alpar@906
|
1 |
/* -*- C++ -*-
|
alpar@921
|
2 |
* src/lemon/maps.h - Part of LEMON, a generic C++ optimization library
|
alpar@906
|
3 |
*
|
alpar@1164
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
5 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@906
|
6 |
*
|
alpar@906
|
7 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
8 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
9 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
10 |
*
|
alpar@906
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
12 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
13 |
* purpose.
|
alpar@906
|
14 |
*
|
alpar@906
|
15 |
*/
|
alpar@906
|
16 |
|
alpar@921
|
17 |
#ifndef LEMON_MAPS_H
|
alpar@921
|
18 |
#define LEMON_MAPS_H
|
klao@286
|
19 |
|
alpar@1041
|
20 |
#include<math.h>
|
alpar@1041
|
21 |
|
klao@286
|
22 |
///\file
|
alpar@1041
|
23 |
///\ingroup maps
|
klao@286
|
24 |
///\brief Miscellaneous property maps
|
klao@286
|
25 |
///
|
klao@959
|
26 |
///\todo This file has the same name as the concept file in concept/,
|
klao@286
|
27 |
/// and this is not easily detectable in docs...
|
klao@286
|
28 |
|
klao@286
|
29 |
#include <map>
|
klao@286
|
30 |
|
alpar@921
|
31 |
namespace lemon {
|
klao@286
|
32 |
|
alpar@1041
|
33 |
/// \addtogroup maps
|
alpar@1041
|
34 |
/// @{
|
alpar@1041
|
35 |
|
alpar@720
|
36 |
/// Base class of maps.
|
alpar@720
|
37 |
|
alpar@805
|
38 |
/// Base class of maps.
|
alpar@805
|
39 |
/// It provides the necessary <tt>typedef</tt>s required by the map concept.
|
alpar@720
|
40 |
template<typename K, typename T>
|
alpar@720
|
41 |
class MapBase
|
alpar@720
|
42 |
{
|
alpar@720
|
43 |
public:
|
alpar@911
|
44 |
///\e
|
alpar@987
|
45 |
typedef K Key;
|
alpar@911
|
46 |
///\e
|
alpar@987
|
47 |
typedef T Value;
|
alpar@720
|
48 |
};
|
alpar@720
|
49 |
|
alpar@805
|
50 |
/// Null map. (a.k.a. DoNothingMap)
|
klao@286
|
51 |
|
klao@286
|
52 |
/// If you have to provide a map only for its type definitions,
|
alpar@805
|
53 |
/// or if you have to provide a writable map, but
|
alpar@805
|
54 |
/// data written to it will sent to <tt>/dev/null</tt>...
|
klao@286
|
55 |
template<typename K, typename T>
|
alpar@720
|
56 |
class NullMap : public MapBase<K,T>
|
klao@286
|
57 |
{
|
klao@286
|
58 |
public:
|
klao@286
|
59 |
|
alpar@805
|
60 |
/// Gives back a default constructed element.
|
klao@286
|
61 |
T operator[](const K&) const { return T(); }
|
alpar@805
|
62 |
/// Absorbs the value.
|
klao@286
|
63 |
void set(const K&, const T&) {}
|
klao@286
|
64 |
};
|
klao@286
|
65 |
|
klao@286
|
66 |
|
klao@286
|
67 |
/// Constant map.
|
klao@286
|
68 |
|
alpar@805
|
69 |
/// This is a readable map which assigns a specified value to each key.
|
alpar@805
|
70 |
/// In other aspects it is equivalent to the \ref NullMap.
|
alpar@805
|
71 |
/// \todo set could be used to set the value.
|
klao@286
|
72 |
template<typename K, typename T>
|
alpar@720
|
73 |
class ConstMap : public MapBase<K,T>
|
klao@286
|
74 |
{
|
klao@286
|
75 |
T v;
|
klao@286
|
76 |
public:
|
klao@286
|
77 |
|
alpar@805
|
78 |
/// Default constructor
|
alpar@805
|
79 |
|
alpar@805
|
80 |
/// The value of the map will be uninitialized.
|
alpar@805
|
81 |
/// (More exactly it will be default constructed.)
|
klao@286
|
82 |
ConstMap() {}
|
alpar@911
|
83 |
///\e
|
alpar@805
|
84 |
|
alpar@805
|
85 |
/// \param _v The initial value of the map.
|
alpar@911
|
86 |
///
|
klao@286
|
87 |
ConstMap(const T &_v) : v(_v) {}
|
klao@286
|
88 |
|
klao@286
|
89 |
T operator[](const K&) const { return v; }
|
klao@286
|
90 |
void set(const K&, const T&) {}
|
klao@286
|
91 |
|
klao@286
|
92 |
template<typename T1>
|
klao@286
|
93 |
struct rebind {
|
klao@286
|
94 |
typedef ConstMap<K,T1> other;
|
klao@286
|
95 |
};
|
klao@286
|
96 |
|
klao@286
|
97 |
template<typename T1>
|
klao@286
|
98 |
ConstMap(const ConstMap<K,T1> &, const T &_v) : v(_v) {}
|
klao@286
|
99 |
};
|
klao@286
|
100 |
|
alpar@1076
|
101 |
///Returns a \ref ConstMap class
|
alpar@1076
|
102 |
|
alpar@1076
|
103 |
///This function just returns a \ref ConstMap class.
|
alpar@1076
|
104 |
///\relates ConstMap
|
alpar@1076
|
105 |
template<class V,class K>
|
alpar@1076
|
106 |
inline ConstMap<V,K> constMap(const K &k)
|
alpar@1076
|
107 |
{
|
alpar@1076
|
108 |
return ConstMap<V,K>(k);
|
alpar@1076
|
109 |
}
|
alpar@1076
|
110 |
|
alpar@1076
|
111 |
|
marci@890
|
112 |
//to document later
|
marci@890
|
113 |
template<typename T, T v>
|
marci@890
|
114 |
struct Const { };
|
marci@890
|
115 |
//to document later
|
marci@890
|
116 |
template<typename K, typename V, V v>
|
marci@890
|
117 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V>
|
marci@890
|
118 |
{
|
marci@890
|
119 |
public:
|
marci@890
|
120 |
ConstMap() { }
|
marci@890
|
121 |
V operator[](const K&) const { return v; }
|
marci@890
|
122 |
void set(const K&, const V&) { }
|
marci@890
|
123 |
};
|
klao@286
|
124 |
|
klao@286
|
125 |
/// \c std::map wrapper
|
klao@286
|
126 |
|
klao@286
|
127 |
/// This is essentially a wrapper for \c std::map. With addition that
|
alpar@987
|
128 |
/// you can specify a default value different from \c Value() .
|
klao@286
|
129 |
///
|
klao@286
|
130 |
/// \todo Provide allocator parameter...
|
alpar@987
|
131 |
template <typename K, typename T, typename Compare = std::less<K> >
|
alpar@987
|
132 |
class StdMap : public std::map<K,T,Compare> {
|
alpar@987
|
133 |
typedef std::map<K,T,Compare> parent;
|
klao@286
|
134 |
T v;
|
klao@286
|
135 |
typedef typename parent::value_type PairType;
|
klao@286
|
136 |
|
klao@286
|
137 |
public:
|
alpar@987
|
138 |
typedef K Key;
|
alpar@987
|
139 |
typedef T Value;
|
alpar@987
|
140 |
typedef T& Reference;
|
alpar@987
|
141 |
typedef const T& ConstReference;
|
klao@286
|
142 |
|
klao@286
|
143 |
|
klao@345
|
144 |
StdMap() : v() {}
|
klao@286
|
145 |
/// Constructor with specified default value
|
klao@286
|
146 |
StdMap(const T& _v) : v(_v) {}
|
klao@286
|
147 |
|
klao@286
|
148 |
/// \brief Constructs the map from an appropriate std::map.
|
klao@286
|
149 |
///
|
klao@286
|
150 |
/// \warning Inefficient: copies the content of \c m !
|
klao@286
|
151 |
StdMap(const parent &m) : parent(m) {}
|
klao@286
|
152 |
/// \brief Constructs the map from an appropriate std::map, and explicitly
|
klao@286
|
153 |
/// specifies a default value.
|
klao@286
|
154 |
///
|
klao@286
|
155 |
/// \warning Inefficient: copies the content of \c m !
|
klao@286
|
156 |
StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
|
klao@286
|
157 |
|
klao@286
|
158 |
template<typename T1, typename Comp1>
|
marci@389
|
159 |
StdMap(const StdMap<Key,T1,Comp1> &m, const T &_v) {
|
marci@389
|
160 |
//FIXME;
|
marci@389
|
161 |
}
|
klao@286
|
162 |
|
alpar@987
|
163 |
Reference operator[](const Key &k) {
|
klao@346
|
164 |
return insert(PairType(k,v)).first -> second;
|
klao@286
|
165 |
}
|
alpar@987
|
166 |
ConstReference operator[](const Key &k) const {
|
marci@389
|
167 |
typename parent::iterator i = lower_bound(k);
|
beckerjc@391
|
168 |
if (i == parent::end() || parent::key_comp()(k, (*i).first))
|
klao@286
|
169 |
return v;
|
klao@286
|
170 |
return (*i).second;
|
klao@286
|
171 |
}
|
klao@345
|
172 |
void set(const Key &k, const T &t) {
|
klao@346
|
173 |
parent::operator[](k) = t;
|
klao@345
|
174 |
}
|
klao@286
|
175 |
|
klao@286
|
176 |
/// Changes the default value of the map.
|
klao@286
|
177 |
/// \return Returns the previous default value.
|
klao@286
|
178 |
///
|
alpar@805
|
179 |
/// \warning The value of some keys (which has already been queried, but
|
klao@286
|
180 |
/// the value has been unchanged from the default) may change!
|
klao@286
|
181 |
T setDefault(const T &_v) { T old=v; v=_v; return old; }
|
klao@286
|
182 |
|
klao@286
|
183 |
template<typename T1>
|
klao@286
|
184 |
struct rebind {
|
klao@286
|
185 |
typedef StdMap<Key,T1,Compare> other;
|
klao@286
|
186 |
};
|
klao@286
|
187 |
};
|
alpar@1041
|
188 |
|
alpar@1178
|
189 |
///Convert the \c Value of a maps to another type.
|
alpar@1178
|
190 |
|
alpar@1178
|
191 |
///This \ref concept::ReadMap "read only map"
|
alpar@1178
|
192 |
///converts the \c Value of a maps to type \c T.
|
alpar@1178
|
193 |
///Its \c Value is inherited from \c M.
|
alpar@1178
|
194 |
///
|
alpar@1178
|
195 |
///Actually,
|
alpar@1178
|
196 |
///\code
|
alpar@1178
|
197 |
/// ConvertMap<X> sh(x,v);
|
alpar@1178
|
198 |
///\endcode
|
alpar@1178
|
199 |
///it is equivalent with
|
alpar@1178
|
200 |
///\code
|
alpar@1178
|
201 |
/// ConstMap<X::Key, X::Value> c_tmp(v);
|
alpar@1178
|
202 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
|
alpar@1178
|
203 |
///\endcode
|
alpar@1178
|
204 |
///\bug wrong documentation
|
alpar@1178
|
205 |
template<class M, class T>
|
alpar@1178
|
206 |
class ConvertMap
|
alpar@1178
|
207 |
{
|
alpar@1178
|
208 |
const M &m;
|
alpar@1178
|
209 |
public:
|
alpar@1178
|
210 |
typedef typename M::Key Key;
|
alpar@1178
|
211 |
typedef T Value;
|
alpar@1178
|
212 |
|
alpar@1178
|
213 |
///Constructor
|
alpar@1178
|
214 |
|
alpar@1178
|
215 |
///Constructor
|
alpar@1178
|
216 |
///\param _m is the undelying map
|
alpar@1178
|
217 |
///\param _v is the convert value
|
alpar@1178
|
218 |
ConvertMap(const M &_m) : m(_m) {};
|
deba@1346
|
219 |
|
deba@1346
|
220 |
/// \brief The subscript operator.
|
deba@1346
|
221 |
///
|
deba@1346
|
222 |
/// The subscript operator.
|
deba@1346
|
223 |
/// \param edge The edge
|
deba@1346
|
224 |
/// \return The target of the edge
|
alpar@1178
|
225 |
Value operator[](Key k) const {return m[k];}
|
alpar@1178
|
226 |
};
|
alpar@1178
|
227 |
|
alpar@1178
|
228 |
///Returns an \ref ConvertMap class
|
alpar@1178
|
229 |
|
alpar@1178
|
230 |
///This function just returns an \ref ConvertMap class.
|
alpar@1178
|
231 |
///\relates ConvertMap
|
alpar@1178
|
232 |
///\todo The order of the template parameters are changed.
|
alpar@1178
|
233 |
template<class T, class M>
|
alpar@1178
|
234 |
inline ConvertMap<M,T> convertMap(const M &m)
|
alpar@1178
|
235 |
{
|
alpar@1178
|
236 |
return ConvertMap<M,T>(m);
|
alpar@1178
|
237 |
}
|
alpar@1041
|
238 |
|
deba@1346
|
239 |
/// \brief Returns the source of the given edge.
|
deba@1346
|
240 |
///
|
deba@1346
|
241 |
/// The SourceMap gives back the source Node of the given edge.
|
deba@1346
|
242 |
/// \author Balazs Dezso
|
deba@1346
|
243 |
template <typename Graph>
|
deba@1346
|
244 |
class SourceMap {
|
deba@1346
|
245 |
public:
|
deba@1346
|
246 |
typedef typename Graph::Node Value;
|
deba@1346
|
247 |
typedef typename Graph::Edge Key;
|
deba@1346
|
248 |
|
deba@1346
|
249 |
/// \brief Constructor
|
deba@1346
|
250 |
///
|
deba@1346
|
251 |
/// Constructor
|
deba@1346
|
252 |
/// \param _graph The graph that the map belongs to.
|
deba@1346
|
253 |
SourceMap(const Graph& _graph) : graph(_graph) {}
|
deba@1346
|
254 |
|
deba@1346
|
255 |
/// \brief The subscript operator.
|
deba@1346
|
256 |
///
|
deba@1346
|
257 |
/// The subscript operator.
|
deba@1346
|
258 |
/// \param edge The edge
|
deba@1346
|
259 |
/// \return The source of the edge
|
deba@1346
|
260 |
Value operator[](const Key& edge) {
|
deba@1346
|
261 |
return graph.source(edge);
|
deba@1346
|
262 |
}
|
deba@1346
|
263 |
|
deba@1346
|
264 |
private:
|
deba@1346
|
265 |
const Graph& graph;
|
deba@1346
|
266 |
};
|
deba@1346
|
267 |
|
deba@1346
|
268 |
/// \brief Returns a \ref SourceMap class
|
deba@1346
|
269 |
|
deba@1346
|
270 |
/// This function just returns an \ref SourceMap class.
|
deba@1346
|
271 |
/// \relates SourceMap
|
deba@1346
|
272 |
template <typename Graph>
|
deba@1357
|
273 |
inline SourceMap<Graph> sourceMap(const Graph& graph) {
|
deba@1346
|
274 |
return SourceMap<Graph>(graph);
|
deba@1346
|
275 |
}
|
deba@1346
|
276 |
|
deba@1346
|
277 |
/// \brief Returns the target of the given edge.
|
deba@1346
|
278 |
///
|
deba@1346
|
279 |
/// The TargetMap gives back the target Node of the given edge.
|
deba@1346
|
280 |
/// \author Balazs Dezso
|
deba@1346
|
281 |
template <typename Graph>
|
deba@1346
|
282 |
class TargetMap {
|
deba@1346
|
283 |
public:
|
deba@1346
|
284 |
typedef typename Graph::Node Value;
|
deba@1346
|
285 |
typedef typename Graph::Edge Key;
|
deba@1346
|
286 |
|
deba@1346
|
287 |
/// \brief Constructor
|
deba@1346
|
288 |
///
|
deba@1346
|
289 |
/// Constructor
|
deba@1346
|
290 |
/// \param _graph The graph that the map belongs to.
|
deba@1346
|
291 |
TargetMap(const Graph& _graph) : graph(_graph) {}
|
deba@1346
|
292 |
|
deba@1346
|
293 |
/// \brief The subscript operator.
|
deba@1346
|
294 |
///
|
deba@1346
|
295 |
/// The subscript operator.
|
deba@1346
|
296 |
/// \param edge The edge
|
deba@1346
|
297 |
/// \return The target of the edge
|
deba@1346
|
298 |
Value operator[](const Key& key) {
|
deba@1346
|
299 |
return graph.target(key);
|
deba@1346
|
300 |
}
|
deba@1346
|
301 |
|
deba@1346
|
302 |
private:
|
deba@1346
|
303 |
const Graph& graph;
|
deba@1346
|
304 |
};
|
deba@1346
|
305 |
|
deba@1346
|
306 |
/// \brief Returns a \ref TargetMap class
|
deba@1346
|
307 |
|
deba@1346
|
308 |
/// This function just returns an \ref TargetMap class.
|
deba@1346
|
309 |
/// \relates TargetMap
|
deba@1346
|
310 |
template <typename Graph>
|
deba@1357
|
311 |
inline TargetMap<Graph> targetMap(const Graph& graph) {
|
deba@1346
|
312 |
return TargetMap<Graph>(graph);
|
deba@1346
|
313 |
}
|
deba@1346
|
314 |
|
alpar@1041
|
315 |
///Sum of two maps
|
alpar@1041
|
316 |
|
alpar@1041
|
317 |
///This \ref concept::ReadMap "read only map" returns the sum of the two
|
alpar@1041
|
318 |
///given maps. Its \c Key and \c Value will be inherited from \c M1.
|
alpar@1041
|
319 |
///The \c Key and \c Value of M2 must be convertible to those of \c M1.
|
alpar@1041
|
320 |
|
alpar@1041
|
321 |
template<class M1,class M2>
|
alpar@1041
|
322 |
class AddMap
|
alpar@1041
|
323 |
{
|
alpar@1041
|
324 |
const M1 &m1;
|
alpar@1041
|
325 |
const M2 &m2;
|
alpar@1041
|
326 |
public:
|
alpar@1041
|
327 |
typedef typename M1::Key Key;
|
alpar@1041
|
328 |
typedef typename M1::Value Value;
|
alpar@1041
|
329 |
|
alpar@1041
|
330 |
///Constructor
|
alpar@1041
|
331 |
|
alpar@1041
|
332 |
///\e
|
alpar@1041
|
333 |
///
|
alpar@1041
|
334 |
AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
335 |
Value operator[](Key k) const {return m1[k]+m2[k];}
|
alpar@1041
|
336 |
};
|
alpar@1041
|
337 |
|
alpar@1041
|
338 |
///Returns an \ref AddMap class
|
alpar@1041
|
339 |
|
alpar@1041
|
340 |
///This function just returns an \ref AddMap class.
|
alpar@1041
|
341 |
///\todo How to call these type of functions?
|
alpar@1041
|
342 |
///
|
alpar@1041
|
343 |
///\relates AddMap
|
alpar@1041
|
344 |
///\todo Wrong scope in Doxygen when \c \\relates is used
|
alpar@1041
|
345 |
template<class M1,class M2>
|
alpar@1041
|
346 |
inline AddMap<M1,M2> addMap(const M1 &m1,const M2 &m2)
|
alpar@1041
|
347 |
{
|
alpar@1041
|
348 |
return AddMap<M1,M2>(m1,m2);
|
alpar@1041
|
349 |
}
|
alpar@1041
|
350 |
|
alpar@1070
|
351 |
///Shift a maps with a constant.
|
alpar@1070
|
352 |
|
alpar@1070
|
353 |
///This \ref concept::ReadMap "read only map" returns the sum of the
|
alpar@1070
|
354 |
///given map and a constant value.
|
alpar@1070
|
355 |
///Its \c Key and \c Value is inherited from \c M.
|
alpar@1070
|
356 |
///
|
alpar@1070
|
357 |
///Actually,
|
alpar@1070
|
358 |
///\code
|
alpar@1070
|
359 |
/// ShiftMap<X> sh(x,v);
|
alpar@1070
|
360 |
///\endcode
|
alpar@1070
|
361 |
///it is equivalent with
|
alpar@1070
|
362 |
///\code
|
alpar@1070
|
363 |
/// ConstMap<X::Key, X::Value> c_tmp(v);
|
alpar@1070
|
364 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
|
alpar@1070
|
365 |
///\endcode
|
alpar@1070
|
366 |
template<class M>
|
alpar@1070
|
367 |
class ShiftMap
|
alpar@1070
|
368 |
{
|
alpar@1070
|
369 |
const M &m;
|
alpar@1070
|
370 |
typename M::Value v;
|
alpar@1070
|
371 |
public:
|
alpar@1070
|
372 |
typedef typename M::Key Key;
|
alpar@1070
|
373 |
typedef typename M::Value Value;
|
alpar@1070
|
374 |
|
alpar@1070
|
375 |
///Constructor
|
alpar@1070
|
376 |
|
alpar@1070
|
377 |
///Constructor
|
alpar@1070
|
378 |
///\param _m is the undelying map
|
alpar@1070
|
379 |
///\param _v is the shift value
|
alpar@1070
|
380 |
ShiftMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
|
alpar@1070
|
381 |
Value operator[](Key k) const {return m[k]+v;}
|
alpar@1070
|
382 |
};
|
alpar@1070
|
383 |
|
alpar@1070
|
384 |
///Returns an \ref ShiftMap class
|
alpar@1070
|
385 |
|
alpar@1070
|
386 |
///This function just returns an \ref ShiftMap class.
|
alpar@1070
|
387 |
///\relates ShiftMap
|
alpar@1070
|
388 |
///\todo A better name is required.
|
alpar@1070
|
389 |
template<class M>
|
alpar@1070
|
390 |
inline ShiftMap<M> shiftMap(const M &m,const typename M::Value &v)
|
alpar@1070
|
391 |
{
|
alpar@1070
|
392 |
return ShiftMap<M>(m,v);
|
alpar@1070
|
393 |
}
|
alpar@1070
|
394 |
|
alpar@1041
|
395 |
///Difference of two maps
|
alpar@1041
|
396 |
|
alpar@1041
|
397 |
///This \ref concept::ReadMap "read only map" returns the difference
|
alpar@1041
|
398 |
///of the values returned by the two
|
alpar@1041
|
399 |
///given maps. Its \c Key and \c Value will be inherited from \c M1.
|
alpar@1041
|
400 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@1041
|
401 |
|
alpar@1041
|
402 |
template<class M1,class M2>
|
alpar@1041
|
403 |
class SubMap
|
alpar@1041
|
404 |
{
|
alpar@1041
|
405 |
const M1 &m1;
|
alpar@1041
|
406 |
const M2 &m2;
|
alpar@1041
|
407 |
public:
|
alpar@1041
|
408 |
typedef typename M1::Key Key;
|
alpar@1041
|
409 |
typedef typename M1::Value Value;
|
alpar@1041
|
410 |
|
alpar@1041
|
411 |
///Constructor
|
alpar@1041
|
412 |
|
alpar@1041
|
413 |
///\e
|
alpar@1041
|
414 |
///
|
alpar@1041
|
415 |
SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
416 |
Value operator[](Key k) const {return m1[k]-m2[k];}
|
alpar@1041
|
417 |
};
|
alpar@1041
|
418 |
|
alpar@1041
|
419 |
///Returns a \ref SubMap class
|
alpar@1041
|
420 |
|
alpar@1041
|
421 |
///This function just returns a \ref SubMap class.
|
alpar@1041
|
422 |
///
|
alpar@1041
|
423 |
///\relates SubMap
|
alpar@1041
|
424 |
template<class M1,class M2>
|
alpar@1041
|
425 |
inline SubMap<M1,M2> subMap(const M1 &m1,const M2 &m2)
|
alpar@1041
|
426 |
{
|
alpar@1041
|
427 |
return SubMap<M1,M2>(m1,m2);
|
alpar@1041
|
428 |
}
|
alpar@1041
|
429 |
|
alpar@1041
|
430 |
///Product of two maps
|
alpar@1041
|
431 |
|
alpar@1041
|
432 |
///This \ref concept::ReadMap "read only map" returns the product of the
|
alpar@1041
|
433 |
///values returned by the two
|
alpar@1041
|
434 |
///given
|
alpar@1041
|
435 |
///maps. Its \c Key and \c Value will be inherited from \c M1.
|
alpar@1041
|
436 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@1041
|
437 |
|
alpar@1041
|
438 |
template<class M1,class M2>
|
alpar@1041
|
439 |
class MulMap
|
alpar@1041
|
440 |
{
|
alpar@1041
|
441 |
const M1 &m1;
|
alpar@1041
|
442 |
const M2 &m2;
|
alpar@1041
|
443 |
public:
|
alpar@1041
|
444 |
typedef typename M1::Key Key;
|
alpar@1041
|
445 |
typedef typename M1::Value Value;
|
alpar@1041
|
446 |
|
alpar@1041
|
447 |
///Constructor
|
alpar@1041
|
448 |
|
alpar@1041
|
449 |
///\e
|
alpar@1041
|
450 |
///
|
alpar@1041
|
451 |
MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
452 |
Value operator[](Key k) const {return m1[k]*m2[k];}
|
alpar@1041
|
453 |
};
|
alpar@1041
|
454 |
|
alpar@1041
|
455 |
///Returns a \ref MulMap class
|
alpar@1041
|
456 |
|
alpar@1041
|
457 |
///This function just returns a \ref MulMap class.
|
alpar@1041
|
458 |
///\relates MulMap
|
alpar@1041
|
459 |
template<class M1,class M2>
|
alpar@1041
|
460 |
inline MulMap<M1,M2> mulMap(const M1 &m1,const M2 &m2)
|
alpar@1041
|
461 |
{
|
alpar@1041
|
462 |
return MulMap<M1,M2>(m1,m2);
|
alpar@1041
|
463 |
}
|
alpar@1041
|
464 |
|
alpar@1070
|
465 |
///Scale a maps with a constant.
|
alpar@1070
|
466 |
|
alpar@1070
|
467 |
///This \ref concept::ReadMap "read only map" returns the value of the
|
alpar@1070
|
468 |
///given map multipied with a constant value.
|
alpar@1070
|
469 |
///Its \c Key and \c Value is inherited from \c M.
|
alpar@1070
|
470 |
///
|
alpar@1070
|
471 |
///Actually,
|
alpar@1070
|
472 |
///\code
|
alpar@1070
|
473 |
/// ScaleMap<X> sc(x,v);
|
alpar@1070
|
474 |
///\endcode
|
alpar@1070
|
475 |
///it is equivalent with
|
alpar@1070
|
476 |
///\code
|
alpar@1070
|
477 |
/// ConstMap<X::Key, X::Value> c_tmp(v);
|
alpar@1070
|
478 |
/// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
|
alpar@1070
|
479 |
///\endcode
|
alpar@1070
|
480 |
template<class M>
|
alpar@1070
|
481 |
class ScaleMap
|
alpar@1070
|
482 |
{
|
alpar@1070
|
483 |
const M &m;
|
alpar@1070
|
484 |
typename M::Value v;
|
alpar@1070
|
485 |
public:
|
alpar@1070
|
486 |
typedef typename M::Key Key;
|
alpar@1070
|
487 |
typedef typename M::Value Value;
|
alpar@1070
|
488 |
|
alpar@1070
|
489 |
///Constructor
|
alpar@1070
|
490 |
|
alpar@1070
|
491 |
///Constructor
|
alpar@1070
|
492 |
///\param _m is the undelying map
|
alpar@1070
|
493 |
///\param _v is the scaling value
|
alpar@1070
|
494 |
ScaleMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
|
alpar@1070
|
495 |
Value operator[](Key k) const {return m[k]*v;}
|
alpar@1070
|
496 |
};
|
alpar@1070
|
497 |
|
alpar@1070
|
498 |
///Returns an \ref ScaleMap class
|
alpar@1070
|
499 |
|
alpar@1070
|
500 |
///This function just returns an \ref ScaleMap class.
|
alpar@1070
|
501 |
///\relates ScaleMap
|
alpar@1070
|
502 |
///\todo A better name is required.
|
alpar@1070
|
503 |
template<class M>
|
alpar@1070
|
504 |
inline ScaleMap<M> scaleMap(const M &m,const typename M::Value &v)
|
alpar@1070
|
505 |
{
|
alpar@1070
|
506 |
return ScaleMap<M>(m,v);
|
alpar@1070
|
507 |
}
|
alpar@1070
|
508 |
|
alpar@1041
|
509 |
///Quotient of two maps
|
alpar@1041
|
510 |
|
alpar@1041
|
511 |
///This \ref concept::ReadMap "read only map" returns the quotient of the
|
alpar@1041
|
512 |
///values returned by the two
|
alpar@1041
|
513 |
///given maps. Its \c Key and \c Value will be inherited from \c M1.
|
alpar@1041
|
514 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@1041
|
515 |
|
alpar@1041
|
516 |
template<class M1,class M2>
|
alpar@1041
|
517 |
class DivMap
|
alpar@1041
|
518 |
{
|
alpar@1041
|
519 |
const M1 &m1;
|
alpar@1041
|
520 |
const M2 &m2;
|
alpar@1041
|
521 |
public:
|
alpar@1041
|
522 |
typedef typename M1::Key Key;
|
alpar@1041
|
523 |
typedef typename M1::Value Value;
|
alpar@1041
|
524 |
|
alpar@1041
|
525 |
///Constructor
|
alpar@1041
|
526 |
|
alpar@1041
|
527 |
///\e
|
alpar@1041
|
528 |
///
|
alpar@1041
|
529 |
DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
530 |
Value operator[](Key k) const {return m1[k]/m2[k];}
|
alpar@1041
|
531 |
};
|
alpar@1041
|
532 |
|
alpar@1041
|
533 |
///Returns a \ref DivMap class
|
alpar@1041
|
534 |
|
alpar@1041
|
535 |
///This function just returns a \ref DivMap class.
|
alpar@1041
|
536 |
///\relates DivMap
|
alpar@1041
|
537 |
template<class M1,class M2>
|
alpar@1041
|
538 |
inline DivMap<M1,M2> divMap(const M1 &m1,const M2 &m2)
|
alpar@1041
|
539 |
{
|
alpar@1041
|
540 |
return DivMap<M1,M2>(m1,m2);
|
alpar@1041
|
541 |
}
|
alpar@1041
|
542 |
|
alpar@1041
|
543 |
///Composition of two maps
|
alpar@1041
|
544 |
|
alpar@1041
|
545 |
///This \ref concept::ReadMap "read only map" returns the composition of
|
alpar@1041
|
546 |
///two
|
alpar@1041
|
547 |
///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
|
alpar@1041
|
548 |
///of \c M2,
|
alpar@1041
|
549 |
///then for
|
alpar@1041
|
550 |
///\code
|
alpar@1041
|
551 |
/// ComposeMap<M1,M2> cm(m1,m2);
|
alpar@1041
|
552 |
///\endcode
|
alpar@1044
|
553 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
|
alpar@1041
|
554 |
///
|
alpar@1041
|
555 |
///Its \c Key is inherited from \c M2 and its \c Value is from
|
alpar@1041
|
556 |
///\c M1.
|
alpar@1041
|
557 |
///The \c M2::Value must be convertible to \c M1::Key.
|
alpar@1041
|
558 |
///\todo Check the requirements.
|
alpar@1041
|
559 |
|
alpar@1041
|
560 |
template<class M1,class M2>
|
alpar@1041
|
561 |
class ComposeMap
|
alpar@1041
|
562 |
{
|
alpar@1041
|
563 |
const M1 &m1;
|
alpar@1041
|
564 |
const M2 &m2;
|
alpar@1041
|
565 |
public:
|
alpar@1041
|
566 |
typedef typename M2::Key Key;
|
alpar@1041
|
567 |
typedef typename M1::Value Value;
|
alpar@1041
|
568 |
|
alpar@1041
|
569 |
///Constructor
|
alpar@1041
|
570 |
|
alpar@1041
|
571 |
///\e
|
alpar@1041
|
572 |
///
|
alpar@1041
|
573 |
ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
574 |
Value operator[](Key k) const {return m1[m2[k]];}
|
alpar@1041
|
575 |
};
|
alpar@1041
|
576 |
///Returns a \ref ComposeMap class
|
alpar@1041
|
577 |
|
alpar@1041
|
578 |
///This function just returns a \ref ComposeMap class.
|
alpar@1219
|
579 |
///
|
alpar@1041
|
580 |
///\relates ComposeMap
|
alpar@1041
|
581 |
template<class M1,class M2>
|
alpar@1041
|
582 |
inline ComposeMap<M1,M2> composeMap(const M1 &m1,const M2 &m2)
|
alpar@1041
|
583 |
{
|
alpar@1041
|
584 |
return ComposeMap<M1,M2>(m1,m2);
|
alpar@1041
|
585 |
}
|
alpar@1219
|
586 |
|
alpar@1219
|
587 |
///Combine of two maps using an STL (binary) functor.
|
alpar@1219
|
588 |
|
alpar@1219
|
589 |
///Combine of two maps using an STL (binary) functor.
|
alpar@1219
|
590 |
///
|
alpar@1219
|
591 |
///
|
alpar@1219
|
592 |
///This \ref concept::ReadMap "read only map" takes to maps and a
|
alpar@1219
|
593 |
///binary functor and returns the composition of
|
alpar@1219
|
594 |
///two
|
alpar@1219
|
595 |
///given maps unsing the functor.
|
alpar@1219
|
596 |
///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
|
alpar@1219
|
597 |
///and \c f is of \c F,
|
alpar@1219
|
598 |
///then for
|
alpar@1219
|
599 |
///\code
|
alpar@1219
|
600 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
|
alpar@1219
|
601 |
///\endcode
|
alpar@1219
|
602 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
|
alpar@1219
|
603 |
///
|
alpar@1219
|
604 |
///Its \c Key is inherited from \c M1 and its \c Value is \c V.
|
alpar@1219
|
605 |
///The \c M2::Value and \c M1::Value must be convertible to the corresponding
|
alpar@1219
|
606 |
///input parameter of \c F and the return type of \c F must be convertible
|
alpar@1219
|
607 |
///to \c V.
|
alpar@1219
|
608 |
///\todo Check the requirements.
|
alpar@1219
|
609 |
|
alpar@1219
|
610 |
template<class M1,class M2,class F,class V>
|
alpar@1219
|
611 |
class CombineMap
|
alpar@1219
|
612 |
{
|
alpar@1219
|
613 |
const M1 &m1;
|
alpar@1219
|
614 |
const M2 &m2;
|
alpar@1219
|
615 |
const F &f;
|
alpar@1219
|
616 |
public:
|
alpar@1219
|
617 |
typedef typename M1::Key Key;
|
alpar@1219
|
618 |
typedef V Value;
|
alpar@1219
|
619 |
|
alpar@1219
|
620 |
///Constructor
|
alpar@1219
|
621 |
|
alpar@1219
|
622 |
///\e
|
alpar@1219
|
623 |
///
|
alpar@1219
|
624 |
CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
|
alpar@1219
|
625 |
: m1(_m1), m2(_m2), f(_f) {};
|
alpar@1219
|
626 |
Value operator[](Key k) const {return f(m1[k],m2[k]);}
|
alpar@1219
|
627 |
};
|
alpar@1219
|
628 |
|
alpar@1219
|
629 |
///Returns a \ref CombineMap class
|
alpar@1219
|
630 |
|
alpar@1219
|
631 |
///This function just returns a \ref CombineMap class.
|
alpar@1219
|
632 |
///
|
alpar@1219
|
633 |
///Only the first template parameter (the value type) must be given.
|
alpar@1219
|
634 |
///
|
alpar@1219
|
635 |
///For example if \c m1 and \c m2 are both \c double valued maps, then
|
alpar@1219
|
636 |
///\code
|
alpar@1219
|
637 |
///combineMap<double>(m1,m2,std::plus<double>)
|
alpar@1219
|
638 |
///\endcode
|
alpar@1219
|
639 |
///is equivalent with
|
alpar@1219
|
640 |
///\code
|
alpar@1219
|
641 |
///addMap(m1,m2)
|
alpar@1219
|
642 |
///\endcode
|
alpar@1219
|
643 |
///
|
alpar@1219
|
644 |
///\relates CombineMap
|
alpar@1219
|
645 |
template<class V,class M1,class M2,class F>
|
alpar@1219
|
646 |
inline CombineMap<M1,M2,F,V> combineMap(const M1 &m1,const M2 &m2,const F &f)
|
alpar@1219
|
647 |
{
|
alpar@1219
|
648 |
return CombineMap<M1,M2,F,V>(m1,m2,f);
|
alpar@1219
|
649 |
}
|
alpar@1041
|
650 |
|
alpar@1041
|
651 |
///Negative value of a map
|
alpar@1041
|
652 |
|
alpar@1041
|
653 |
///This \ref concept::ReadMap "read only map" returns the negative
|
alpar@1041
|
654 |
///value of the
|
alpar@1041
|
655 |
///value returned by the
|
alpar@1041
|
656 |
///given map. Its \c Key and \c Value will be inherited from \c M.
|
alpar@1041
|
657 |
///The unary \c - operator must be defined for \c Value, of course.
|
alpar@1041
|
658 |
|
alpar@1041
|
659 |
template<class M>
|
alpar@1041
|
660 |
class NegMap
|
alpar@1041
|
661 |
{
|
alpar@1041
|
662 |
const M &m;
|
alpar@1041
|
663 |
public:
|
alpar@1041
|
664 |
typedef typename M::Key Key;
|
alpar@1041
|
665 |
typedef typename M::Value Value;
|
alpar@1041
|
666 |
|
alpar@1041
|
667 |
///Constructor
|
alpar@1041
|
668 |
|
alpar@1041
|
669 |
///\e
|
alpar@1041
|
670 |
///
|
alpar@1041
|
671 |
NegMap(const M &_m) : m(_m) {};
|
alpar@1044
|
672 |
Value operator[](Key k) const {return -m[k];}
|
alpar@1041
|
673 |
};
|
alpar@1041
|
674 |
|
alpar@1041
|
675 |
///Returns a \ref NegMap class
|
alpar@1041
|
676 |
|
alpar@1041
|
677 |
///This function just returns a \ref NegMap class.
|
alpar@1041
|
678 |
///\relates NegMap
|
alpar@1041
|
679 |
template<class M>
|
alpar@1041
|
680 |
inline NegMap<M> negMap(const M &m)
|
alpar@1041
|
681 |
{
|
alpar@1041
|
682 |
return NegMap<M>(m);
|
alpar@1041
|
683 |
}
|
alpar@1041
|
684 |
|
alpar@1041
|
685 |
|
alpar@1041
|
686 |
///Absolute value of a map
|
alpar@1041
|
687 |
|
alpar@1041
|
688 |
///This \ref concept::ReadMap "read only map" returns the absolute value
|
alpar@1041
|
689 |
///of the
|
alpar@1041
|
690 |
///value returned by the
|
alpar@1044
|
691 |
///given map. Its \c Key and \c Value will be inherited
|
alpar@1044
|
692 |
///from <tt>M</tt>. <tt>Value</tt>
|
alpar@1044
|
693 |
///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
|
alpar@1044
|
694 |
///operator must be defined for it, of course.
|
alpar@1044
|
695 |
///
|
alpar@1044
|
696 |
///\bug We need a unified way to handle the situation below:
|
alpar@1044
|
697 |
///\code
|
alpar@1044
|
698 |
/// struct _UnConvertible {};
|
alpar@1044
|
699 |
/// template<class A> inline A t_abs(A a) {return _UnConvertible();}
|
alpar@1044
|
700 |
/// template<> inline int t_abs<>(int n) {return abs(n);}
|
alpar@1044
|
701 |
/// template<> inline long int t_abs<>(long int n) {return labs(n);}
|
alpar@1044
|
702 |
/// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
|
alpar@1044
|
703 |
/// template<> inline float t_abs<>(float n) {return fabsf(n);}
|
alpar@1044
|
704 |
/// template<> inline double t_abs<>(double n) {return fabs(n);}
|
alpar@1044
|
705 |
/// template<> inline long double t_abs<>(long double n) {return fabsl(n);}
|
alpar@1044
|
706 |
///\endcode
|
alpar@1044
|
707 |
|
alpar@1041
|
708 |
|
alpar@1041
|
709 |
template<class M>
|
alpar@1041
|
710 |
class AbsMap
|
alpar@1041
|
711 |
{
|
alpar@1041
|
712 |
const M &m;
|
alpar@1041
|
713 |
public:
|
alpar@1041
|
714 |
typedef typename M::Key Key;
|
alpar@1041
|
715 |
typedef typename M::Value Value;
|
alpar@1041
|
716 |
|
alpar@1041
|
717 |
///Constructor
|
alpar@1041
|
718 |
|
alpar@1041
|
719 |
///\e
|
alpar@1041
|
720 |
///
|
alpar@1041
|
721 |
AbsMap(const M &_m) : m(_m) {};
|
alpar@1044
|
722 |
Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;}
|
alpar@1041
|
723 |
};
|
alpar@1041
|
724 |
|
alpar@1041
|
725 |
///Returns a \ref AbsMap class
|
alpar@1041
|
726 |
|
alpar@1041
|
727 |
///This function just returns a \ref AbsMap class.
|
alpar@1041
|
728 |
///\relates AbsMap
|
alpar@1041
|
729 |
template<class M>
|
alpar@1041
|
730 |
inline AbsMap<M> absMap(const M &m)
|
alpar@1041
|
731 |
{
|
alpar@1041
|
732 |
return AbsMap<M>(m);
|
alpar@1041
|
733 |
}
|
alpar@1041
|
734 |
|
alpar@1076
|
735 |
///Converts an STL style functor to a a map
|
alpar@1076
|
736 |
|
alpar@1076
|
737 |
///This \ref concept::ReadMap "read only map" returns the value
|
alpar@1076
|
738 |
///of a
|
alpar@1076
|
739 |
///given map.
|
alpar@1076
|
740 |
///
|
alpar@1076
|
741 |
///Template parameters \c K and \c V will become its
|
alpar@1076
|
742 |
///\c Key and \c Value. They must be given explicitely
|
alpar@1076
|
743 |
///because a functor does not provide such typedefs.
|
alpar@1076
|
744 |
///
|
alpar@1076
|
745 |
///Parameter \c F is the type of the used functor.
|
alpar@1076
|
746 |
|
alpar@1076
|
747 |
|
alpar@1076
|
748 |
template<class K,class V,class F>
|
alpar@1076
|
749 |
class FunctorMap
|
alpar@1076
|
750 |
{
|
alpar@1076
|
751 |
const F &f;
|
alpar@1076
|
752 |
public:
|
alpar@1076
|
753 |
typedef K Key;
|
alpar@1076
|
754 |
typedef V Value;
|
alpar@1076
|
755 |
|
alpar@1076
|
756 |
///Constructor
|
alpar@1076
|
757 |
|
alpar@1076
|
758 |
///\e
|
alpar@1076
|
759 |
///
|
alpar@1076
|
760 |
FunctorMap(const F &_f) : f(_f) {};
|
alpar@1076
|
761 |
Value operator[](Key k) const {return f(k);}
|
alpar@1076
|
762 |
};
|
alpar@1076
|
763 |
|
alpar@1076
|
764 |
///Returns a \ref FunctorMap class
|
alpar@1076
|
765 |
|
alpar@1076
|
766 |
///This function just returns a \ref FunctorMap class.
|
alpar@1076
|
767 |
///
|
alpar@1076
|
768 |
///The third template parameter isn't necessary to be given.
|
alpar@1076
|
769 |
///\relates FunctorMap
|
alpar@1076
|
770 |
template<class K,class V, class F>
|
alpar@1076
|
771 |
inline FunctorMap<K,V,F> functorMap(const F &f)
|
alpar@1076
|
772 |
{
|
alpar@1076
|
773 |
return FunctorMap<K,V,F>(f);
|
alpar@1076
|
774 |
}
|
alpar@1076
|
775 |
|
alpar@1219
|
776 |
///Converts a map to an STL style (unary) functor
|
alpar@1076
|
777 |
|
alpar@1219
|
778 |
///This class Converts a map to an STL style (unary) functor.
|
alpar@1076
|
779 |
///that is it provides an <tt>operator()</tt> to read its values.
|
alpar@1076
|
780 |
///
|
alpar@1223
|
781 |
///For the sake of convenience it also works as
|
alpar@1223
|
782 |
///a ususal \ref concept::ReadMap "readable map", i.e
|
marci@1172
|
783 |
///<tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
|
alpar@1076
|
784 |
|
alpar@1076
|
785 |
template<class M>
|
alpar@1076
|
786 |
class MapFunctor
|
alpar@1076
|
787 |
{
|
alpar@1076
|
788 |
const M &m;
|
alpar@1076
|
789 |
public:
|
alpar@1223
|
790 |
typedef typename M::Key argument_type;
|
alpar@1223
|
791 |
typedef typename M::Value result_type;
|
alpar@1076
|
792 |
typedef typename M::Key Key;
|
alpar@1076
|
793 |
typedef typename M::Value Value;
|
alpar@1076
|
794 |
|
alpar@1076
|
795 |
///Constructor
|
alpar@1076
|
796 |
|
alpar@1076
|
797 |
///\e
|
alpar@1076
|
798 |
///
|
alpar@1076
|
799 |
MapFunctor(const M &_m) : m(_m) {};
|
alpar@1076
|
800 |
///Returns a value of the map
|
alpar@1076
|
801 |
|
alpar@1076
|
802 |
///\e
|
alpar@1076
|
803 |
///
|
alpar@1076
|
804 |
Value operator()(Key k) const {return m[k];}
|
alpar@1076
|
805 |
///\e
|
alpar@1076
|
806 |
///
|
alpar@1076
|
807 |
Value operator[](Key k) const {return m[k];}
|
alpar@1076
|
808 |
};
|
alpar@1076
|
809 |
|
alpar@1076
|
810 |
///Returns a \ref MapFunctor class
|
alpar@1076
|
811 |
|
alpar@1076
|
812 |
///This function just returns a \ref MapFunctor class.
|
alpar@1076
|
813 |
///\relates MapFunctor
|
alpar@1076
|
814 |
template<class M>
|
alpar@1076
|
815 |
inline MapFunctor<M> mapFunctor(const M &m)
|
alpar@1076
|
816 |
{
|
alpar@1076
|
817 |
return MapFunctor<M>(m);
|
alpar@1076
|
818 |
}
|
alpar@1076
|
819 |
|
alpar@1076
|
820 |
|
alpar@1219
|
821 |
///Apply all map setting operations to two maps
|
alpar@1219
|
822 |
|
alpar@1219
|
823 |
///This map has two \ref concept::WriteMap "writable map"
|
alpar@1219
|
824 |
///parameters and each write request will be passed to both of them.
|
alpar@1219
|
825 |
///If \c M1 is also \ref concept::ReadMap "readable",
|
alpar@1219
|
826 |
///then the read operations will return the
|
alpar@1317
|
827 |
///corresponding values of \c M1.
|
alpar@1219
|
828 |
///
|
alpar@1219
|
829 |
///The \c Key and \c Value will be inherited from \c M1.
|
alpar@1219
|
830 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1.
|
alpar@1219
|
831 |
|
alpar@1219
|
832 |
template<class M1,class M2>
|
alpar@1219
|
833 |
class ForkMap
|
alpar@1219
|
834 |
{
|
alpar@1219
|
835 |
const M1 &m1;
|
alpar@1219
|
836 |
const M2 &m2;
|
alpar@1219
|
837 |
public:
|
alpar@1219
|
838 |
typedef typename M1::Key Key;
|
alpar@1219
|
839 |
typedef typename M1::Value Value;
|
alpar@1219
|
840 |
|
alpar@1219
|
841 |
///Constructor
|
alpar@1219
|
842 |
|
alpar@1219
|
843 |
///\e
|
alpar@1219
|
844 |
///
|
alpar@1219
|
845 |
ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1219
|
846 |
Value operator[](Key k) const {return m1[k];}
|
alpar@1219
|
847 |
void set(Key k,const Value &v) {m1.set(k,v); m2.set(k,v);}
|
alpar@1219
|
848 |
};
|
alpar@1219
|
849 |
|
alpar@1219
|
850 |
///Returns an \ref ForkMap class
|
alpar@1219
|
851 |
|
alpar@1219
|
852 |
///This function just returns an \ref ForkMap class.
|
alpar@1219
|
853 |
///\todo How to call these type of functions?
|
alpar@1219
|
854 |
///
|
alpar@1219
|
855 |
///\relates ForkMap
|
alpar@1219
|
856 |
///\todo Wrong scope in Doxygen when \c \\relates is used
|
alpar@1219
|
857 |
template<class M1,class M2>
|
alpar@1219
|
858 |
inline ForkMap<M1,M2> forkMap(const M1 &m1,const M2 &m2)
|
alpar@1219
|
859 |
{
|
alpar@1219
|
860 |
return ForkMap<M1,M2>(m1,m2);
|
alpar@1219
|
861 |
}
|
alpar@1219
|
862 |
|
alpar@1041
|
863 |
/// @}
|
klao@286
|
864 |
|
klao@286
|
865 |
}
|
alpar@1041
|
866 |
|
alpar@1041
|
867 |
|
alpar@921
|
868 |
#endif // LEMON_MAPS_H
|