alpar@1624
|
1 |
/*!
|
alpar@954
|
2 |
|
alpar@953
|
3 |
\page named-param Named Parameters
|
alpar@953
|
4 |
|
alpar@1624
|
5 |
\section named-func-param Named Function Parameters
|
alpar@955
|
6 |
|
alpar@1536
|
7 |
C++ makes it possible to use default parameter values when calling a
|
alpar@1536
|
8 |
function. In such a case we do not have to give value for parameters,
|
alpar@1536
|
9 |
the program will use the default ones. Unfortunately sometimes this
|
alpar@1536
|
10 |
is not enough. If we do not want to give values for all the
|
alpar@1536
|
11 |
parameters, only for some of them we come across problems, because an
|
alpar@1536
|
12 |
arbitrary set of parameters cannot be omitted. On the other hand
|
alpar@1536
|
13 |
parameters have a fixed order in the head of the function. C++ can
|
alpar@1536
|
14 |
apply the default values only in the back of the order, if we do not
|
alpar@1536
|
15 |
give other value for them. So we can not give the function for
|
alpar@1536
|
16 |
example the value of the first, and the third parameter, expecting
|
alpar@1536
|
17 |
that the program will aplly the default value for the second
|
alpar@1536
|
18 |
parameter. However sometimes we would like to use some functinos
|
alpar@1536
|
19 |
exactly in this way. With a crafty trick and with some little
|
alpar@1536
|
20 |
inconvenience this is possible. We have implemented this little trick
|
alpar@1536
|
21 |
as an example below.
|
hegyi@1141
|
22 |
|
hegyi@1141
|
23 |
\code
|
hegyi@1141
|
24 |
class named_fn
|
hegyi@1141
|
25 |
{
|
hegyi@1141
|
26 |
int _id;
|
hegyi@1141
|
27 |
double _val;
|
hegyi@1141
|
28 |
int _dim;
|
hegyi@1141
|
29 |
|
hegyi@1141
|
30 |
public:
|
hegyi@1141
|
31 |
named_fn() : _id(0), _val(1), _dim(2) {}
|
hegyi@1141
|
32 |
named_fn& id(int p) { _id = p ; return *this; }
|
hegyi@1141
|
33 |
named_fn& val(double p) { _val = p ; return *this; }
|
hegyi@1141
|
34 |
named_fn& dim(int p) { _dim = p ; return *this; }
|
hegyi@1141
|
35 |
|
hegyi@1141
|
36 |
run() {
|
hegyi@1141
|
37 |
printf("Here is the function itself.");
|
hegyi@1141
|
38 |
}
|
hegyi@1141
|
39 |
};
|
hegyi@1141
|
40 |
\endcode
|
hegyi@1141
|
41 |
|
hegyi@1141
|
42 |
|
hegyi@1141
|
43 |
The usage is the following.
|
hegyi@1141
|
44 |
|
alpar@1624
|
45 |
We have to define a class, let's call it \c named_fn. Let us assume that
|
alpar@1624
|
46 |
we would like to use a parameter, called \c X. In the \c named_fn class we
|
alpar@1624
|
47 |
have to define an \c _X attribute, and a function \c X. The function
|
alpar@1624
|
48 |
expects a parameter with the type of \c _X, and sets the value of
|
alpar@1624
|
49 |
\c _X. After setting the value the function returns the class itself. The
|
alpar@1624
|
50 |
class also have to have a function, called for example <tt>run()</tt>, we have
|
alpar@1536
|
51 |
to implement here the original function itself. The constructor of the
|
alpar@1624
|
52 |
class have to give all the attributes like \c _X the default values of
|
alpar@1536
|
53 |
them.
|
hegyi@1141
|
54 |
|
alpar@1536
|
55 |
If we instantiate this class, the default values will be set for the
|
hegyi@1619
|
56 |
attributes (originally the parameters), initially. If we call function
|
alpar@1624
|
57 |
\c X, we get a class with the modified parameter value of
|
alpar@1624
|
58 |
\c X. Therefore we can modify any parameter-value, independent from the
|
alpar@1624
|
59 |
order. To run the algorithm we have to call the <tt>run()</tt> function at the
|
alpar@1536
|
60 |
end of the row.
|
hegyi@1141
|
61 |
|
alpar@1624
|
62 |
Example:
|
alpar@1624
|
63 |
\code
|
alpar@1624
|
64 |
named_fn().id(3).val(2).run();
|
alpar@1624
|
65 |
\endcode
|
alpar@955
|
66 |
|
alpar@955
|
67 |
\section traits-classes Traits Classes
|
alpar@955
|
68 |
|
alpar@1536
|
69 |
The procedure above can also be applied when defining classes. In this
|
alpar@1536
|
70 |
case the type of the attributes can be changed. Initially we have to
|
alpar@1536
|
71 |
define a class with the default attribute types. This is the so called
|
alpar@1536
|
72 |
Traits Class. Later on the types of these attributes can be changed,
|
alpar@1536
|
73 |
as described below. In our software \ref lemon::DijkstraDefaultTraits is an
|
alpar@1536
|
74 |
example of how a traits class looks like.
|
hegyi@1141
|
75 |
|
alpar@955
|
76 |
\section named-templ-param Named Class Template Parameters
|
alpar@954
|
77 |
|
alpar@1536
|
78 |
If we would like to change the type of an attribute in a class that
|
alpar@1536
|
79 |
was instantiated by using a traits class as a template parameter, and
|
alpar@1536
|
80 |
the class contains named parameters, we do not have to reinstantiate
|
alpar@1536
|
81 |
the class with new traits class. Instead of that, adaptor classes can
|
alpar@1536
|
82 |
be used like in the following cases.
|
hegyi@1141
|
83 |
|
alpar@954
|
84 |
\code
|
deba@1709
|
85 |
Dijkstra<>::SetPredNodeMap<NullMap<Node,Node> >::Create
|
alpar@954
|
86 |
\endcode
|
hegyi@1141
|
87 |
|
alpar@954
|
88 |
It can also be used in conjunction with other named template
|
alpar@954
|
89 |
parameters in arbitrary order.
|
hegyi@1141
|
90 |
|
alpar@954
|
91 |
\code
|
deba@1709
|
92 |
Dijkstra<>::SetDistMap<MyMap>::SetPredMap<NullMap<Node,Edge> >::Create
|
alpar@954
|
93 |
\endcode
|
alpar@954
|
94 |
|
alpar@1536
|
95 |
The result will be an instantiated Dijkstra class, in which the
|
alpar@1536
|
96 |
DistMap and the PredMap is modified.
|
hegyi@1141
|
97 |
|
alpar@1624
|
98 |
\section named-templ-func-param Named Function Template Parameters
|
alpar@955
|
99 |
|
alpar@1536
|
100 |
If the class has so called wizard functions, the new class with the
|
alpar@1536
|
101 |
modified tpye of attributes can be returned by the appropriate wizard
|
alpar@1536
|
102 |
function. The usage of these wizard functions is the following:
|
alpar@953
|
103 |
|
alpar@953
|
104 |
*/
|