hegyi@677
|
1 |
// -*- c++ -*-
|
alpar@921
|
2 |
#ifndef LEMON_NET_GRAPH_H
|
alpar@921
|
3 |
#define LEMON_NET_GRAPH_H
|
hegyi@677
|
4 |
|
hegyi@677
|
5 |
///\file
|
hegyi@677
|
6 |
///\brief Declaration of EdgePathGraph.
|
hegyi@677
|
7 |
|
alpar@921
|
8 |
#include <lemon/invalid.h>
|
alpar@921
|
9 |
#include <lemon/maps.h>
|
hegyi@677
|
10 |
|
alpar@921
|
11 |
/// The namespace of LEMON
|
alpar@921
|
12 |
namespace lemon {
|
hegyi@677
|
13 |
|
hegyi@677
|
14 |
// @defgroup empty_graph The EdgePathGraph class
|
hegyi@677
|
15 |
// @{
|
hegyi@677
|
16 |
|
hegyi@677
|
17 |
/// A graph class in that a simple edge can represent a path.
|
hegyi@677
|
18 |
|
hegyi@677
|
19 |
/// This class provides all the common features of a graph structure
|
hegyi@677
|
20 |
/// that represents a network. You can handle with it layers. This
|
hegyi@677
|
21 |
/// means that an edge in one layer can be a complete path in a nother
|
hegyi@677
|
22 |
/// layer.
|
hegyi@677
|
23 |
|
hegyi@677
|
24 |
template <typename P, class Gact, class Gsub>
|
hegyi@677
|
25 |
class EdgePathGraph
|
hegyi@677
|
26 |
{
|
hegyi@677
|
27 |
|
hegyi@677
|
28 |
public:
|
hegyi@677
|
29 |
|
hegyi@677
|
30 |
/// The actual layer
|
hegyi@677
|
31 |
Gact actuallayer;
|
hegyi@677
|
32 |
|
hegyi@677
|
33 |
|
hegyi@677
|
34 |
/// The layer on which the edges in this layer can represent paths.
|
hegyi@677
|
35 |
Gsub * sublayer;
|
hegyi@677
|
36 |
|
hegyi@677
|
37 |
|
hegyi@677
|
38 |
/// Map of nodes that represent the nodes of this layer in the sublayer
|
hegyi@677
|
39 |
typename Gact::template NodeMap<typename Gsub::Node *> projection;
|
hegyi@677
|
40 |
|
hegyi@677
|
41 |
|
hegyi@677
|
42 |
/// Map of routes that are represented by some edges in this layer
|
hegyi@677
|
43 |
typename Gact::template EdgeMap<P *> edgepath;
|
hegyi@677
|
44 |
|
hegyi@677
|
45 |
|
hegyi@677
|
46 |
/// Defalult constructor.
|
hegyi@677
|
47 |
/// We don't need any extra lines, because the actuallayer
|
hegyi@677
|
48 |
/// variable has run its constructor, when we have created this class
|
hegyi@677
|
49 |
/// So only the two maps has to be initialised here.
|
hegyi@677
|
50 |
EdgePathGraph() : projection(actuallayer), edgepath(actuallayer)
|
hegyi@677
|
51 |
{
|
hegyi@677
|
52 |
}
|
hegyi@677
|
53 |
|
hegyi@677
|
54 |
|
hegyi@677
|
55 |
///Copy consructor.
|
hegyi@677
|
56 |
EdgePathGraph(const EdgePathGraph<P, Gact, Gsub> & EPG ) : actuallayer(EPG.actuallayer) , edgepath(actuallayer), projection(actuallayer)
|
hegyi@677
|
57 |
{
|
hegyi@677
|
58 |
}
|
hegyi@677
|
59 |
|
hegyi@677
|
60 |
|
hegyi@677
|
61 |
/// Map adder
|
hegyi@677
|
62 |
|
hegyi@677
|
63 |
/// This function gets two edgemaps. One belongs to the actual layer and the
|
hegyi@677
|
64 |
/// other belongs to the sublayer.
|
hegyi@677
|
65 |
/// The function iterates through all of the edges in the edgemap belonging to the actual layer.
|
hegyi@677
|
66 |
/// It gets the value that belongs to the actual edge, and adds it to the value of each edge in the
|
hegyi@677
|
67 |
/// path represented by itself in the edgemap that belongs to the sublayer.
|
hegyi@677
|
68 |
|
hegyi@677
|
69 |
template <typename T1, typename T2> void addMap (typename Gact::EdgeMap<T1> & actmap, typename Gsub::EdgeMap<T2> & submap)
|
hegyi@677
|
70 |
{
|
hegyi@677
|
71 |
for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e))
|
hegyi@677
|
72 |
{
|
hegyi@677
|
73 |
typedef typename P::EdgeIt PEdgeIt;
|
hegyi@677
|
74 |
PEdgeIt f;
|
hegyi@677
|
75 |
|
hegyi@677
|
76 |
//dep//cout << "Edge " << id(tail(e)) << " - " << id(head(e)) << " in actual layer is";
|
hegyi@677
|
77 |
T1 incr=actmap[e];
|
hegyi@677
|
78 |
//cout << incr << endl;
|
hegyi@677
|
79 |
|
hegyi@677
|
80 |
if(edgepath[e])
|
hegyi@677
|
81 |
{
|
hegyi@677
|
82 |
//dep//cout << endl << "Path";
|
hegyi@677
|
83 |
for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f))
|
hegyi@677
|
84 |
{
|
hegyi@677
|
85 |
//dep//cout << " " << sublayer->id(sublayer->tail(f)) << "-" << sublayer->id(sublayer->head(f));
|
hegyi@677
|
86 |
submap[f]+=incr;
|
hegyi@677
|
87 |
}
|
hegyi@677
|
88 |
//dep////cout << EPGr2.id(EPGr2.head(f)) << endl;
|
hegyi@677
|
89 |
//dep//cout << endl;
|
hegyi@677
|
90 |
}
|
hegyi@677
|
91 |
else
|
hegyi@677
|
92 |
{
|
hegyi@677
|
93 |
//dep//cout << " itself." <<endl;
|
hegyi@677
|
94 |
}
|
hegyi@677
|
95 |
}
|
hegyi@677
|
96 |
|
hegyi@677
|
97 |
};
|
hegyi@677
|
98 |
|
hegyi@677
|
99 |
|
hegyi@677
|
100 |
/// Describe
|
hegyi@677
|
101 |
/// This function walks thorugh the edges of the actual layer
|
hegyi@677
|
102 |
/// and displays the path represented by the actual edge.
|
hegyi@677
|
103 |
void describe ()
|
hegyi@677
|
104 |
{
|
hegyi@677
|
105 |
for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e))
|
hegyi@677
|
106 |
{
|
hegyi@677
|
107 |
typedef typename P::EdgeIt PEdgeIt;
|
hegyi@677
|
108 |
PEdgeIt f;
|
hegyi@677
|
109 |
|
hegyi@677
|
110 |
cout << "Edge " << id(tail(e)) << " - " << id(head(e)) << " in actual layer is";
|
hegyi@677
|
111 |
if(edgepath[e])
|
hegyi@677
|
112 |
{
|
hegyi@677
|
113 |
cout << endl << "Path";
|
hegyi@677
|
114 |
for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f))
|
hegyi@677
|
115 |
{
|
hegyi@677
|
116 |
cout << " " << sublayer->id(sublayer->tail(f)) << "-" << sublayer->id(sublayer->head(f));
|
hegyi@677
|
117 |
}
|
hegyi@677
|
118 |
//cout << EPGr2.id(EPGr2.head(f)) << endl;
|
hegyi@677
|
119 |
cout << endl;
|
hegyi@677
|
120 |
}
|
hegyi@677
|
121 |
else
|
hegyi@677
|
122 |
{
|
hegyi@677
|
123 |
cout << " itself." <<endl;
|
hegyi@677
|
124 |
}
|
hegyi@677
|
125 |
}
|
hegyi@677
|
126 |
|
hegyi@677
|
127 |
};
|
hegyi@677
|
128 |
|
hegyi@677
|
129 |
|
hegyi@677
|
130 |
|
hegyi@677
|
131 |
|
hegyi@677
|
132 |
/// The base type of the node iterators.
|
hegyi@677
|
133 |
|
hegyi@677
|
134 |
/// This is the base type of each node iterators,
|
hegyi@677
|
135 |
/// thus each kind of node iterator will convert to this.
|
hegyi@677
|
136 |
/// The Node type of the EdgePathGraph is the Node type of the actual layer.
|
hegyi@677
|
137 |
typedef typename Gact::Node Node;
|
hegyi@677
|
138 |
|
hegyi@677
|
139 |
|
hegyi@677
|
140 |
/// This iterator goes through each node.
|
hegyi@677
|
141 |
|
hegyi@677
|
142 |
/// Its usage is quite simple, for example you can count the number
|
hegyi@677
|
143 |
/// of nodes in graph \c G of type \c Graph like this:
|
hegyi@677
|
144 |
/// \code
|
hegyi@677
|
145 |
///int count=0;
|
hegyi@677
|
146 |
///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
|
hegyi@677
|
147 |
/// \endcode
|
hegyi@677
|
148 |
/// The NodeIt type of the EdgePathGraph is the NodeIt type of the actual layer.
|
hegyi@677
|
149 |
typedef typename Gact::NodeIt NodeIt;
|
hegyi@677
|
150 |
|
hegyi@677
|
151 |
|
hegyi@677
|
152 |
/// The base type of the edge iterators.
|
hegyi@677
|
153 |
/// The Edge type of the EdgePathGraph is the Edge type of the actual layer.
|
hegyi@677
|
154 |
typedef typename Gact::Edge Edge;
|
hegyi@677
|
155 |
|
hegyi@677
|
156 |
|
hegyi@677
|
157 |
/// This iterator goes trough the outgoing edges of a node.
|
hegyi@677
|
158 |
|
hegyi@677
|
159 |
/// This iterator goes trough the \e outgoing edges of a certain node
|
hegyi@677
|
160 |
/// of a graph.
|
hegyi@677
|
161 |
/// Its usage is quite simple, for example you can count the number
|
hegyi@677
|
162 |
/// of outgoing edges of a node \c n
|
hegyi@677
|
163 |
/// in graph \c G of type \c Graph as follows.
|
hegyi@677
|
164 |
/// \code
|
hegyi@677
|
165 |
///int count=0;
|
hegyi@677
|
166 |
///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
|
hegyi@677
|
167 |
/// \endcode
|
hegyi@677
|
168 |
/// The OutEdgeIt type of the EdgePathGraph is the OutEdgeIt type of the actual layer.
|
hegyi@677
|
169 |
typedef typename Gact::OutEdgeIt OutEdgeIt;
|
hegyi@677
|
170 |
|
hegyi@677
|
171 |
|
hegyi@677
|
172 |
/// This iterator goes trough the incoming edges of a node.
|
hegyi@677
|
173 |
|
hegyi@677
|
174 |
/// This iterator goes trough the \e incoming edges of a certain node
|
hegyi@677
|
175 |
/// of a graph.
|
hegyi@677
|
176 |
/// Its usage is quite simple, for example you can count the number
|
hegyi@677
|
177 |
/// of outgoing edges of a node \c n
|
hegyi@677
|
178 |
/// in graph \c G of type \c Graph as follows.
|
hegyi@677
|
179 |
/// \code
|
hegyi@677
|
180 |
///int count=0;
|
hegyi@677
|
181 |
///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
|
hegyi@677
|
182 |
/// \endcode
|
hegyi@677
|
183 |
/// The InEdgeIt type of the EdgePathGraph is the InEdgeIt type of the actual layer.
|
hegyi@677
|
184 |
typedef typename Gact::InEdgeIt InEdgeIt;
|
hegyi@677
|
185 |
|
hegyi@677
|
186 |
|
hegyi@677
|
187 |
/// This iterator goes through each edge.
|
hegyi@677
|
188 |
|
hegyi@677
|
189 |
/// This iterator goes through each edge of a graph.
|
hegyi@677
|
190 |
/// Its usage is quite simple, for example you can count the number
|
hegyi@677
|
191 |
/// of edges in a graph \c G of type \c Graph as follows:
|
hegyi@677
|
192 |
/// \code
|
hegyi@677
|
193 |
///int count=0;
|
hegyi@677
|
194 |
///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
|
hegyi@677
|
195 |
/// \endcode
|
hegyi@677
|
196 |
/// The EdgeIt type of the EdgePathGraph is the EdgeIt type of the actual layer.
|
hegyi@677
|
197 |
typedef typename Gact::EdgeIt EdgeIt;
|
hegyi@677
|
198 |
|
hegyi@677
|
199 |
|
hegyi@677
|
200 |
/// First node of the graph.
|
hegyi@677
|
201 |
|
hegyi@677
|
202 |
/// \retval i the first node.
|
hegyi@677
|
203 |
/// \return the first node.
|
hegyi@677
|
204 |
typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);}
|
hegyi@677
|
205 |
|
hegyi@677
|
206 |
|
hegyi@677
|
207 |
/// The first incoming edge.
|
hegyi@677
|
208 |
typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
|
hegyi@677
|
209 |
|
hegyi@677
|
210 |
|
hegyi@677
|
211 |
/// The first outgoing edge.
|
hegyi@677
|
212 |
typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
|
hegyi@677
|
213 |
|
hegyi@677
|
214 |
|
hegyi@677
|
215 |
// SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
|
hegyi@677
|
216 |
/// The first edge of the Graph.
|
hegyi@677
|
217 |
typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);}
|
hegyi@677
|
218 |
|
hegyi@677
|
219 |
|
hegyi@677
|
220 |
// Node getNext(Node) const {}
|
hegyi@677
|
221 |
// InEdgeIt getNext(InEdgeIt) const {}
|
hegyi@677
|
222 |
// OutEdgeIt getNext(OutEdgeIt) const {}
|
hegyi@677
|
223 |
// //SymEdgeIt getNext(SymEdgeIt) const {}
|
hegyi@677
|
224 |
// EdgeIt getNext(EdgeIt) const {}
|
hegyi@677
|
225 |
|
hegyi@677
|
226 |
|
hegyi@677
|
227 |
/// Go to the next node.
|
hegyi@677
|
228 |
typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);}
|
hegyi@677
|
229 |
/// Go to the next incoming edge.
|
hegyi@677
|
230 |
typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);}
|
hegyi@677
|
231 |
/// Go to the next outgoing edge.
|
hegyi@677
|
232 |
typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);}
|
hegyi@677
|
233 |
//SymEdgeIt &next(SymEdgeIt &) const {}
|
hegyi@677
|
234 |
/// Go to the next edge.
|
hegyi@677
|
235 |
typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);}
|
hegyi@677
|
236 |
|
hegyi@677
|
237 |
///Gives back the head node of an edge.
|
hegyi@677
|
238 |
typename Gact::Node head(typename Gact::Edge edge) const { return actuallayer.head(edge); }
|
hegyi@677
|
239 |
///Gives back the tail node of an edge.
|
hegyi@677
|
240 |
typename Gact::Node tail(typename Gact::Edge edge) const { return actuallayer.tail(edge); }
|
hegyi@677
|
241 |
|
hegyi@677
|
242 |
// Node aNode(InEdgeIt) const {}
|
hegyi@677
|
243 |
// Node aNode(OutEdgeIt) const {}
|
hegyi@677
|
244 |
// Node aNode(SymEdgeIt) const {}
|
hegyi@677
|
245 |
|
hegyi@677
|
246 |
// Node bNode(InEdgeIt) const {}
|
hegyi@677
|
247 |
// Node bNode(OutEdgeIt) const {}
|
hegyi@677
|
248 |
// Node bNode(SymEdgeIt) const {}
|
hegyi@677
|
249 |
|
hegyi@677
|
250 |
/// Checks if a node iterator is valid
|
hegyi@677
|
251 |
|
hegyi@677
|
252 |
///\todo Maybe, it would be better if iterator converted to
|
hegyi@677
|
253 |
///bool directly, as Jacint prefers.
|
hegyi@677
|
254 |
bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);}
|
hegyi@677
|
255 |
/// Checks if an edge iterator is valid
|
hegyi@677
|
256 |
|
hegyi@677
|
257 |
///\todo Maybe, it would be better if iterator converted to
|
hegyi@677
|
258 |
///bool directly, as Jacint prefers.
|
hegyi@677
|
259 |
bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);}
|
hegyi@677
|
260 |
|
hegyi@677
|
261 |
///Gives back the \e id of a node.
|
hegyi@677
|
262 |
|
hegyi@677
|
263 |
///\warning Not all graph structures provide this feature.
|
hegyi@677
|
264 |
///
|
hegyi@677
|
265 |
int id(const typename Gact::Node & node) const { return actuallayer.id(node);}
|
hegyi@677
|
266 |
///Gives back the \e id of an edge.
|
hegyi@677
|
267 |
|
hegyi@677
|
268 |
///\warning Not all graph structures provide this feature.
|
hegyi@677
|
269 |
///
|
hegyi@677
|
270 |
int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);}
|
hegyi@677
|
271 |
|
hegyi@677
|
272 |
//void setInvalid(Node &) const {};
|
hegyi@677
|
273 |
//void setInvalid(Edge &) const {};
|
hegyi@677
|
274 |
|
hegyi@677
|
275 |
///Add a new node to the graph.
|
hegyi@677
|
276 |
|
hegyi@677
|
277 |
/// \return the new node.
|
hegyi@677
|
278 |
///
|
hegyi@677
|
279 |
typename Gact::Node addNode() { return actuallayer.addNode();}
|
hegyi@677
|
280 |
///Add a new edge to the graph.
|
hegyi@677
|
281 |
|
hegyi@677
|
282 |
///Add a new edge to the graph with tail node \c tail
|
hegyi@677
|
283 |
///and head node \c head.
|
hegyi@677
|
284 |
///\return the new edge.
|
hegyi@677
|
285 |
typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);}
|
hegyi@677
|
286 |
|
hegyi@677
|
287 |
/// Resets the graph.
|
hegyi@677
|
288 |
|
hegyi@677
|
289 |
/// This function deletes all edges and nodes of the graph.
|
hegyi@677
|
290 |
/// It also frees the memory allocated to store them.
|
hegyi@677
|
291 |
void clear() {actuallayer.clear();}
|
hegyi@677
|
292 |
|
hegyi@677
|
293 |
int nodeNum() const { return actuallayer.nodeNum();}
|
hegyi@677
|
294 |
int edgeNum() const { return actuallayer.edgeNum();}
|
hegyi@677
|
295 |
|
hegyi@677
|
296 |
///Read/write/reference map of the nodes to type \c T.
|
hegyi@677
|
297 |
|
hegyi@677
|
298 |
///Read/write/reference map of the nodes to type \c T.
|
alpar@880
|
299 |
/// \sa MemoryMap
|
hegyi@677
|
300 |
/// \todo We may need copy constructor
|
hegyi@677
|
301 |
/// \todo We may need conversion from other nodetype
|
hegyi@677
|
302 |
/// \todo We may need operator=
|
hegyi@677
|
303 |
/// \warning Making maps that can handle bool type (NodeMap<bool>)
|
hegyi@677
|
304 |
/// needs extra attention!
|
hegyi@677
|
305 |
|
hegyi@677
|
306 |
template<class T> class NodeMap
|
hegyi@677
|
307 |
{
|
hegyi@677
|
308 |
public:
|
hegyi@677
|
309 |
typedef T ValueType;
|
hegyi@677
|
310 |
typedef Node KeyType;
|
hegyi@677
|
311 |
|
hegyi@677
|
312 |
NodeMap(const EdgePathGraph &) {}
|
hegyi@677
|
313 |
NodeMap(const EdgePathGraph &, T) {}
|
hegyi@677
|
314 |
|
hegyi@677
|
315 |
template<typename TT> NodeMap(const NodeMap<TT> &) {}
|
hegyi@677
|
316 |
|
hegyi@677
|
317 |
/// Sets the value of a node.
|
hegyi@677
|
318 |
|
hegyi@677
|
319 |
/// Sets the value associated with node \c i to the value \c t.
|
hegyi@677
|
320 |
///
|
hegyi@677
|
321 |
void set(Node, T) {}
|
hegyi@677
|
322 |
// Gets the value of a node.
|
hegyi@677
|
323 |
//T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary?
|
hegyi@677
|
324 |
T &operator[](Node) {return *(T*)0;}
|
hegyi@677
|
325 |
const T &operator[](Node) const {return *(T*)0;}
|
hegyi@677
|
326 |
|
hegyi@677
|
327 |
/// Updates the map if the graph has been changed
|
hegyi@677
|
328 |
|
hegyi@677
|
329 |
/// \todo Do we need this?
|
hegyi@677
|
330 |
///
|
hegyi@677
|
331 |
void update() {}
|
hegyi@677
|
332 |
void update(T a) {} //FIXME: Is it necessary
|
hegyi@677
|
333 |
};
|
hegyi@677
|
334 |
|
hegyi@677
|
335 |
///Read/write/reference map of the edges to type \c T.
|
hegyi@677
|
336 |
|
hegyi@677
|
337 |
///Read/write/reference map of the edges to type \c T.
|
hegyi@677
|
338 |
///It behaves exactly in the same way as \ref NodeMap.
|
hegyi@677
|
339 |
/// \sa NodeMap
|
alpar@880
|
340 |
/// \sa MemoryMap
|
hegyi@677
|
341 |
/// \todo We may need copy constructor
|
hegyi@677
|
342 |
/// \todo We may need conversion from other edgetype
|
hegyi@677
|
343 |
/// \todo We may need operator=
|
hegyi@677
|
344 |
template<class T> class EdgeMap
|
hegyi@677
|
345 |
{
|
hegyi@677
|
346 |
public:
|
hegyi@677
|
347 |
typedef T ValueType;
|
hegyi@677
|
348 |
typedef Edge KeyType;
|
hegyi@677
|
349 |
|
hegyi@677
|
350 |
EdgeMap(const EdgePathGraph &) {}
|
hegyi@677
|
351 |
EdgeMap(const EdgePathGraph &, T ) {}
|
hegyi@677
|
352 |
|
hegyi@677
|
353 |
///\todo It can copy between different types.
|
hegyi@677
|
354 |
///
|
hegyi@677
|
355 |
template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
|
hegyi@677
|
356 |
|
hegyi@677
|
357 |
void set(Edge, T) {}
|
hegyi@677
|
358 |
//T get(Edge) const {return *(T*)0;}
|
hegyi@677
|
359 |
T &operator[](Edge) {return *(T*)0;}
|
hegyi@677
|
360 |
const T &operator[](Edge) const {return *(T*)0;}
|
hegyi@677
|
361 |
|
hegyi@677
|
362 |
void update() {}
|
hegyi@677
|
363 |
void update(T a) {} //FIXME: Is it necessary
|
hegyi@677
|
364 |
};
|
hegyi@677
|
365 |
};
|
hegyi@677
|
366 |
|
alpar@826
|
367 |
/// An empty erasable graph class.
|
hegyi@677
|
368 |
|
alpar@826
|
369 |
/// This class provides all the common features of an \e erasable graph
|
hegyi@677
|
370 |
/// structure,
|
hegyi@677
|
371 |
/// however completely without implementations and real data structures
|
hegyi@677
|
372 |
/// behind the interface.
|
hegyi@677
|
373 |
/// All graph algorithms should compile with this class, but it will not
|
hegyi@677
|
374 |
/// run properly, of course.
|
hegyi@677
|
375 |
///
|
hegyi@677
|
376 |
/// \todo This blabla could be replaced by a sepatate description about
|
alpar@880
|
377 |
/// s.
|
hegyi@677
|
378 |
///
|
hegyi@677
|
379 |
/// It can be used for checking the interface compatibility,
|
hegyi@677
|
380 |
/// or it can serve as a skeleton of a new graph structure.
|
hegyi@677
|
381 |
///
|
hegyi@677
|
382 |
/// Also, you will find here the full documentation of a certain graph
|
hegyi@677
|
383 |
/// feature, the documentation of a real graph imlementation
|
hegyi@677
|
384 |
/// like @ref ListGraph or
|
hegyi@677
|
385 |
/// @ref SmartGraph will just refer to this structure.
|
hegyi@677
|
386 |
template <typename P, typename Gact, typename Gsub>
|
alpar@826
|
387 |
class ErasableEdgePathGraph : public EdgePathGraph<P, Gact, Gsub>
|
hegyi@677
|
388 |
{
|
hegyi@677
|
389 |
public:
|
hegyi@677
|
390 |
/// Deletes a node.
|
hegyi@677
|
391 |
void erase(typename Gact::Node n) {actuallayer.erase(n);}
|
hegyi@677
|
392 |
/// Deletes an edge.
|
hegyi@677
|
393 |
void erase(typename Gact::Edge e) {actuallayer.erase(e);}
|
hegyi@677
|
394 |
|
hegyi@677
|
395 |
/// Defalult constructor.
|
alpar@826
|
396 |
ErasableEdgePathGraph() {}
|
hegyi@677
|
397 |
///Copy consructor.
|
alpar@826
|
398 |
ErasableEdgePathGraph(const EdgePathGraph<P, Gact, Gsub> &EPG) {}
|
hegyi@677
|
399 |
};
|
hegyi@677
|
400 |
|
hegyi@677
|
401 |
|
hegyi@677
|
402 |
// @}
|
hegyi@677
|
403 |
|
alpar@921
|
404 |
} //namespace lemon
|
hegyi@677
|
405 |
|
hegyi@677
|
406 |
|
alpar@921
|
407 |
#endif // LEMON_SKELETON_GRAPH_H
|