alpar@2391
|
1 |
/* -*- C++ -*-
|
alpar@2391
|
2 |
*
|
alpar@2391
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@2391
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
alpar@2391
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@2391
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@2391
|
8 |
*
|
alpar@2391
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@2391
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@2391
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@2391
|
12 |
*
|
alpar@2391
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@2391
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@2391
|
15 |
* purpose.
|
alpar@2391
|
16 |
*
|
alpar@2391
|
17 |
*/
|
alpar@2391
|
18 |
|
alpar@1678
|
19 |
namespace lemon {
|
alpar@1678
|
20 |
/**
|
alpar@1678
|
21 |
|
alpar@1678
|
22 |
\ingroup demos
|
alpar@1678
|
23 |
\file graph_orientation.cc
|
alpar@1678
|
24 |
\brief Graph orientation with lower bound requirement on the
|
alpar@1678
|
25 |
in-degree of the nodes.
|
alpar@1678
|
26 |
|
alpar@1684
|
27 |
This demo shows an adaptation of the well-known "preflow push" algorithm to
|
alpar@1684
|
28 |
a simple graph orientation problem.
|
alpar@1678
|
29 |
|
alpar@1684
|
30 |
The input of the problem is a(n undirected) graph and an integer value
|
alpar@1684
|
31 |
<i>f(n)</i> assigned to each node \e n. The task is to find an orientation
|
alpar@2158
|
32 |
of the edges for which the number of edge arriving at each node \e n is at
|
alpar@1684
|
33 |
least least <i>f(n)</i>.
|
alpar@1684
|
34 |
|
alpar@1684
|
35 |
In fact, the algorithm reads a directed graph and computes a set of edges to
|
alpar@1684
|
36 |
be reversed in order to achieve the in-degree requirement.
|
alpar@1684
|
37 |
This input is given using
|
alpar@1684
|
38 |
\ref graph-io-page ".lgf (Lemon Graph Format)" file. It should contain
|
alpar@1684
|
39 |
three node maps. The one called "f" contains the in-degree requirements, while
|
alpar@1684
|
40 |
"coordinate_x" and "coordinate_y" indicate the position of the nodes. These
|
alpar@1684
|
41 |
latter ones are used to generate the output, which is a <tt>.eps</tt> file.
|
alpar@1684
|
42 |
|
alpar@1684
|
43 |
|
alpar@1684
|
44 |
\section go-alg-dec The C++ source file
|
alpar@1684
|
45 |
|
alpar@1684
|
46 |
Here you find how to solve the problem above using lemon.
|
alpar@1684
|
47 |
|
alpar@1684
|
48 |
\subsection go-alg-head Headers and convenience typedefs
|
alpar@1678
|
49 |
|
alpar@1678
|
50 |
First we include some important headers.
|
alpar@1678
|
51 |
|
alpar@1678
|
52 |
The first one defines \ref lemon::ListGraph "ListGraph",
|
alpar@1678
|
53 |
the "Swiss army knife" graph implementation.
|
alpar@1678
|
54 |
\dontinclude graph_orientation.cc
|
alpar@1678
|
55 |
\skipline list_graph
|
alpar@1678
|
56 |
|
alpar@1678
|
57 |
The next is to read a \ref graph-io-page ".lgf" (Lemon Graph Format) file.
|
alpar@1678
|
58 |
\skipline reader
|
alpar@1678
|
59 |
|
alpar@1678
|
60 |
This provides us with some special purpose graph \ref maps "maps".
|
alpar@1678
|
61 |
\skipline iterable
|
alpar@1678
|
62 |
|
alpar@1678
|
63 |
The following header defines a simple data structure to store and manipulate
|
alpar@1678
|
64 |
planar coordinates. It will be used to draw the result.
|
alpar@2310
|
65 |
\skipline dim2
|
alpar@1678
|
66 |
|
alpar@1678
|
67 |
And finally, this header contains a simple graph drawing utility.
|
alpar@1678
|
68 |
\skipline eps
|
alpar@1678
|
69 |
|
alpar@1678
|
70 |
As we don't want to type in \ref lemon "lemon::" million times, the
|
alpar@1678
|
71 |
following line seems to be useful.
|
alpar@1678
|
72 |
\skipline namespace
|
alpar@1678
|
73 |
|
alpar@2172
|
74 |
The following macro will also save a lot of typing by defining some
|
alpar@2172
|
75 |
convenience <tt>typedef</tt>s.
|
alpar@2172
|
76 |
|
alpar@2172
|
77 |
\skipline TYPEDEF
|
alpar@2172
|
78 |
|
alpar@2172
|
79 |
Actually, the macro above would be equivalent with the following
|
alpar@2172
|
80 |
<tt>typedef</tt>s.
|
alpar@2172
|
81 |
|
alpar@2172
|
82 |
\code
|
alpar@2172
|
83 |
typedef ListGraph::Node Node;
|
alpar@2172
|
84 |
typedef ListGraph::NodeIt NodeIt;
|
alpar@2172
|
85 |
typedef ListGraph::Edge Edge;
|
alpar@2172
|
86 |
typedef ListGraph::EdgeIt EdgeIt;
|
alpar@2172
|
87 |
typedef ListGraph::OutEdgeIt OutEdgeIt;
|
alpar@2172
|
88 |
typedef ListGraph::InEdgeIt InEdgeIt;
|
alpar@2172
|
89 |
\endcode
|
alpar@1678
|
90 |
|
alpar@1684
|
91 |
\subsection go-alg-main The main() function
|
alpar@1684
|
92 |
|
alpar@1678
|
93 |
Well, we are ready to start <tt>main()</tt>.
|
alpar@1678
|
94 |
\skip main
|
alpar@1678
|
95 |
\until {
|
alpar@1678
|
96 |
|
alpar@1953
|
97 |
First we check whether the program is called with exactly one parameter.
|
alpar@1678
|
98 |
If it isn't, we print a short help message end exit.
|
alpar@1678
|
99 |
The vast majority of people would probably skip this block.
|
alpar@1678
|
100 |
\skip if
|
alpar@1678
|
101 |
\until }
|
alpar@1678
|
102 |
|
alpar@1678
|
103 |
Now, we read a graph \c g, and a map \c f containing
|
alpar@1684
|
104 |
the in-deg requirements from a \ref graph-io-page ".lgf (Lemon Graph Format)"
|
alpar@1953
|
105 |
file. To generate the output picture, we also read the node titles (\c label)
|
alpar@1953
|
106 |
and
|
alpar@1678
|
107 |
coordinates (\c coords).
|
alpar@1678
|
108 |
So, first we create the graph
|
alpar@1678
|
109 |
\skipline ListGraph
|
alpar@1678
|
110 |
and the corresponding NodeMaps.
|
alpar@1678
|
111 |
\skipline NodeMap
|
alpar@1678
|
112 |
\until coords
|
alpar@1678
|
113 |
\note The graph must be given to the maps' constructor.
|
alpar@1678
|
114 |
|
alpar@1678
|
115 |
Then, the following block will read these data from the file, or exit if
|
alpar@1678
|
116 |
the file is missing or corrupt.
|
alpar@1678
|
117 |
\skip try
|
alpar@1678
|
118 |
\until }
|
alpar@1678
|
119 |
\until }
|
alpar@1678
|
120 |
|
alpar@1953
|
121 |
The algorithm needs an integer value assigned to each node. We call this "level" and the nodes are on level 0 at the
|
alpar@1953
|
122 |
beginning of the execution.
|
alpar@1953
|
123 |
|
alpar@1678
|
124 |
\skipline level
|
alpar@1678
|
125 |
|
alpar@1678
|
126 |
The deficiency (\c def) of a node is the in-degree requirement minus the
|
alpar@1678
|
127 |
actual in-degree.
|
alpar@1678
|
128 |
|
alpar@1678
|
129 |
\skip def
|
alpar@1678
|
130 |
\until subMap
|
alpar@1678
|
131 |
|
alpar@1678
|
132 |
A node is \e active if its deficiency is positive (i.e. if it doesn't meet
|
alpar@1678
|
133 |
the degree requirement).
|
alpar@1678
|
134 |
\skip active
|
alpar@1678
|
135 |
\until def
|
alpar@1678
|
136 |
|
alpar@2454
|
137 |
We also store a bool map indicating which edges are reverted.
|
alpar@1953
|
138 |
Actually this map called \c rev is only
|
alpar@1678
|
139 |
used to draw these edges with different color in the output picture. The
|
alpar@1953
|
140 |
algorithm updates this map, but will not use it otherwise.
|
alpar@1678
|
141 |
\skip rev
|
alpar@1678
|
142 |
\until reversed
|
alpar@1678
|
143 |
|
alpar@1678
|
144 |
The variable \c nodeNum will refer to the number of nodes.
|
alpar@1678
|
145 |
\skipline nodeNum
|
alpar@1678
|
146 |
|
alpar@2158
|
147 |
Here comes the algorithm itself.
|
alpar@1953
|
148 |
In each iteration we choose an active node (\c act will do it for us).
|
alpar@1953
|
149 |
If there is
|
alpar@1678
|
150 |
no such a node, then the orientation is feasible so we are done.
|
alpar@1678
|
151 |
\skip act
|
alpar@1678
|
152 |
\until while
|
alpar@1678
|
153 |
|
alpar@2158
|
154 |
Then we check if there exists an edge leaving this node and
|
alpar@2158
|
155 |
stepping down exactly
|
alpar@1678
|
156 |
one level.
|
alpar@1678
|
157 |
\skip OutEdge
|
alpar@1678
|
158 |
\until while
|
alpar@1678
|
159 |
|
alpar@1678
|
160 |
If there exists, we decrease the "activity" of the node \c act by reverting
|
alpar@1678
|
161 |
this egde.
|
alpar@1678
|
162 |
Fortunately, \ref lemon::ListGraph "ListGraph"
|
alpar@1678
|
163 |
has a special function \ref lemon::ListGraph::reverseEdge() "reverseEdge()"
|
alpar@1678
|
164 |
that makes this easy.
|
alpar@1678
|
165 |
We also have to update the maps \c def and
|
alpar@1678
|
166 |
\c rev.
|
alpar@1678
|
167 |
\skipline if
|
alpar@1678
|
168 |
\skip if
|
alpar@1678
|
169 |
\until }
|
alpar@2454
|
170 |
Otherwise (i.e. if there is no edge stepping down one level) we lift up the
|
alpar@1678
|
171 |
current active node \c act. If it reaches level \c nodeNum, then there
|
alpar@1678
|
172 |
exists no appropriate orientation so we stop.
|
alpar@1678
|
173 |
\skipline else
|
alpar@1678
|
174 |
\skipline if
|
alpar@1678
|
175 |
\skipline return
|
alpar@1678
|
176 |
\until }
|
alpar@1678
|
177 |
\until }
|
alpar@1678
|
178 |
\until }
|
alpar@1678
|
179 |
|
alpar@1678
|
180 |
Believe it or not, this algorithm works and runs fast.
|
alpar@1678
|
181 |
|
alpar@1678
|
182 |
Finally, we print the obtained orientation. Note, how the different
|
alpar@1678
|
183 |
\c bool values of
|
alpar@1678
|
184 |
\c rev are transformed into different \ref lemon::Color "RGB color"s
|
alpar@1678
|
185 |
using the class
|
alpar@2172
|
186 |
\ref lemon::Palette "Palette"
|
alpar@1678
|
187 |
and the \ref map_adaptors "map adaptor" called
|
alpar@1678
|
188 |
\ref lemon::ComposeMap "composeMap".
|
alpar@1678
|
189 |
|
alpar@1678
|
190 |
\skip graphToEps
|
alpar@1678
|
191 |
\until run
|
alpar@1678
|
192 |
|
alpar@1678
|
193 |
|
alpar@1678
|
194 |
\until end of main
|
alpar@1678
|
195 |
|
alpar@1678
|
196 |
Finally here are again the list of the used include files (because I can't turn
|
alpar@1678
|
197 |
this section off.)
|
alpar@1678
|
198 |
|
alpar@1678
|
199 |
*/
|
alpar@1678
|
200 |
|
alpar@2391
|
201 |
}
|