
|
942 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@1750
|
943 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@1750
|
944 |
}
|
deba@1750
|
945 |
}
|
deba@1750
|
946 |
|
deba@1750
|
947 |
void backtrack(const Edge& edge) {
|
deba@1750
|
948 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@1750
|
949 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@1750
|
950 |
}
|
deba@1750
|
951 |
}
|
deba@1750
|
952 |
|
deba@1750
|
953 |
private:
|
deba@1750
|
954 |
const Graph& _graph;
|
deba@1750
|
955 |
NodeMap& _compMap;
|
deba@1750
|
956 |
int& _compNum;
|
deba@1750
|
957 |
|
deba@1750
|
958 |
typename Graph::template NodeMap<int> _numMap;
|
deba@1750
|
959 |
typename Graph::template NodeMap<int> _retMap;
|
deba@1750
|
960 |
typename Graph::template NodeMap<Edge> _predMap;
|
deba@1750
|
961 |
std::stack<Node> _nodeStack;
|
deba@1750
|
962 |
int _num;
|
deba@1750
|
963 |
};
|
deba@1750
|
964 |
|
deba@1750
|
965 |
|
deba@1750
|
966 |
template <typename Graph, typename EdgeMap>
|
deba@1800
|
967 |
class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
968 |
public:
|
deba@1750
|
969 |
typedef typename Graph::Node Node;
|
deba@1750
|
970 |
typedef typename Graph::Edge Edge;
|
klao@1909
|
971 |
typedef typename Graph::UEdge UEdge;
|
deba@1750
|
972 |
|
deba@1800
|
973 |
BiEdgeConnectedCutEdgesVisitor(const Graph& graph,
|
deba@1750
|
974 |
EdgeMap& cutMap, int &cutNum)
|
deba@1750
|
975 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
|
deba@1750
|
976 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
deba@1750
|
977 |
|
deba@1750
|
978 |
void start(const Node& node) {
|
deba@1750
|
979 |
_predMap[node] = INVALID;
|
deba@1750
|
980 |
}
|
deba@1750
|
981 |
|
deba@1750
|
982 |
void reach(const Node& node) {
|
deba@1750
|
983 |
_numMap.set(node, _num);
|
deba@1750
|
984 |
_retMap.set(node, _num);
|
deba@1750
|
985 |
++_num;
|
deba@1750
|
986 |
}
|
deba@1750
|
987 |
|
deba@1750
|
988 |
void leave(const Node& node) {
|
deba@1750
|
989 |
if (_numMap[node] <= _retMap[node]) {
|
deba@1750
|
990 |
if (_predMap[node] != INVALID) {
|
deba@1750
|
991 |
_cutMap.set(_predMap[node], true);
|
deba@1750
|
992 |
++_cutNum;
|
deba@1750
|
993 |
}
|
deba@1750
|
994 |
}
|
deba@1750
|
995 |
}
|
deba@1750
|
996 |
|
deba@1750
|
997 |
void discover(const Edge& edge) {
|
deba@1750
|
998 |
_predMap.set(_graph.target(edge), edge);
|
deba@1750
|
999 |
}
|
deba@1750
|
1000 |
|
deba@1750
|
1001 |
void examine(const Edge& edge) {
|
deba@1750
|
1002 |
if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
|
deba@1750
|
1003 |
return;
|
deba@1750
|
1004 |
}
|
deba@1750
|
1005 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@1750
|
1006 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@1750
|
1007 |
}
|
deba@1750
|
1008 |
}
|
deba@1750
|
1009 |
|
deba@1750
|
1010 |
void backtrack(const Edge& edge) {
|
deba@1750
|
1011 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
deba@1750
|
1012 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
deba@1750
|
1013 |
}
|
deba@1750
|
1014 |
}
|
deba@1750
|
1015 |
|
deba@1750
|
1016 |
private:
|
deba@1750
|
1017 |
const Graph& _graph;
|
deba@1750
|
1018 |
EdgeMap& _cutMap;
|
deba@1750
|
1019 |
int& _cutNum;
|
deba@1750
|
1020 |
|
deba@1750
|
1021 |
typename Graph::template NodeMap<int> _numMap;
|
deba@1750
|
1022 |
typename Graph::template NodeMap<int> _retMap;
|
deba@1750
|
1023 |
typename Graph::template NodeMap<Edge> _predMap;
|
deba@1750
|
1024 |
int _num;
|
deba@1750
|
1025 |
};
|
deba@1750
|
1026 |
}
|
deba@1750
|
1027 |
|
klao@1909
|
1028 |
template <typename UGraph>
|
klao@1909
|
1029 |
int countbiEdgeConnectedComponents(const UGraph& graph);
|
deba@1750
|
1030 |
|
deba@1750
|
1031 |
/// \ingroup topology
|
deba@1750
|
1032 |
///
|
deba@1767
|
1033 |
/// \brief Checks that the graph is bi-edge-connected.
|
deba@1750
|
1034 |
///
|
deba@1767
|
1035 |
/// This function checks that the graph is bi-edge-connected. The undirected
|
deba@1767
|
1036 |
/// graph is bi-edge-connected when any two nodes are connected with two
|
deba@1750
|
1037 |
/// edge-disjoint paths.
|
deba@1750
|
1038 |
///
|
deba@1750
|
1039 |
/// \param graph The undirected graph.
|
deba@1750
|
1040 |
/// \return The number of components.
|
deba@1750
|
1041 |
/// \todo Make it faster.
|
klao@1909
|
1042 |
template <typename UGraph>
|
klao@1909
|
1043 |
bool biEdgeConnected(const UGraph& graph) {
|
deba@1800
|
1044 |
return countBiEdgeConnectedComponents(graph) == 1;
|
deba@1750
|
1045 |
}
|
deba@1750
|
1046 |
|
deba@1750
|
1047 |
/// \ingroup topology
|
deba@1750
|
1048 |
///
|
deba@1767
|
1049 |
/// \brief Count the bi-edge-connected components.
|
deba@1750
|
1050 |
///
|
deba@1767
|
1051 |
/// This function count the bi-edge-connected components in an undirected
|
deba@1767
|
1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
deba@1750
|
1053 |
/// relation on the nodes. Two nodes are in relationship when they are
|
deba@1750
|
1054 |
/// connected with at least two edge-disjoint paths.
|
deba@1750
|
1055 |
///
|
deba@1750
|
1056 |
/// \param graph The undirected graph.
|
deba@1750
|
1057 |
/// \return The number of components.
|
klao@1909
|
1058 |
template <typename UGraph>
|
klao@1909
|
1059 |
int countBiEdgeConnectedComponents(const UGraph& graph) {
|
alpar@2260
|
1060 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
1061 |
typedef typename UGraph::NodeIt NodeIt;
|
deba@1750
|
1062 |
|
deba@1750
|
1063 |
using namespace _topology_bits;
|
deba@1750
|
1064 |
|
klao@1909
|
1065 |
typedef CountBiEdgeConnectedComponentsVisitor<UGraph> Visitor;
|
deba@1750
|
1066 |
|
deba@1750
|
1067 |
int compNum = 0;
|
deba@1750
|
1068 |
Visitor visitor(graph, compNum);
|
deba@1750
|
1069 |
|
klao@1909
|
1070 |
DfsVisit<UGraph, Visitor> dfs(graph, visitor);
|
deba@1750
|
1071 |
dfs.init();
|
deba@1750
|
1072 |
|
deba@1750
|
1073 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
1074 |
if (!dfs.reached(it)) {
|
deba@1750
|
1075 |
dfs.addSource(it);
|
deba@1750
|
1076 |
dfs.start();
|
deba@1750
|
1077 |
}
|
deba@1750
|
1078 |
}
|
deba@1750
|
1079 |
return compNum;
|
deba@1750
|
1080 |
}
|
deba@1750
|
1081 |
|
deba@1750
|
1082 |
/// \ingroup topology
|
deba@1750
|
1083 |
///
|
deba@1767
|
1084 |
/// \brief Find the bi-edge-connected components.
|
deba@1750
|
1085 |
///
|
deba@1767
|
1086 |
/// This function finds the bi-edge-connected components in an undirected
|
deba@1767
|
1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
deba@1750
|
1088 |
/// relation on the nodes. Two nodes are in relationship when they are
|
deba@1750
|
1089 |
/// connected at least two edge-disjoint paths.
|
deba@1750
|
1090 |
///
|
deba@1763
|
1091 |
/// \image html edge_biconnected_components.png
|
deba@1767
|
1092 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
|
deba@1763
|
1093 |
///
|
deba@1750
|
1094 |
/// \param graph The graph.
|
deba@1793
|
1095 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
deba@1750
|
1096 |
/// the number of the biconnected components minus one. Each values
|
deba@1750
|
1097 |
/// of the map will be set exactly once, the values of a certain component
|
deba@1750
|
1098 |
/// will be set continuously.
|
deba@1750
|
1099 |
/// \return The number of components.
|
deba@1763
|
1100 |
///
|
klao@1909
|
1101 |
template <typename UGraph, typename NodeMap>
|
klao@1909
|
1102 |
int biEdgeConnectedComponents(const UGraph& graph, NodeMap& compMap) {
|
alpar@2260
|
1103 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
1104 |
typedef typename UGraph::NodeIt NodeIt;
|
klao@1909
|
1105 |
typedef typename UGraph::Node Node;
|
alpar@2260
|
1106 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
deba@1750
|
1107 |
|
deba@1750
|
1108 |
using namespace _topology_bits;
|
deba@1750
|
1109 |
|
klao@1909
|
1110 |
typedef BiEdgeConnectedComponentsVisitor<UGraph, NodeMap> Visitor;
|
deba@1750
|
1111 |
|
deba@1750
|
1112 |
int compNum = 0;
|
deba@1750
|
1113 |
Visitor visitor(graph, compMap, compNum);
|
deba@1750
|
1114 |
|
klao@1909
|
1115 |
DfsVisit<UGraph, Visitor> dfs(graph, visitor);
|
deba@1750
|
1116 |
dfs.init();
|
deba@1750
|
1117 |
|
deba@1750
|
1118 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
1119 |
if (!dfs.reached(it)) {
|
deba@1750
|
1120 |
dfs.addSource(it);
|
deba@1750
|
1121 |
dfs.start();
|
deba@1750
|
1122 |
}
|
deba@1750
|
1123 |
}
|
deba@1750
|
1124 |
return compNum;
|
deba@1750
|
1125 |
}
|
deba@1750
|
1126 |
|
deba@1750
|
1127 |
/// \ingroup topology
|
deba@1750
|
1128 |
///
|
deba@1767
|
1129 |
/// \brief Find the bi-edge-connected cut edges.
|
deba@1750
|
1130 |
///
|
deba@1767
|
1131 |
/// This function finds the bi-edge-connected components in an undirected
|
deba@1767
|
1132 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
deba@1750
|
1133 |
/// relation on the nodes. Two nodes are in relationship when they are
|
deba@1767
|
1134 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected
|
deba@1750
|
1135 |
/// components are separted by edges which are the cut edges of the
|
deba@1750
|
1136 |
/// components.
|
deba@1750
|
1137 |
///
|
deba@1750
|
1138 |
/// \param graph The graph.
|
deba@1793
|
1139 |
/// \retval cutMap A writable node map. The values will be set true when the
|
deba@1750
|
1140 |
/// edge is a cut edge.
|
deba@1750
|
1141 |
/// \return The number of cut edges.
|
klao@1909
|
1142 |
template <typename UGraph, typename UEdgeMap>
|
klao@1909
|
1143 |
int biEdgeConnectedCutEdges(const UGraph& graph, UEdgeMap& cutMap) {
|
alpar@2260
|
1144 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
1145 |
typedef typename UGraph::NodeIt NodeIt;
|
klao@1909
|
1146 |
typedef typename UGraph::UEdge UEdge;
|
alpar@2260
|
1147 |
checkConcept<concepts::WriteMap<UEdge, bool>, UEdgeMap>();
|
deba@1750
|
1148 |
|
deba@1750
|
1149 |
using namespace _topology_bits;
|
deba@1750
|
1150 |
|
klao@1909
|
1151 |
typedef BiEdgeConnectedCutEdgesVisitor<UGraph, UEdgeMap> Visitor;
|
deba@1750
|
1152 |
|
deba@1750
|
1153 |
int cutNum = 0;
|
deba@1750
|
1154 |
Visitor visitor(graph, cutMap, cutNum);
|
deba@1750
|
1155 |
|
klao@1909
|
1156 |
DfsVisit<UGraph, Visitor> dfs(graph, visitor);
|
deba@1750
|
1157 |
dfs.init();
|
deba@1750
|
1158 |
|
deba@1750
|
1159 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
1160 |
if (!dfs.reached(it)) {
|
deba@1750
|
1161 |
dfs.addSource(it);
|
deba@1750
|
1162 |
dfs.start();
|
deba@1750
|
1163 |
}
|
deba@1750
|
1164 |
}
|
deba@1750
|
1165 |
return cutNum;
|
deba@1750
|
1166 |
}
|
deba@1750
|
1167 |
|
deba@1750
|
1168 |
|
deba@1750
|
1169 |
namespace _topology_bits {
|
deba@1750
|
1170 |
|
deba@1750
|
1171 |
template <typename Graph, typename IntNodeMap>
|
deba@1750
|
1172 |
class TopologicalSortVisitor : public DfsVisitor<Graph> {
|
deba@1750
|
1173 |
public:
|
deba@1750
|
1174 |
typedef typename Graph::Node Node;
|
deba@1750
|
1175 |
typedef typename Graph::Edge edge;
|
deba@1750
|
1176 |
|
deba@1750
|
1177 |
TopologicalSortVisitor(IntNodeMap& order, int num)
|
deba@1750
|
1178 |
: _order(order), _num(num) {}
|
deba@1750
|
1179 |
|
deba@1750
|
1180 |
void leave(const Node& node) {
|
deba@1750
|
1181 |
_order.set(node, --_num);
|
deba@1698
|
1182 |
}
|
deba@1698
|
1183 |
|
deba@1698
|
1184 |
private:
|
deba@1750
|
1185 |
IntNodeMap& _order;
|
deba@1750
|
1186 |
int _num;
|
deba@1698
|
1187 |
};
|
deba@1750
|
1188 |
|
deba@1698
|
1189 |
}
|
deba@1698
|
1190 |
|
deba@1750
|
1191 |
/// \ingroup topology
|
deba@1750
|
1192 |
///
|
deba@1750
|
1193 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
deba@1750
|
1194 |
///
|
deba@1750
|
1195 |
/// Sort the nodes of a DAG into topolgical order.
|
deba@1750
|
1196 |
///
|
deba@1793
|
1197 |
/// \param graph The graph. It should be directed and acyclic.
|
deba@1793
|
1198 |
/// \retval order A writable node map. The values will be set from 0 to
|
deba@1750
|
1199 |
/// the number of the nodes in the graph minus one. Each values of the map
|
deba@1750
|
1200 |
/// will be set exactly once, the values will be set descending order.
|
deba@1750
|
1201 |
///
|
deba@1750
|
1202 |
/// \see checkedTopologicalSort
|
deba@1750
|
1203 |
/// \see dag
|
deba@1698
|
1204 |
template <typename Graph, typename NodeMap>
|
deba@1750
|
1205 |
void topologicalSort(const Graph& graph, NodeMap& order) {
|
deba@1750
|
1206 |
using namespace _topology_bits;
|
deba@1750
|
1207 |
|
alpar@2260
|
1208 |
checkConcept<concepts::Graph, Graph>();
|
alpar@2260
|
1209 |
checkConcept<concepts::WriteMap<typename Graph::Node, int>, NodeMap>();
|
deba@1750
|
1210 |
|
deba@1750
|
1211 |
typedef typename Graph::Node Node;
|
deba@1750
|
1212 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1750
|
1213 |
typedef typename Graph::Edge Edge;
|
deba@1750
|
1214 |
|
deba@1750
|
1215 |
TopologicalSortVisitor<Graph, NodeMap>
|
deba@1750
|
1216 |
visitor(order, countNodes(graph));
|
deba@1750
|
1217 |
|
deba@1750
|
1218 |
DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
|
deba@1750
|
1219 |
dfs(graph, visitor);
|
deba@1750
|
1220 |
|
deba@1750
|
1221 |
dfs.init();
|
deba@1750
|
1222 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1750
|
1223 |
if (!dfs.reached(it)) {
|
deba@1750
|
1224 |
dfs.addSource(it);
|
deba@1750
|
1225 |
dfs.start();
|
deba@1750
|
1226 |
}
|
deba@1750
|
1227 |
}
|
deba@1750
|
1228 |
}
|
deba@1750
|
1229 |
|
deba@1750
|
1230 |
/// \ingroup topology
|
deba@1750
|
1231 |
///
|
deba@1750
|
1232 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
deba@1750
|
1233 |
///
|
deba@1750
|
1234 |
/// Sort the nodes of a DAG into topolgical order. It also checks
|
deba@1750
|
1235 |
/// that the given graph is DAG.
|
deba@1750
|
1236 |
///
|
deba@1793
|
1237 |
/// \param graph The graph. It should be directed and acyclic.
|
deba@1750
|
1238 |
/// \retval order A readable - writable node map. The values will be set
|
deba@1750
|
1239 |
/// from 0 to the number of the nodes in the graph minus one. Each values
|
deba@1750
|
1240 |
/// of the map will be set exactly once, the values will be set descending
|
deba@1750
|
1241 |
/// order.
|
deba@1750
|
1242 |
/// \return %False when the graph is not DAG.
|
deba@1750
|
1243 |
///
|
deba@1750
|
1244 |
/// \see topologicalSort
|
deba@1750
|
1245 |
/// \see dag
|
deba@1750
|
1246 |
template <typename Graph, typename NodeMap>
|
deba@1750
|
1247 |
bool checkedTopologicalSort(const Graph& graph, NodeMap& order) {
|
deba@1698
|
1248 |
using namespace _topology_bits;
|
deba@1698
|
1249 |
|
alpar@2260
|
1250 |
checkConcept<concepts::Graph, Graph>();
|
alpar@2260
|
1251 |
checkConcept<concepts::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
|
deba@1698
|
1252 |
|
deba@1698
|
1253 |
typedef typename Graph::Node Node;
|
deba@1698
|
1254 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1698
|
1255 |
typedef typename Graph::Edge Edge;
|
deba@1698
|
1256 |
|
deba@1750
|
1257 |
order = constMap<Node, int, -1>();
|
deba@1698
|
1258 |
|
deba@1750
|
1259 |
TopologicalSortVisitor<Graph, NodeMap>
|
deba@1750
|
1260 |
visitor(order, countNodes(graph));
|
deba@1698
|
1261 |
|
deba@1750
|
1262 |
DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
|
deba@1750
|
1263 |
dfs(graph, visitor);
|
deba@1698
|
1264 |
|
deba@1698
|
1265 |
dfs.init();
|
deba@1698
|
1266 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
1267 |
if (!dfs.reached(it)) {
|
deba@1698
|
1268 |
dfs.addSource(it);
|
deba@1698
|
1269 |
while (!dfs.emptyQueue()) {
|
deba@1750
|
1270 |
Edge edge = dfs.nextEdge();
|
deba@1750
|
1271 |
Node target = graph.target(edge);
|
deba@1750
|
1272 |
if (dfs.reached(target) && order[target] == -1) {
|
deba@1750
|
1273 |
return false;
|
deba@1750
|
1274 |
}
|
deba@1750
|
1275 |
dfs.processNextEdge();
|
deba@1750
|
1276 |
}
|
deba@1698
|
1277 |
}
|
deba@1750
|
1278 |
}
|
deba@1698
|
1279 |
return true;
|
deba@1698
|
1280 |
}
|
deba@1698
|
1281 |
|
deba@1750
|
1282 |
/// \ingroup topology
|
deba@1698
|
1283 |
///
|
deba@1750
|
1284 |
/// \brief Check that the given directed graph is a DAG.
|
deba@1750
|
1285 |
///
|
deba@1750
|
1286 |
/// Check that the given directed graph is a DAG. The DAG is
|
deba@1698
|
1287 |
/// an Directed Acyclic Graph.
|
deba@1750
|
1288 |
/// \return %False when the graph is not DAG.
|
deba@1750
|
1289 |
/// \see acyclic
|
deba@1698
|
1290 |
template <typename Graph>
|
deba@1698
|
1291 |
bool dag(const Graph& graph) {
|
deba@1698
|
1292 |
|
alpar@2260
|
1293 |
checkConcept<concepts::Graph, Graph>();
|
deba@1698
|
1294 |
|
deba@1698
|
1295 |
typedef typename Graph::Node Node;
|
deba@1698
|
1296 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1698
|
1297 |
typedef typename Graph::Edge Edge;
|
deba@1698
|
1298 |
|
deba@1698
|
1299 |
typedef typename Graph::template NodeMap<bool> ProcessedMap;
|
deba@1698
|
1300 |
|
deba@1698
|
1301 |
typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
|
deba@1709
|
1302 |
Create dfs(graph);
|
deba@1698
|
1303 |
|
deba@1698
|
1304 |
ProcessedMap processed(graph);
|
deba@1698
|
1305 |
dfs.processedMap(processed);
|
deba@1698
|
1306 |
|
deba@1698
|
1307 |
dfs.init();
|
deba@1698
|
1308 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
1309 |
if (!dfs.reached(it)) {
|
deba@1698
|
1310 |
dfs.addSource(it);
|
deba@1698
|
1311 |
while (!dfs.emptyQueue()) {
|
deba@1698
|
1312 |
Edge edge = dfs.nextEdge();
|
deba@1698
|
1313 |
Node target = graph.target(edge);
|
deba@1698
|
1314 |
if (dfs.reached(target) && !processed[target]) {
|
deba@1698
|
1315 |
return false;
|
deba@1698
|
1316 |
}
|
deba@1698
|
1317 |
dfs.processNextEdge();
|
deba@1698
|
1318 |
}
|
deba@1698
|
1319 |
}
|
deba@1698
|
1320 |
}
|
deba@1698
|
1321 |
return true;
|
deba@1698
|
1322 |
}
|
deba@1698
|
1323 |
|
deba@1750
|
1324 |
/// \ingroup topology
|
deba@1698
|
1325 |
///
|
deba@1698
|
1326 |
/// \brief Check that the given undirected graph is acyclic.
|
deba@1698
|
1327 |
///
|
deba@1698
|
1328 |
/// Check that the given undirected graph acyclic.
|
deba@1750
|
1329 |
/// \param graph The undirected graph.
|
deba@1750
|
1330 |
/// \return %True when there is no circle in the graph.
|
deba@1750
|
1331 |
/// \see dag
|
klao@1909
|
1332 |
template <typename UGraph>
|
klao@1909
|
1333 |
bool acyclic(const UGraph& graph) {
|
alpar@2260
|
1334 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
1335 |
typedef typename UGraph::Node Node;
|
klao@1909
|
1336 |
typedef typename UGraph::NodeIt NodeIt;
|
klao@1909
|
1337 |
typedef typename UGraph::Edge Edge;
|
klao@1909
|
1338 |
Dfs<UGraph> dfs(graph);
|
deba@1698
|
1339 |
dfs.init();
|
deba@1698
|
1340 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
1341 |
if (!dfs.reached(it)) {
|
deba@1698
|
1342 |
dfs.addSource(it);
|
deba@1698
|
1343 |
while (!dfs.emptyQueue()) {
|
deba@1698
|
1344 |
Edge edge = dfs.nextEdge();
|
deba@1698
|
1345 |
Node source = graph.source(edge);
|
deba@1698
|
1346 |
Node target = graph.target(edge);
|
deba@1698
|
1347 |
if (dfs.reached(target) &&
|
deba@1763
|
1348 |
dfs.predEdge(source) != graph.oppositeEdge(edge)) {
|
deba@1698
|
1349 |
return false;
|
deba@1698
|
1350 |
}
|
deba@1698
|
1351 |
dfs.processNextEdge();
|
deba@1698
|
1352 |
}
|
deba@1698
|
1353 |
}
|
deba@1698
|
1354 |
}
|
deba@1698
|
1355 |
return true;
|
deba@1698
|
1356 |
}
|
deba@1698
|
1357 |
|
deba@1750
|
1358 |
/// \ingroup topology
|
deba@1750
|
1359 |
///
|
deba@1698
|
1360 |
/// \brief Check that the given undirected graph is tree.
|
deba@1698
|
1361 |
///
|
deba@1698
|
1362 |
/// Check that the given undirected graph is tree.
|
deba@1750
|
1363 |
/// \param graph The undirected graph.
|
deba@1750
|
1364 |
/// \return %True when the graph is acyclic and connected.
|
klao@1909
|
1365 |
template <typename UGraph>
|
klao@1909
|
1366 |
bool tree(const UGraph& graph) {
|
alpar@2260
|
1367 |
checkConcept<concepts::UGraph, UGraph>();
|
klao@1909
|
1368 |
typedef typename UGraph::Node Node;
|
klao@1909
|
1369 |
typedef typename UGraph::NodeIt NodeIt;
|
klao@1909
|
1370 |
typedef typename UGraph::Edge Edge;
|
klao@1909
|
1371 |
Dfs<UGraph> dfs(graph);
|
deba@1698
|
1372 |
dfs.init();
|
deba@1698
|
1373 |
dfs.addSource(NodeIt(graph));
|
deba@1698
|
1374 |
while (!dfs.emptyQueue()) {
|
deba@1698
|
1375 |
Edge edge = dfs.nextEdge();
|
deba@1698
|
1376 |
Node source = graph.source(edge);
|
deba@1698
|
1377 |
Node target = graph.target(edge);
|
deba@1698
|
1378 |
if (dfs.reached(target) &&
|
deba@1763
|
1379 |
dfs.predEdge(source) != graph.oppositeEdge(edge)) {
|
deba@1698
|
1380 |
return false;
|
deba@1698
|
1381 |
}
|
deba@1698
|
1382 |
dfs.processNextEdge();
|
deba@1698
|
1383 |
}
|
deba@1698
|
1384 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
1385 |
if (!dfs.reached(it)) {
|
deba@1698
|
1386 |
return false;
|
deba@1698
|
1387 |
}
|
deba@1698
|
1388 |
}
|
deba@1698
|
1389 |
return true;
|
deba@1698
|
1390 |
}
|
alpar@1739
|
1391 |
|
deba@1750
|
1392 |
/// \ingroup topology
|
alpar@1739
|
1393 |
///
|
deba@1800
|
1394 |
/// \brief Check if the given undirected graph is bipartite or not
|
deba@1750
|
1395 |
///
|
deba@1800
|
1396 |
/// The function checks if the given undirected \c graph graph is bipartite
|
deba@1800
|
1397 |
/// or not. The \ref Bfs algorithm is used to calculate the result.
|
deba@1750
|
1398 |
/// \param graph The undirected graph.
|
deba@1800
|
1399 |
/// \return %True if \c graph is bipartite, %false otherwise.
|
deba@1800
|
1400 |
/// \sa bipartitePartitions
|
deba@1800
|
1401 |
///
|
deba@1800
|
1402 |
/// \author Balazs Attila Mihaly
|
klao@1909
|
1403 |
template<typename UGraph>
|
klao@1909
|
1404 |
inline bool bipartite(const UGraph &graph){
|
alpar@2260
|
1405 |
checkConcept<concepts::UGraph, UGraph>();
|
deba@1800
|
1406 |
|
klao@1909
|
1407 |
typedef typename UGraph::NodeIt NodeIt;
|
klao@1909
|
1408 |
typedef typename UGraph::EdgeIt EdgeIt;
|
deba@1800
|
1409 |
|
klao@1909
|
1410 |
Bfs<UGraph> bfs(graph);
|
deba@1800
|
1411 |
bfs.init();
|
deba@1800
|
1412 |
for(NodeIt i(graph);i!=INVALID;++i){
|
deba@1800
|
1413 |
if(!bfs.reached(i)){
|
deba@1800
|
1414 |
bfs.run(i);
|
deba@1800
|
1415 |
}
|
deba@1800
|
1416 |
}
|
deba@1800
|
1417 |
for(EdgeIt i(graph);i!=INVALID;++i){
|
deba@1800
|
1418 |
if(bfs.dist(graph.source(i))==bfs.dist(graph.target(i)))return false;
|
deba@1800
|
1419 |
}
|
deba@1800
|
1420 |
return true;
|
deba@1979
|
1421 |
}
|
deba@1800
|
1422 |
|
deba@1800
|
1423 |
/// \ingroup topology
|
deba@1800
|
1424 |
///
|
deba@1800
|
1425 |
/// \brief Check if the given undirected graph is bipartite or not
|
deba@1800
|
1426 |
///
|
deba@1800
|
1427 |
/// The function checks if the given undirected graph is bipartite
|
deba@1800
|
1428 |
/// or not. The \ref Bfs algorithm is used to calculate the result.
|
deba@1800
|
1429 |
/// During the execution, the \c partMap will be set as the two
|
deba@1800
|
1430 |
/// partitions of the graph.
|
deba@1800
|
1431 |
/// \param graph The undirected graph.
|
alpar@1808
|
1432 |
/// \retval partMap A writable bool map of nodes. It will be set as the
|
deba@1800
|
1433 |
/// two partitions of the graph.
|
deba@1800
|
1434 |
/// \return %True if \c graph is bipartite, %false otherwise.
|
deba@1800
|
1435 |
///
|
deba@1800
|
1436 |
/// \author Balazs Attila Mihaly
|
deba@1800
|
1437 |
///
|
deba@1800
|
1438 |
/// \image html bipartite_partitions.png
|
deba@1800
|
1439 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
|
klao@1909
|
1440 |
template<typename UGraph, typename NodeMap>
|
klao@1909
|
1441 |
inline bool bipartitePartitions(const UGraph &graph, NodeMap &partMap){
|
alpar@2260
|
1442 |
checkConcept<concepts::UGraph, UGraph>();
|
deba@1800
|
1443 |
|
klao@1909
|
1444 |
typedef typename UGraph::Node Node;
|
klao@1909
|
1445 |
typedef typename UGraph::NodeIt NodeIt;
|
klao@1909
|
1446 |
typedef typename UGraph::EdgeIt EdgeIt;
|
deba@1800
|
1447 |
|
klao@1909
|
1448 |
Bfs<UGraph> bfs(graph);
|
deba@1800
|
1449 |
bfs.init();
|
deba@1800
|
1450 |
for(NodeIt i(graph);i!=INVALID;++i){
|
deba@1800
|
1451 |
if(!bfs.reached(i)){
|
deba@1800
|
1452 |
bfs.addSource(i);
|
deba@1800
|
1453 |
for(Node j=bfs.processNextNode();!bfs.emptyQueue();
|
deba@1800
|
1454 |
j=bfs.processNextNode()){
|
deba@1800
|
1455 |
partMap.set(j,bfs.dist(j)%2==0);
|
deba@1750
|
1456 |
}
|
deba@1740
|
1457 |
}
|
deba@1740
|
1458 |
}
|
deba@1800
|
1459 |
for(EdgeIt i(graph);i!=INVALID;++i){
|
deba@1800
|
1460 |
if(bfs.dist(graph.source(i)) == bfs.dist(graph.target(i)))return false;
|
deba@1800
|
1461 |
}
|
deba@1750
|
1462 |
return true;
|
deba@1979
|
1463 |
}
|
deba@1750
|
1464 |
|
deba@1698
|
1465 |
} //namespace lemon
|
deba@1698
|
1466 |
|
deba@1698
|
1467 |
#endif //LEMON_TOPOLOGY_H
|