lemon/bucket_heap.h
author athos
Thu, 21 Sep 2006 14:46:28 +0000
changeset 2218 50f1a780a5ff
parent 2089 fce8db723736
child 2263 9273fe7d850c
permissions -rw-r--r--
Interface to the cplex MIP solver: it is little, a bit sour but it is ours.
deba@2038
     1
/* -*- C++ -*-
deba@2038
     2
 *
deba@2038
     3
 * This file is a part of LEMON, a generic C++ optimization library
deba@2038
     4
 *
deba@2038
     5
 * Copyright (C) 2003-2006
deba@2038
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@2038
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@2038
     8
 *
deba@2038
     9
 * Permission to use, modify and distribute this software is granted
deba@2038
    10
 * provided that this copyright notice appears in all copies. For
deba@2038
    11
 * precise terms see the accompanying LICENSE file.
deba@2038
    12
 *
deba@2038
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@2038
    14
 * express or implied, and with no claim as to its suitability for any
deba@2038
    15
 * purpose.
deba@2038
    16
 *
deba@2038
    17
 */
deba@2038
    18
deba@2038
    19
#ifndef LEMON_BUCKET_HEAP_H
deba@2038
    20
#define LEMON_BUCKET_HEAP_H
deba@2038
    21
deba@2038
    22
///\ingroup auxdat
deba@2038
    23
///\file
deba@2038
    24
///\brief Bucket Heap implementation.
deba@2038
    25
deba@2038
    26
#include <vector>
deba@2038
    27
#include <utility>
deba@2038
    28
#include <functional>
deba@2038
    29
deba@2038
    30
namespace lemon {
deba@2038
    31
deba@2038
    32
  /// \ingroup auxdat
deba@2089
    33
  ///
deba@2038
    34
  /// \brief A Bucket Heap implementation.
deba@2038
    35
  ///
deba@2038
    36
  /// This class implements the \e bucket \e heap data structure. A \e heap
deba@2038
    37
  /// is a data structure for storing items with specified values called \e
deba@2038
    38
  /// priorities in such a way that finding the item with minimum priority is
deba@2038
    39
  /// efficient. The bucket heap is very simple implementation, it can store
deba@2042
    40
  /// only integer priorities and it stores for each priority in the 
deba@2042
    41
  /// \f$ [0..C) \f$ range a list of items. So it should be used only when 
deba@2042
    42
  /// the priorities are small. It is not intended to use as dijkstra heap.
deba@2038
    43
  ///
deba@2038
    44
  /// \param _Item Type of the items to be stored.  
deba@2038
    45
  /// \param _ItemIntMap A read and writable Item int map, used internally
deba@2038
    46
  /// to handle the cross references.
deba@2038
    47
  /// \param minimize If the given parameter is true then the heap gives back
deba@2038
    48
  /// the lowest priority. 
deba@2038
    49
  template <typename _Item, typename _ItemIntMap, bool minimize = true >
deba@2038
    50
  class BucketHeap {
deba@2038
    51
deba@2038
    52
  public:
deba@2038
    53
    typedef _Item Item;
deba@2038
    54
    typedef int Prio;
deba@2038
    55
    typedef std::pair<Item, Prio> Pair;
deba@2038
    56
    typedef _ItemIntMap ItemIntMap;
deba@2038
    57
deba@2038
    58
    /// \brief Type to represent the items states.
deba@2038
    59
    ///
deba@2038
    60
    /// Each Item element have a state associated to it. It may be "in heap",
deba@2038
    61
    /// "pre heap" or "post heap". The latter two are indifferent from the
deba@2038
    62
    /// heap's point of view, but may be useful to the user.
deba@2038
    63
    ///
deba@2038
    64
    /// The ItemIntMap \e should be initialized in such way that it maps
deba@2038
    65
    /// PRE_HEAP (-1) to any element to be put in the heap...
deba@2038
    66
    enum state_enum {
deba@2038
    67
      IN_HEAP = 0,
deba@2038
    68
      PRE_HEAP = -1,
deba@2038
    69
      POST_HEAP = -2
deba@2038
    70
    };
deba@2038
    71
deba@2038
    72
  public:
deba@2038
    73
    /// \brief The constructor.
deba@2038
    74
    ///
deba@2038
    75
    /// The constructor.
deba@2038
    76
    /// \param _index should be given to the constructor, since it is used
deba@2038
    77
    /// internally to handle the cross references. The value of the map
deba@2038
    78
    /// should be PRE_HEAP (-1) for each element.
deba@2038
    79
    explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
deba@2038
    80
    
deba@2038
    81
    /// The number of items stored in the heap.
deba@2038
    82
    ///
deba@2038
    83
    /// \brief Returns the number of items stored in the heap.
deba@2038
    84
    int size() const { return data.size(); }
deba@2038
    85
    
deba@2038
    86
    /// \brief Checks if the heap stores no items.
deba@2038
    87
    ///
deba@2038
    88
    /// Returns \c true if and only if the heap stores no items.
deba@2038
    89
    bool empty() const { return data.empty(); }
deba@2038
    90
deba@2038
    91
    /// \brief Make empty this heap.
deba@2038
    92
    /// 
deba@2050
    93
    /// Make empty this heap. It does not change the cross reference
deba@2050
    94
    /// map.  If you want to reuse a heap what is not surely empty you
deba@2050
    95
    /// should first clear the heap and after that you should set the
deba@2050
    96
    /// cross reference map for each item to \c PRE_HEAP.
deba@2038
    97
    void clear() { 
deba@2038
    98
      data.clear(); first.clear(); minimal = 0;
deba@2038
    99
    }
deba@2038
   100
deba@2038
   101
  private:
deba@2038
   102
deba@2038
   103
    void relocate_last(int idx) {
deba@2038
   104
      if (idx + 1 < (int)data.size()) {
deba@2038
   105
	data[idx] = data.back();
deba@2038
   106
	if (data[idx].prev != -1) {
deba@2038
   107
	  data[data[idx].prev].next = idx;
deba@2038
   108
	} else {
deba@2038
   109
	  first[data[idx].value] = idx;
deba@2038
   110
	}
deba@2038
   111
	if (data[idx].next != -1) {
deba@2038
   112
	  data[data[idx].next].prev = idx;
deba@2038
   113
	}
deba@2038
   114
	index[data[idx].item] = idx;
deba@2038
   115
      }
deba@2038
   116
      data.pop_back();
deba@2038
   117
    }
deba@2038
   118
deba@2038
   119
    void unlace(int idx) {
deba@2038
   120
      if (data[idx].prev != -1) {
deba@2038
   121
	data[data[idx].prev].next = data[idx].next;
deba@2038
   122
      } else {
deba@2038
   123
	first[data[idx].value] = data[idx].next;
deba@2038
   124
      }
deba@2038
   125
      if (data[idx].next != -1) {
deba@2038
   126
	data[data[idx].next].prev = data[idx].prev;
deba@2038
   127
      }
deba@2038
   128
    }
deba@2038
   129
deba@2038
   130
    void lace(int idx) {
deba@2038
   131
      if ((int)first.size() <= data[idx].value) {
deba@2038
   132
	first.resize(data[idx].value + 1, -1);
deba@2038
   133
      }
deba@2038
   134
      data[idx].next = first[data[idx].value];
deba@2038
   135
      if (data[idx].next != -1) {
deba@2038
   136
	data[data[idx].next].prev = idx;
deba@2038
   137
      }
deba@2038
   138
      first[data[idx].value] = idx;
deba@2038
   139
      data[idx].prev = -1;
deba@2038
   140
    }
deba@2038
   141
deba@2038
   142
  public:
deba@2038
   143
    /// \brief Insert a pair of item and priority into the heap.
deba@2038
   144
    ///
deba@2038
   145
    /// Adds \c p.first to the heap with priority \c p.second.
deba@2038
   146
    /// \param p The pair to insert.
deba@2038
   147
    void push(const Pair& p) {
deba@2038
   148
      push(p.first, p.second);
deba@2038
   149
    }
deba@2038
   150
deba@2038
   151
    /// \brief Insert an item into the heap with the given priority.
deba@2038
   152
    ///    
deba@2038
   153
    /// Adds \c i to the heap with priority \c p. 
deba@2038
   154
    /// \param i The item to insert.
deba@2038
   155
    /// \param p The priority of the item.
deba@2038
   156
    void push(const Item &i, const Prio &p) { 
deba@2038
   157
      int idx = data.size();
deba@2038
   158
      index[i] = idx;
deba@2038
   159
      data.push_back(BucketItem(i, p));
deba@2038
   160
      lace(idx);
deba@2038
   161
      if (p < minimal) {
deba@2038
   162
	minimal = p;
deba@2038
   163
      }
deba@2038
   164
    }
deba@2038
   165
deba@2038
   166
    /// \brief Returns the item with minimum priority.
deba@2038
   167
    ///
deba@2038
   168
    /// This method returns the item with minimum priority.
deba@2038
   169
    /// \pre The heap must be nonempty.  
deba@2038
   170
    Item top() const {
deba@2038
   171
      while (first[minimal] == -1) {
deba@2038
   172
	++minimal;
deba@2038
   173
      }
deba@2038
   174
      return data[first[minimal]].item;
deba@2038
   175
    }
deba@2038
   176
deba@2038
   177
    /// \brief Returns the minimum priority.
deba@2038
   178
    ///
deba@2038
   179
    /// It returns the minimum priority.
deba@2038
   180
    /// \pre The heap must be nonempty.
deba@2038
   181
    Prio prio() const {
deba@2038
   182
      while (first[minimal] == -1) {
deba@2038
   183
	++minimal;
deba@2038
   184
      }
deba@2038
   185
      return minimal;
deba@2038
   186
    }
deba@2038
   187
deba@2038
   188
    /// \brief Deletes the item with minimum priority.
deba@2038
   189
    ///
deba@2038
   190
    /// This method deletes the item with minimum priority from the heap.  
deba@2038
   191
    /// \pre The heap must be non-empty.  
deba@2038
   192
    void pop() {
deba@2038
   193
      while (first[minimal] == -1) {
deba@2038
   194
	++minimal;
deba@2038
   195
      }
deba@2038
   196
      int idx = first[minimal];
deba@2038
   197
      index[data[idx].item] = -2;
deba@2038
   198
      unlace(idx);
deba@2038
   199
      relocate_last(idx);
deba@2038
   200
    }
deba@2038
   201
deba@2038
   202
    /// \brief Deletes \c i from the heap.
deba@2038
   203
    ///
deba@2038
   204
    /// This method deletes item \c i from the heap, if \c i was
deba@2038
   205
    /// already stored in the heap.
deba@2038
   206
    /// \param i The item to erase. 
deba@2038
   207
    void erase(const Item &i) {
deba@2038
   208
      int idx = index[i];
deba@2038
   209
      index[data[idx].item] = -2;
deba@2038
   210
      unlace(idx);
deba@2038
   211
      relocate_last(idx);
deba@2038
   212
    }
deba@2038
   213
deba@2038
   214
    
deba@2038
   215
    /// \brief Returns the priority of \c i.
deba@2038
   216
    ///
deba@2038
   217
    /// This function returns the priority of item \c i.  
deba@2038
   218
    /// \pre \c i must be in the heap.
deba@2038
   219
    /// \param i The item.
deba@2038
   220
    Prio operator[](const Item &i) const {
deba@2038
   221
      int idx = index[i];
deba@2038
   222
      return data[idx].value;
deba@2038
   223
    }
deba@2038
   224
deba@2038
   225
    /// \brief \c i gets to the heap with priority \c p independently 
deba@2038
   226
    /// if \c i was already there.
deba@2038
   227
    ///
deba@2038
   228
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
deba@2038
   229
    /// in the heap and sets the priority of \c i to \c p otherwise.
deba@2038
   230
    /// \param i The item.
deba@2038
   231
    /// \param p The priority.
deba@2038
   232
    void set(const Item &i, const Prio &p) {
deba@2038
   233
      int idx = index[i];
deba@2038
   234
      if (idx < 0) {
deba@2038
   235
	push(i,p);
deba@2038
   236
      } else if (p > data[idx].value) {
deba@2038
   237
	increase(i, p);
deba@2038
   238
      } else {
deba@2038
   239
	decrease(i, p);
deba@2038
   240
      }
deba@2038
   241
    }
deba@2038
   242
deba@2038
   243
    /// \brief Decreases the priority of \c i to \c p.
deba@2089
   244
    ///
deba@2038
   245
    /// This method decreases the priority of item \c i to \c p.
deba@2038
   246
    /// \pre \c i must be stored in the heap with priority at least \c
deba@2038
   247
    /// p relative to \c Compare.
deba@2038
   248
    /// \param i The item.
deba@2038
   249
    /// \param p The priority.
deba@2038
   250
    void decrease(const Item &i, const Prio &p) {
deba@2038
   251
      int idx = index[i];
deba@2038
   252
      unlace(idx);
deba@2038
   253
      data[idx].value = p;
deba@2038
   254
      if (p < minimal) {
deba@2038
   255
	minimal = p;
deba@2038
   256
      }
deba@2038
   257
      lace(idx);
deba@2038
   258
    }
deba@2038
   259
    
deba@2038
   260
    /// \brief Increases the priority of \c i to \c p.
deba@2038
   261
    ///
deba@2038
   262
    /// This method sets the priority of item \c i to \c p. 
deba@2038
   263
    /// \pre \c i must be stored in the heap with priority at most \c
deba@2038
   264
    /// p relative to \c Compare.
deba@2038
   265
    /// \param i The item.
deba@2038
   266
    /// \param p The priority.
deba@2038
   267
    void increase(const Item &i, const Prio &p) {
deba@2038
   268
      int idx = index[i];
deba@2038
   269
      unlace(idx);
deba@2038
   270
      data[idx].value = p;
deba@2038
   271
      lace(idx);
deba@2038
   272
    }
deba@2038
   273
deba@2038
   274
    /// \brief Returns if \c item is in, has already been in, or has 
deba@2038
   275
    /// never been in the heap.
deba@2038
   276
    ///
deba@2038
   277
    /// This method returns PRE_HEAP if \c item has never been in the
deba@2038
   278
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
deba@2038
   279
    /// otherwise. In the latter case it is possible that \c item will
deba@2038
   280
    /// get back to the heap again.
deba@2038
   281
    /// \param i The item.
deba@2038
   282
    state_enum state(const Item &i) const {
deba@2038
   283
      int idx = index[i];
deba@2038
   284
      if (idx >= 0) idx = 0;
deba@2038
   285
      return state_enum(idx);
deba@2038
   286
    }
deba@2038
   287
deba@2038
   288
    /// \brief Sets the state of the \c item in the heap.
deba@2038
   289
    ///
deba@2038
   290
    /// Sets the state of the \c item in the heap. It can be used to
deba@2038
   291
    /// manually clear the heap when it is important to achive the
deba@2038
   292
    /// better time complexity.
deba@2038
   293
    /// \param i The item.
deba@2038
   294
    /// \param st The state. It should not be \c IN_HEAP. 
deba@2038
   295
    void state(const Item& i, state_enum st) {
deba@2038
   296
      switch (st) {
deba@2038
   297
      case POST_HEAP:
deba@2038
   298
      case PRE_HEAP:
deba@2038
   299
        if (state(i) == IN_HEAP) {
deba@2038
   300
          erase(i);
deba@2038
   301
        }
deba@2038
   302
        index[i] = st;
deba@2038
   303
        break;
deba@2038
   304
      case IN_HEAP:
deba@2038
   305
        break;
deba@2038
   306
      }
deba@2038
   307
    }
deba@2038
   308
deba@2038
   309
  private:
deba@2038
   310
deba@2038
   311
    struct BucketItem {
deba@2038
   312
      BucketItem(const Item& _item, int _value) 
deba@2038
   313
	: item(_item), value(_value) {}
deba@2038
   314
deba@2038
   315
      Item item;
deba@2038
   316
      int value;
deba@2038
   317
deba@2038
   318
      int prev, next;
deba@2038
   319
    };
deba@2038
   320
deba@2038
   321
    ItemIntMap& index;
deba@2038
   322
    std::vector<int> first;
deba@2038
   323
    std::vector<BucketItem> data;
deba@2038
   324
    mutable int minimal;
deba@2038
   325
deba@2038
   326
  }; // class BucketHeap
deba@2038
   327
deba@2038
   328
deba@2038
   329
  template <typename _Item, typename _ItemIntMap>
deba@2038
   330
  class BucketHeap<_Item, _ItemIntMap, false> {
deba@2038
   331
deba@2038
   332
  public:
deba@2038
   333
    typedef _Item Item;
deba@2038
   334
    typedef int Prio;
deba@2038
   335
    typedef std::pair<Item, Prio> Pair;
deba@2038
   336
    typedef _ItemIntMap ItemIntMap;
deba@2038
   337
deba@2038
   338
    enum state_enum {
deba@2038
   339
      IN_HEAP = 0,
deba@2038
   340
      PRE_HEAP = -1,
deba@2038
   341
      POST_HEAP = -2
deba@2038
   342
    };
deba@2038
   343
deba@2038
   344
  public:
deba@2038
   345
deba@2038
   346
    explicit BucketHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
deba@2038
   347
deba@2038
   348
    int size() const { return data.size(); }
deba@2038
   349
    bool empty() const { return data.empty(); }
deba@2038
   350
deba@2038
   351
    void clear() { 
deba@2038
   352
      data.clear(); first.clear(); maximal = -1; 
deba@2038
   353
    }
deba@2038
   354
deba@2038
   355
  private:
deba@2038
   356
deba@2038
   357
    void relocate_last(int idx) {
deba@2038
   358
      if (idx + 1 != (int)data.size()) {
deba@2038
   359
	data[idx] = data.back();
deba@2038
   360
	if (data[idx].prev != -1) {
deba@2038
   361
	  data[data[idx].prev].next = idx;
deba@2038
   362
	} else {
deba@2038
   363
	  first[data[idx].value] = idx;
deba@2038
   364
	}
deba@2038
   365
	if (data[idx].next != -1) {
deba@2038
   366
	  data[data[idx].next].prev = idx;
deba@2038
   367
	}
deba@2038
   368
	index[data[idx].item] = idx;
deba@2038
   369
      }
deba@2038
   370
      data.pop_back();
deba@2038
   371
    }
deba@2038
   372
deba@2038
   373
    void unlace(int idx) {
deba@2038
   374
      if (data[idx].prev != -1) {
deba@2038
   375
	data[data[idx].prev].next = data[idx].next;
deba@2038
   376
      } else {
deba@2038
   377
	first[data[idx].value] = data[idx].next;
deba@2038
   378
      }
deba@2038
   379
      if (data[idx].next != -1) {
deba@2038
   380
	data[data[idx].next].prev = data[idx].prev;
deba@2038
   381
      }
deba@2038
   382
    }
deba@2038
   383
deba@2038
   384
    void lace(int idx) {
deba@2038
   385
      if ((int)first.size() <= data[idx].value) {
deba@2038
   386
	first.resize(data[idx].value + 1, -1);
deba@2038
   387
      }
deba@2038
   388
      data[idx].next = first[data[idx].value];
deba@2038
   389
      if (data[idx].next != -1) {
deba@2038
   390
	data[data[idx].next].prev = idx;
deba@2038
   391
      }
deba@2038
   392
      first[data[idx].value] = idx;
deba@2038
   393
      data[idx].prev = -1;
deba@2038
   394
    }
deba@2038
   395
deba@2038
   396
  public:
deba@2038
   397
deba@2038
   398
    void push(const Pair& p) {
deba@2038
   399
      push(p.first, p.second);
deba@2038
   400
    }
deba@2038
   401
deba@2038
   402
    void push(const Item &i, const Prio &p) { 
deba@2038
   403
      int idx = data.size();
deba@2038
   404
      index[i] = idx;
deba@2038
   405
      data.push_back(BucketItem(i, p));
deba@2038
   406
      lace(idx);
deba@2038
   407
      if (data[idx].value > maximal) {
deba@2038
   408
	maximal = data[idx].value;
deba@2038
   409
      }
deba@2038
   410
    }
deba@2038
   411
deba@2038
   412
    Item top() const {
deba@2038
   413
      while (first[maximal] == -1) {
deba@2038
   414
	--maximal;
deba@2038
   415
      }
deba@2038
   416
      return data[first[maximal]].item;
deba@2038
   417
    }
deba@2038
   418
deba@2038
   419
    Prio prio() const {
deba@2038
   420
      while (first[maximal] == -1) {
deba@2038
   421
	--maximal;
deba@2038
   422
      }
deba@2038
   423
      return maximal;
deba@2038
   424
    }
deba@2038
   425
deba@2038
   426
    void pop() {
deba@2038
   427
      while (first[maximal] == -1) {
deba@2038
   428
	--maximal;
deba@2038
   429
      }
deba@2038
   430
      int idx = first[maximal];
deba@2038
   431
      index[data[idx].item] = -2;
deba@2038
   432
      unlace(idx);
deba@2038
   433
      relocate_last(idx);
deba@2038
   434
    }
deba@2038
   435
deba@2038
   436
    void erase(const Item &i) {
deba@2038
   437
      int idx = index[i];
deba@2038
   438
      index[data[idx].item] = -2;
deba@2038
   439
      unlace(idx);
deba@2038
   440
      relocate_last(idx);
deba@2038
   441
    }
deba@2038
   442
deba@2038
   443
    Prio operator[](const Item &i) const {
deba@2038
   444
      int idx = index[i];
deba@2038
   445
      return data[idx].value;
deba@2038
   446
    }
deba@2038
   447
deba@2038
   448
    void set(const Item &i, const Prio &p) {
deba@2038
   449
      int idx = index[i];
deba@2038
   450
      if (idx < 0) {
deba@2038
   451
	push(i,p);
deba@2038
   452
      } else if (p > data[idx].value) {
deba@2038
   453
	decrease(i, p);
deba@2038
   454
      } else {
deba@2038
   455
	increase(i, p);
deba@2038
   456
      }
deba@2038
   457
    }
deba@2038
   458
deba@2038
   459
    void decrease(const Item &i, const Prio &p) {
deba@2038
   460
      int idx = index[i];
deba@2038
   461
      unlace(idx);
deba@2038
   462
      data[idx].value = p;
deba@2038
   463
      if (p > maximal) {
deba@2038
   464
	maximal = p;
deba@2038
   465
      }
deba@2038
   466
      lace(idx);
deba@2038
   467
    }
deba@2038
   468
    
deba@2038
   469
    void increase(const Item &i, const Prio &p) {
deba@2038
   470
      int idx = index[i];
deba@2038
   471
      unlace(idx);
deba@2038
   472
      data[idx].value = p;
deba@2038
   473
      lace(idx);
deba@2038
   474
    }
deba@2038
   475
deba@2038
   476
    state_enum state(const Item &i) const {
deba@2038
   477
      int idx = index[i];
deba@2038
   478
      if (idx >= 0) idx = 0;
deba@2038
   479
      return state_enum(idx);
deba@2038
   480
    }
deba@2038
   481
deba@2038
   482
    void state(const Item& i, state_enum st) {
deba@2038
   483
      switch (st) {
deba@2038
   484
      case POST_HEAP:
deba@2038
   485
      case PRE_HEAP:
deba@2038
   486
        if (state(i) == IN_HEAP) {
deba@2038
   487
          erase(i);
deba@2038
   488
        }
deba@2038
   489
        index[i] = st;
deba@2038
   490
        break;
deba@2038
   491
      case IN_HEAP:
deba@2038
   492
        break;
deba@2038
   493
      }
deba@2038
   494
    }
deba@2038
   495
deba@2038
   496
  private:
deba@2038
   497
deba@2038
   498
    struct BucketItem {
deba@2038
   499
      BucketItem(const Item& _item, int _value) 
deba@2038
   500
	: item(_item), value(_value) {}
deba@2038
   501
deba@2038
   502
      Item item;
deba@2038
   503
      int value;
deba@2038
   504
deba@2038
   505
      int prev, next;
deba@2038
   506
    };
deba@2038
   507
deba@2038
   508
    ItemIntMap& index;
deba@2038
   509
    std::vector<int> first;
deba@2038
   510
    std::vector<BucketItem> data;
deba@2038
   511
    mutable int maximal;
deba@2038
   512
deba@2038
   513
  }; // class BucketHeap
deba@2038
   514
deba@2089
   515
  /// \ingroup auxdat
deba@2089
   516
  ///
deba@2089
   517
  /// \brief A Simplified Bucket Heap implementation.
deba@2089
   518
  ///
deba@2089
   519
  /// This class implements a simplified \e bucket \e heap data
deba@2089
   520
  /// structure.  It does not provide some functionality but it faster
deba@2089
   521
  /// and simplier data structure than the BucketHeap. The main
deba@2089
   522
  /// difference is that the BucketHeap stores for every key a double
deba@2089
   523
  /// linked list while this class stores just simple lists. In the
deba@2089
   524
  /// other way it does not supports erasing each elements just the
deba@2089
   525
  /// minimal and it does not supports key increasing, decreasing.
deba@2089
   526
  ///
deba@2089
   527
  /// \param _Item Type of the items to be stored.  
deba@2089
   528
  /// \param _ItemIntMap A read and writable Item int map, used internally
deba@2089
   529
  /// to handle the cross references.
deba@2089
   530
  /// \param minimize If the given parameter is true then the heap gives back
deba@2089
   531
  /// the lowest priority.
deba@2089
   532
  ///
deba@2089
   533
  /// \sa BucketHeap 
deba@2089
   534
  template <typename _Item, typename _ItemIntMap, bool minimize = true >
deba@2089
   535
  class SimpleBucketHeap {
deba@2089
   536
deba@2089
   537
  public:
deba@2089
   538
    typedef _Item Item;
deba@2089
   539
    typedef int Prio;
deba@2089
   540
    typedef std::pair<Item, Prio> Pair;
deba@2089
   541
    typedef _ItemIntMap ItemIntMap;
deba@2089
   542
deba@2089
   543
    /// \brief Type to represent the items states.
deba@2089
   544
    ///
deba@2089
   545
    /// Each Item element have a state associated to it. It may be "in heap",
deba@2089
   546
    /// "pre heap" or "post heap". The latter two are indifferent from the
deba@2089
   547
    /// heap's point of view, but may be useful to the user.
deba@2089
   548
    ///
deba@2089
   549
    /// The ItemIntMap \e should be initialized in such way that it maps
deba@2089
   550
    /// PRE_HEAP (-1) to any element to be put in the heap...
deba@2089
   551
    enum state_enum {
deba@2089
   552
      IN_HEAP = 0,
deba@2089
   553
      PRE_HEAP = -1,
deba@2089
   554
      POST_HEAP = -2
deba@2089
   555
    };
deba@2089
   556
deba@2089
   557
  public:
deba@2089
   558
deba@2089
   559
    /// \brief The constructor.
deba@2089
   560
    ///
deba@2089
   561
    /// The constructor.
deba@2089
   562
    /// \param _index should be given to the constructor, since it is used
deba@2089
   563
    /// internally to handle the cross references. The value of the map
deba@2089
   564
    /// should be PRE_HEAP (-1) for each element.
deba@2089
   565
    explicit SimpleBucketHeap(ItemIntMap &_index) 
deba@2089
   566
      : index(_index), free(-1), num(0), minimal(0) {}
deba@2089
   567
    
deba@2089
   568
    /// \brief Returns the number of items stored in the heap.
deba@2089
   569
    ///
deba@2089
   570
    /// The number of items stored in the heap.
deba@2089
   571
    int size() const { return num; }
deba@2089
   572
    
deba@2089
   573
    /// \brief Checks if the heap stores no items.
deba@2089
   574
    ///
deba@2089
   575
    /// Returns \c true if and only if the heap stores no items.
deba@2089
   576
    bool empty() const { return num == 0; }
deba@2089
   577
deba@2089
   578
    /// \brief Make empty this heap.
deba@2089
   579
    /// 
deba@2089
   580
    /// Make empty this heap. It does not change the cross reference
deba@2089
   581
    /// map.  If you want to reuse a heap what is not surely empty you
deba@2089
   582
    /// should first clear the heap and after that you should set the
deba@2089
   583
    /// cross reference map for each item to \c PRE_HEAP.
deba@2089
   584
    void clear() { 
deba@2089
   585
      data.clear(); first.clear(); free = -1; num = 0; minimal = 0;
deba@2089
   586
    }
deba@2089
   587
deba@2089
   588
    /// \brief Insert a pair of item and priority into the heap.
deba@2089
   589
    ///
deba@2089
   590
    /// Adds \c p.first to the heap with priority \c p.second.
deba@2089
   591
    /// \param p The pair to insert.
deba@2089
   592
    void push(const Pair& p) {
deba@2089
   593
      push(p.first, p.second);
deba@2089
   594
    }
deba@2089
   595
deba@2089
   596
    /// \brief Insert an item into the heap with the given priority.
deba@2089
   597
    ///    
deba@2089
   598
    /// Adds \c i to the heap with priority \c p. 
deba@2089
   599
    /// \param i The item to insert.
deba@2089
   600
    /// \param p The priority of the item.
deba@2089
   601
    void push(const Item &i, const Prio &p) {
deba@2089
   602
      int idx;
deba@2089
   603
      if (free == -1) {
deba@2089
   604
        idx = data.size();
deba@2110
   605
        data.push_back(BucketItem(i));
deba@2089
   606
      } else {
deba@2089
   607
        idx = free;
deba@2089
   608
        free = data[idx].next;
deba@2110
   609
        data[idx].item = i;
deba@2089
   610
      }
deba@2089
   611
      index[i] = idx;
deba@2089
   612
      if (p >= (int)first.size()) first.resize(p + 1, -1);
deba@2089
   613
      data[idx].next = first[p];
deba@2089
   614
      first[p] = idx;
deba@2089
   615
      if (p < minimal) {
deba@2089
   616
	minimal = p;
deba@2089
   617
      }
deba@2089
   618
      ++num;
deba@2089
   619
    }
deba@2089
   620
deba@2089
   621
    /// \brief Returns the item with minimum priority.
deba@2089
   622
    ///
deba@2089
   623
    /// This method returns the item with minimum priority.
deba@2089
   624
    /// \pre The heap must be nonempty.  
deba@2089
   625
    Item top() const {
deba@2089
   626
      while (first[minimal] == -1) {
deba@2089
   627
	++minimal;
deba@2089
   628
      }
deba@2089
   629
      return data[first[minimal]].item;
deba@2089
   630
    }
deba@2089
   631
deba@2089
   632
    /// \brief Returns the minimum priority.
deba@2089
   633
    ///
deba@2089
   634
    /// It returns the minimum priority.
deba@2089
   635
    /// \pre The heap must be nonempty.
deba@2089
   636
    Prio prio() const {
deba@2089
   637
      while (first[minimal] == -1) {
deba@2089
   638
	++minimal;
deba@2089
   639
      }
deba@2089
   640
      return minimal;
deba@2089
   641
    }
deba@2089
   642
deba@2089
   643
    /// \brief Deletes the item with minimum priority.
deba@2089
   644
    ///
deba@2089
   645
    /// This method deletes the item with minimum priority from the heap.  
deba@2089
   646
    /// \pre The heap must be non-empty.  
deba@2089
   647
    void pop() {
deba@2089
   648
      while (first[minimal] == -1) {
deba@2089
   649
	++minimal;
deba@2089
   650
      }
deba@2089
   651
      int idx = first[minimal];
deba@2089
   652
      index[data[idx].item] = -2;
deba@2089
   653
      first[minimal] = data[idx].next;
deba@2089
   654
      data[idx].next = free;
deba@2089
   655
      free = idx;
deba@2089
   656
      --num;
deba@2089
   657
    }
deba@2089
   658
    
deba@2089
   659
    /// \brief Returns the priority of \c i.
deba@2089
   660
    ///
deba@2110
   661
    /// This function returns the priority of item \c i.
deba@2110
   662
    /// \warning This operator is not a constant time function
deba@2110
   663
    /// because it scans the whole data structure to find the proper
deba@2110
   664
    /// value.  
deba@2089
   665
    /// \pre \c i must be in the heap.
deba@2089
   666
    /// \param i The item.
deba@2089
   667
    Prio operator[](const Item &i) const {
deba@2110
   668
      for (int k = 0; k < first.size(); ++k) {
deba@2110
   669
        int idx = first[k];
deba@2110
   670
        while (idx != -1) {
deba@2110
   671
          if (data[idx].item == i) {
deba@2110
   672
            return k;
deba@2110
   673
          }
deba@2110
   674
          idx = data[idx].next;
deba@2110
   675
        }
deba@2110
   676
      }
deba@2110
   677
      return -1;
deba@2089
   678
    }
deba@2089
   679
deba@2089
   680
    /// \brief Returns if \c item is in, has already been in, or has 
deba@2089
   681
    /// never been in the heap.
deba@2089
   682
    ///
deba@2089
   683
    /// This method returns PRE_HEAP if \c item has never been in the
deba@2089
   684
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
deba@2089
   685
    /// otherwise. In the latter case it is possible that \c item will
deba@2089
   686
    /// get back to the heap again.
deba@2089
   687
    /// \param i The item.
deba@2089
   688
    state_enum state(const Item &i) const {
deba@2089
   689
      int idx = index[i];
deba@2089
   690
      if (idx >= 0) idx = 0;
deba@2089
   691
      return state_enum(idx);
deba@2089
   692
    }
deba@2089
   693
deba@2089
   694
  private:
deba@2089
   695
deba@2089
   696
    struct BucketItem {
deba@2110
   697
      BucketItem(const Item& _item) 
deba@2110
   698
	: item(_item) {}
deba@2089
   699
deba@2089
   700
      Item item;
deba@2089
   701
      int next;
deba@2089
   702
    };
deba@2089
   703
deba@2089
   704
    ItemIntMap& index;
deba@2089
   705
    std::vector<int> first;
deba@2089
   706
    std::vector<BucketItem> data;
deba@2089
   707
    int free, num;
deba@2089
   708
    mutable int minimal;
deba@2089
   709
deba@2089
   710
  }; // class SimpleBucketHeap
deba@2089
   711
deba@2089
   712
  template <typename _Item, typename _ItemIntMap>
deba@2089
   713
  class SimpleBucketHeap<_Item, _ItemIntMap, false> {
deba@2089
   714
deba@2089
   715
  public:
deba@2089
   716
    typedef _Item Item;
deba@2089
   717
    typedef int Prio;
deba@2089
   718
    typedef std::pair<Item, Prio> Pair;
deba@2089
   719
    typedef _ItemIntMap ItemIntMap;
deba@2089
   720
deba@2089
   721
    enum state_enum {
deba@2089
   722
      IN_HEAP = 0,
deba@2089
   723
      PRE_HEAP = -1,
deba@2089
   724
      POST_HEAP = -2
deba@2089
   725
    };
deba@2089
   726
deba@2089
   727
  public:
deba@2089
   728
deba@2089
   729
    explicit SimpleBucketHeap(ItemIntMap &_index) 
deba@2089
   730
      : index(_index), free(-1), num(0), maximal(0) {}
deba@2089
   731
    
deba@2089
   732
    int size() const { return num; }
deba@2089
   733
    
deba@2089
   734
    bool empty() const { return num == 0; }
deba@2089
   735
deba@2089
   736
    void clear() { 
deba@2089
   737
      data.clear(); first.clear(); free = -1; num = 0; maximal = 0;
deba@2089
   738
    }
deba@2089
   739
deba@2089
   740
    void push(const Pair& p) {
deba@2089
   741
      push(p.first, p.second);
deba@2089
   742
    }
deba@2089
   743
deba@2089
   744
    void push(const Item &i, const Prio &p) {
deba@2089
   745
      int idx;
deba@2089
   746
      if (free == -1) {
deba@2089
   747
        idx = data.size();
deba@2110
   748
        data.push_back(BucketItem(i));
deba@2089
   749
      } else {
deba@2089
   750
        idx = free;
deba@2089
   751
        free = data[idx].next;
deba@2110
   752
        data[idx].item = i;
deba@2089
   753
      }
deba@2089
   754
      index[i] = idx;
deba@2089
   755
      if (p >= (int)first.size()) first.resize(p + 1, -1);
deba@2089
   756
      data[idx].next = first[p];
deba@2089
   757
      first[p] = idx;
deba@2089
   758
      if (p > maximal) {
deba@2089
   759
	maximal = p;
deba@2089
   760
      }
deba@2089
   761
      ++num;
deba@2089
   762
    }
deba@2089
   763
deba@2089
   764
    Item top() const {
deba@2089
   765
      while (first[maximal] == -1) {
deba@2089
   766
	--maximal;
deba@2089
   767
      }
deba@2089
   768
      return data[first[maximal]].item;
deba@2089
   769
    }
deba@2089
   770
deba@2089
   771
    Prio prio() const {
deba@2089
   772
      while (first[maximal] == -1) {
deba@2089
   773
	--maximal;
deba@2089
   774
      }
deba@2089
   775
      return maximal;
deba@2089
   776
    }
deba@2089
   777
deba@2089
   778
    void pop() {
deba@2089
   779
      while (first[maximal] == -1) {
deba@2089
   780
	--maximal;
deba@2089
   781
      }
deba@2089
   782
      int idx = first[maximal];
deba@2089
   783
      index[data[idx].item] = -2;
deba@2089
   784
      first[maximal] = data[idx].next;
deba@2089
   785
      data[idx].next = free;
deba@2089
   786
      free = idx;
deba@2089
   787
      --num;
deba@2089
   788
    }
deba@2089
   789
    
deba@2089
   790
    Prio operator[](const Item &i) const {
deba@2110
   791
      for (int k = 0; k < first.size(); ++k) {
deba@2110
   792
        int idx = first[k];
deba@2110
   793
        while (idx != -1) {
deba@2110
   794
          if (data[idx].item == i) {
deba@2110
   795
            return k;
deba@2110
   796
          }
deba@2110
   797
          idx = data[idx].next;
deba@2110
   798
        }
deba@2110
   799
      }
deba@2110
   800
      return -1;
deba@2089
   801
    }
deba@2089
   802
deba@2089
   803
    state_enum state(const Item &i) const {
deba@2089
   804
      int idx = index[i];
deba@2089
   805
      if (idx >= 0) idx = 0;
deba@2089
   806
      return state_enum(idx);
deba@2089
   807
    }
deba@2089
   808
deba@2089
   809
  private:
deba@2089
   810
deba@2089
   811
    struct BucketItem {
deba@2110
   812
      BucketItem(const Item& _item) : item(_item) {}
deba@2089
   813
deba@2089
   814
      Item item;
deba@2089
   815
deba@2089
   816
      int next;
deba@2089
   817
    };
deba@2089
   818
deba@2089
   819
    ItemIntMap& index;
deba@2089
   820
    std::vector<int> first;
deba@2089
   821
    std::vector<BucketItem> data;
deba@2089
   822
    int free, num;
deba@2089
   823
    mutable int maximal;
deba@2089
   824
deba@2089
   825
  };
deba@2089
   826
deba@2038
   827
}
deba@2038
   828
  
deba@2038
   829
#endif