lemon/belmann_ford.h
author deba
Fri, 14 Oct 2005 10:49:51 +0000
changeset 1720 578d8b2b76c6
parent 1699 29428f7b8b66
child 1723 fb4f801dd692
permissions -rw-r--r--
Matrixmaps moved to own file
deba@1699
     1
/* -*- C++ -*-
deba@1699
     2
 * lemon/belmann_ford.h - Part of LEMON, a generic C++ optimization library
deba@1699
     3
 *
deba@1699
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@1699
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1699
     6
 *
deba@1699
     7
 * Permission to use, modify and distribute this software is granted
deba@1699
     8
 * provided that this copyright notice appears in all copies. For
deba@1699
     9
 * precise terms see the accompanying LICENSE file.
deba@1699
    10
 *
deba@1699
    11
 * This software is provided "AS IS" with no warranty of any kind,
deba@1699
    12
 * express or implied, and with no claim as to its suitability for any
deba@1699
    13
 * purpose.
deba@1699
    14
 *
deba@1699
    15
 */
deba@1699
    16
deba@1699
    17
#ifndef LEMON_BELMANN_FORD_H
deba@1699
    18
#define LEMON_BELMANN_FORD_H
deba@1699
    19
deba@1699
    20
///\ingroup flowalgs
deba@1699
    21
/// \file
deba@1699
    22
/// \brief BelmannFord algorithm.
deba@1699
    23
///
deba@1699
    24
/// \todo getPath() should be implemented! (also for BFS and DFS)
deba@1699
    25
deba@1699
    26
#include <lemon/list_graph.h>
deba@1699
    27
#include <lemon/invalid.h>
deba@1699
    28
#include <lemon/error.h>
deba@1699
    29
#include <lemon/maps.h>
deba@1699
    30
deba@1699
    31
#include <limits>
deba@1699
    32
deba@1699
    33
namespace lemon {
deba@1699
    34
deba@1699
    35
  /// \brief Default OperationTraits for the BelmannFord algorithm class.
deba@1699
    36
  ///  
deba@1699
    37
  /// It defines all computational operations and constants which are
deba@1699
    38
  /// used in the belmann ford algorithm. The default implementation
deba@1699
    39
  /// is based on the numeric_limits class. If the numeric type does not
deba@1699
    40
  /// have infinity value then the maximum value is used as extremal
deba@1699
    41
  /// infinity value.
deba@1699
    42
  template <
deba@1699
    43
    typename Value, 
deba@1699
    44
    bool has_infinity = std::numeric_limits<Value>::has_infinity>
deba@1699
    45
  struct BelmannFordDefaultOperationTraits {
deba@1699
    46
    /// \brief Gives back the zero value of the type.
deba@1699
    47
    static Value zero() {
deba@1699
    48
      return static_cast<Value>(0);
deba@1699
    49
    }
deba@1699
    50
    /// \brief Gives back the positive infinity value of the type.
deba@1699
    51
    static Value infinity() {
deba@1699
    52
      return std::numeric_limits<Value>::infinity();
deba@1699
    53
    }
deba@1699
    54
    /// \brief Gives back the sum of the given two elements.
deba@1699
    55
    static Value plus(const Value& left, const Value& right) {
deba@1699
    56
      return left + right;
deba@1699
    57
    }
deba@1699
    58
    /// \brief Gives back true only if the first value less than the second.
deba@1699
    59
    static bool less(const Value& left, const Value& right) {
deba@1699
    60
      return left < right;
deba@1699
    61
    }
deba@1699
    62
  };
deba@1699
    63
deba@1699
    64
  template <typename Value>
deba@1699
    65
  struct BelmannFordDefaultOperationTraits<Value, false> {
deba@1699
    66
    static Value zero() {
deba@1699
    67
      return static_cast<Value>(0);
deba@1699
    68
    }
deba@1699
    69
    static Value infinity() {
deba@1699
    70
      return std::numeric_limits<Value>::max();
deba@1699
    71
    }
deba@1699
    72
    static Value plus(const Value& left, const Value& right) {
deba@1699
    73
      if (left == infinity() || right == infinity()) return infinity();
deba@1699
    74
      return left + right;
deba@1699
    75
    }
deba@1699
    76
    static bool less(const Value& left, const Value& right) {
deba@1699
    77
      return left < right;
deba@1699
    78
    }
deba@1699
    79
  };
deba@1699
    80
  
deba@1699
    81
  /// \brief Default traits class of BelmannFord class.
deba@1699
    82
  ///
deba@1699
    83
  /// Default traits class of BelmannFord class.
deba@1699
    84
  /// \param _Graph Graph type.
deba@1699
    85
  /// \param _LegthMap Type of length map.
deba@1699
    86
  template<class _Graph, class _LengthMap>
deba@1699
    87
  struct BelmannFordDefaultTraits {
deba@1699
    88
    /// The graph type the algorithm runs on. 
deba@1699
    89
    typedef _Graph Graph;
deba@1699
    90
deba@1699
    91
    /// \brief The type of the map that stores the edge lengths.
deba@1699
    92
    ///
deba@1699
    93
    /// The type of the map that stores the edge lengths.
deba@1699
    94
    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
deba@1699
    95
    typedef _LengthMap LengthMap;
deba@1699
    96
deba@1699
    97
    // The type of the length of the edges.
deba@1699
    98
    typedef typename _LengthMap::Value Value;
deba@1699
    99
deba@1699
   100
    /// \brief Operation traits for belmann-ford algorithm.
deba@1699
   101
    ///
deba@1699
   102
    /// It defines the infinity type on the given Value type
deba@1699
   103
    /// and the used operation.
deba@1699
   104
    /// \see BelmannFordDefaultOperationTraits
deba@1699
   105
    typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
deba@1699
   106
 
deba@1699
   107
    /// \brief The type of the map that stores the last edges of the 
deba@1699
   108
    /// shortest paths.
deba@1699
   109
    /// 
deba@1699
   110
    /// The type of the map that stores the last
deba@1699
   111
    /// edges of the shortest paths.
deba@1699
   112
    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
deba@1699
   113
    ///
deba@1699
   114
    typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
deba@1699
   115
deba@1699
   116
    /// \brief Instantiates a PredMap.
deba@1699
   117
    /// 
deba@1699
   118
    /// This function instantiates a \ref PredMap. 
deba@1699
   119
    /// \param G is the graph, to which we would like to define the PredMap.
deba@1699
   120
    /// \todo The graph alone may be insufficient for the initialization
deba@1699
   121
    static PredMap *createPredMap(const _Graph& graph) {
deba@1699
   122
      return new PredMap(graph);
deba@1699
   123
    }
deba@1699
   124
deba@1699
   125
    /// \brief The type of the map that stores the dists of the nodes.
deba@1699
   126
    ///
deba@1699
   127
    /// The type of the map that stores the dists of the nodes.
deba@1699
   128
    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
deba@1699
   129
    ///
deba@1699
   130
    typedef typename Graph::template NodeMap<typename _LengthMap::Value> 
deba@1699
   131
    DistMap;
deba@1699
   132
deba@1699
   133
    /// \brief Instantiates a DistMap.
deba@1699
   134
    ///
deba@1699
   135
    /// This function instantiates a \ref DistMap. 
deba@1699
   136
    /// \param G is the graph, to which we would like to define the 
deba@1699
   137
    /// \ref DistMap
deba@1699
   138
    static DistMap *createDistMap(const _Graph& graph) {
deba@1699
   139
      return new DistMap(graph);
deba@1699
   140
    }
deba@1699
   141
deba@1699
   142
  };
deba@1699
   143
  
deba@1699
   144
  /// \brief BelmannFord algorithm class.
deba@1699
   145
  ///
deba@1699
   146
  /// \ingroup flowalgs
deba@1699
   147
  /// This class provides an efficient implementation of \c BelmannFord 
deba@1699
   148
  /// algorithm. The edge lengths are passed to the algorithm using a
deba@1699
   149
  /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
deba@1699
   150
  /// kind of length.
deba@1699
   151
  ///
deba@1699
   152
  /// The type of the length is determined by the
deba@1699
   153
  /// \ref concept::ReadMap::Value "Value" of the length map.
deba@1699
   154
  ///
deba@1699
   155
  /// \param _Graph The graph type the algorithm runs on. The default value
deba@1699
   156
  /// is \ref ListGraph. The value of _Graph is not used directly by
deba@1699
   157
  /// BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.
deba@1699
   158
  /// \param _LengthMap This read-only EdgeMap determines the lengths of the
deba@1699
   159
  /// edges. The default map type is \ref concept::StaticGraph::EdgeMap 
deba@1699
   160
  /// "Graph::EdgeMap<int>".  The value of _LengthMap is not used directly 
deba@1699
   161
  /// by BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.  
deba@1699
   162
  /// \param _Traits Traits class to set various data types used by the 
deba@1699
   163
  /// algorithm.  The default traits class is \ref BelmannFordDefaultTraits
deba@1699
   164
  /// "BelmannFordDefaultTraits<_Graph,_LengthMap>".  See \ref
deba@1699
   165
  /// BelmannFordDefaultTraits for the documentation of a BelmannFord traits
deba@1699
   166
  /// class.
deba@1699
   167
  ///
deba@1699
   168
  /// \author Balazs Dezso
deba@1699
   169
deba@1710
   170
#ifdef DOXYGEN
deba@1710
   171
  template <typename _Graph, typename _LengthMap, typename _Traits>
deba@1710
   172
#else
deba@1699
   173
  template <typename _Graph=ListGraph,
deba@1699
   174
	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
deba@1699
   175
	    typename _Traits=BelmannFordDefaultTraits<_Graph,_LengthMap> >
deba@1710
   176
#endif
deba@1699
   177
  class BelmannFord {
deba@1699
   178
  public:
deba@1699
   179
    
deba@1699
   180
    /// \brief \ref Exception for uninitialized parameters.
deba@1699
   181
    ///
deba@1699
   182
    /// This error represents problems in the initialization
deba@1699
   183
    /// of the parameters of the algorithms.
deba@1699
   184
deba@1699
   185
    class UninitializedParameter : public lemon::UninitializedParameter {
deba@1699
   186
    public:
deba@1699
   187
      virtual const char* exceptionName() const {
deba@1699
   188
	return "lemon::BelmannFord::UninitializedParameter";
deba@1699
   189
      }
deba@1699
   190
    };
deba@1699
   191
deba@1699
   192
    typedef _Traits Traits;
deba@1699
   193
    ///The type of the underlying graph.
deba@1699
   194
    typedef typename _Traits::Graph Graph;
deba@1699
   195
deba@1699
   196
    typedef typename Graph::Node Node;
deba@1699
   197
    typedef typename Graph::NodeIt NodeIt;
deba@1699
   198
    typedef typename Graph::Edge Edge;
deba@1699
   199
    typedef typename Graph::EdgeIt EdgeIt;
deba@1699
   200
    
deba@1699
   201
    /// \brief The type of the length of the edges.
deba@1699
   202
    typedef typename _Traits::LengthMap::Value Value;
deba@1699
   203
    /// \brief The type of the map that stores the edge lengths.
deba@1699
   204
    typedef typename _Traits::LengthMap LengthMap;
deba@1699
   205
    /// \brief The type of the map that stores the last
deba@1699
   206
    /// edges of the shortest paths.
deba@1699
   207
    typedef typename _Traits::PredMap PredMap;
deba@1699
   208
    /// \brief The type of the map that stores the dists of the nodes.
deba@1699
   209
    typedef typename _Traits::DistMap DistMap;
deba@1699
   210
    /// \brief The operation traits.
deba@1699
   211
    typedef typename _Traits::OperationTraits OperationTraits;
deba@1699
   212
  private:
deba@1699
   213
    /// Pointer to the underlying graph.
deba@1699
   214
    const Graph *graph;
deba@1699
   215
    /// Pointer to the length map
deba@1699
   216
    const LengthMap *length;
deba@1699
   217
    ///Pointer to the map of predecessors edges.
deba@1699
   218
    PredMap *_pred;
deba@1699
   219
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
deba@1699
   220
    bool local_pred;
deba@1699
   221
    ///Pointer to the map of distances.
deba@1699
   222
    DistMap *_dist;
deba@1699
   223
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
deba@1699
   224
    bool local_dist;
deba@1699
   225
deba@1699
   226
    /// Creates the maps if necessary.
deba@1699
   227
    void create_maps() {
deba@1699
   228
      if(!_pred) {
deba@1699
   229
	local_pred = true;
deba@1699
   230
	_pred = Traits::createPredMap(*graph);
deba@1699
   231
      }
deba@1699
   232
      if(!_dist) {
deba@1699
   233
	local_dist = true;
deba@1699
   234
	_dist = Traits::createDistMap(*graph);
deba@1699
   235
      }
deba@1699
   236
    }
deba@1699
   237
    
deba@1699
   238
  public :
deba@1699
   239
 
deba@1710
   240
    typedef BelmannFord Create;
deba@1710
   241
deba@1699
   242
    /// \name Named template parameters
deba@1699
   243
deba@1699
   244
    ///@{
deba@1699
   245
deba@1699
   246
    template <class T>
deba@1699
   247
    struct DefPredMapTraits : public Traits {
deba@1699
   248
      typedef T PredMap;
deba@1710
   249
      static PredMap *createPredMap(const Graph&) {
deba@1699
   250
	throw UninitializedParameter();
deba@1699
   251
      }
deba@1699
   252
    };
deba@1699
   253
deba@1699
   254
    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
deba@1699
   255
    /// type
deba@1699
   256
    /// \ref named-templ-param "Named parameter" for setting PredMap type
deba@1699
   257
    ///
deba@1699
   258
    template <class T>
deba@1710
   259
    struct DefPredMap {
deba@1710
   260
      typedef BelmannFord< Graph, LengthMap, DefPredMapTraits<T> > Create;
deba@1710
   261
    };
deba@1699
   262
    
deba@1699
   263
    template <class T>
deba@1699
   264
    struct DefDistMapTraits : public Traits {
deba@1699
   265
      typedef T DistMap;
deba@1699
   266
      static DistMap *createDistMap(const Graph& graph) {
deba@1699
   267
	throw UninitializedParameter();
deba@1699
   268
      }
deba@1699
   269
    };
deba@1699
   270
deba@1699
   271
    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
deba@1699
   272
    /// type
deba@1699
   273
    ///
deba@1699
   274
    /// \ref named-templ-param "Named parameter" for setting DistMap type
deba@1699
   275
    ///
deba@1699
   276
    template <class T>
deba@1710
   277
    struct DefDistMap 
deba@1710
   278
      : public BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > {
deba@1710
   279
      typedef BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > Create;
deba@1710
   280
    };
deba@1699
   281
    
deba@1699
   282
    template <class T>
deba@1699
   283
    struct DefOperationTraitsTraits : public Traits {
deba@1699
   284
      typedef T OperationTraits;
deba@1699
   285
    };
deba@1699
   286
    
deba@1699
   287
    /// \brief \ref named-templ-param "Named parameter" for setting 
deba@1699
   288
    /// OperationTraits type
deba@1699
   289
    ///
deba@1710
   290
    /// \ref named-templ-param "Named parameter" for setting OperationTraits
deba@1710
   291
    /// type
deba@1699
   292
    template <class T>
deba@1710
   293
    struct DefOperationTraits
deba@1699
   294
      : public BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
deba@1699
   295
      typedef BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
deba@1710
   296
      Create;
deba@1699
   297
    };
deba@1699
   298
    
deba@1699
   299
    ///@}
deba@1699
   300
deba@1710
   301
  protected:
deba@1710
   302
    
deba@1710
   303
    BelmannFord() {}
deba@1710
   304
deba@1699
   305
  public:      
deba@1699
   306
    
deba@1699
   307
    /// \brief Constructor.
deba@1699
   308
    ///
deba@1699
   309
    /// \param _graph the graph the algorithm will run on.
deba@1699
   310
    /// \param _length the length map used by the algorithm.
deba@1699
   311
    BelmannFord(const Graph& _graph, const LengthMap& _length) :
deba@1699
   312
      graph(&_graph), length(&_length),
deba@1699
   313
      _pred(0), local_pred(false),
deba@1699
   314
      _dist(0), local_dist(false) {}
deba@1699
   315
    
deba@1699
   316
    ///Destructor.
deba@1699
   317
    ~BelmannFord() {
deba@1699
   318
      if(local_pred) delete _pred;
deba@1699
   319
      if(local_dist) delete _dist;
deba@1699
   320
    }
deba@1699
   321
deba@1699
   322
    /// \brief Sets the length map.
deba@1699
   323
    ///
deba@1699
   324
    /// Sets the length map.
deba@1699
   325
    /// \return \c (*this)
deba@1699
   326
    BelmannFord &lengthMap(const LengthMap &m) {
deba@1699
   327
      length = &m;
deba@1699
   328
      return *this;
deba@1699
   329
    }
deba@1699
   330
deba@1699
   331
    /// \brief Sets the map storing the predecessor edges.
deba@1699
   332
    ///
deba@1699
   333
    /// Sets the map storing the predecessor edges.
deba@1699
   334
    /// If you don't use this function before calling \ref run(),
deba@1699
   335
    /// it will allocate one. The destuctor deallocates this
deba@1699
   336
    /// automatically allocated map, of course.
deba@1699
   337
    /// \return \c (*this)
deba@1699
   338
    BelmannFord &predMap(PredMap &m) {
deba@1699
   339
      if(local_pred) {
deba@1699
   340
	delete _pred;
deba@1699
   341
	local_pred=false;
deba@1699
   342
      }
deba@1699
   343
      _pred = &m;
deba@1699
   344
      return *this;
deba@1699
   345
    }
deba@1699
   346
deba@1699
   347
    /// \brief Sets the map storing the distances calculated by the algorithm.
deba@1699
   348
    ///
deba@1699
   349
    /// Sets the map storing the distances calculated by the algorithm.
deba@1699
   350
    /// If you don't use this function before calling \ref run(),
deba@1699
   351
    /// it will allocate one. The destuctor deallocates this
deba@1699
   352
    /// automatically allocated map, of course.
deba@1699
   353
    /// \return \c (*this)
deba@1699
   354
    BelmannFord &distMap(DistMap &m) {
deba@1699
   355
      if(local_dist) {
deba@1699
   356
	delete _dist;
deba@1699
   357
	local_dist=false;
deba@1699
   358
      }
deba@1699
   359
      _dist = &m;
deba@1699
   360
      return *this;
deba@1699
   361
    }
deba@1699
   362
deba@1699
   363
    /// \name Execution control
deba@1699
   364
    /// The simplest way to execute the algorithm is to use
deba@1699
   365
    /// one of the member functions called \c run(...).
deba@1699
   366
    /// \n
deba@1699
   367
    /// If you need more control on the execution,
deba@1699
   368
    /// first you must call \ref init(), then you can add several source nodes
deba@1699
   369
    /// with \ref addSource().
deba@1699
   370
    /// Finally \ref start() will perform the actual path
deba@1699
   371
    /// computation.
deba@1699
   372
deba@1699
   373
    ///@{
deba@1699
   374
deba@1699
   375
    /// \brief Initializes the internal data structures.
deba@1699
   376
    /// 
deba@1699
   377
    /// Initializes the internal data structures.
deba@1710
   378
    void init(const Value value = OperationTraits::infinity()) {
deba@1699
   379
      create_maps();
deba@1699
   380
      for (NodeIt it(*graph); it != INVALID; ++it) {
deba@1699
   381
	_pred->set(it, INVALID);
deba@1710
   382
	_dist->set(it, value);
deba@1699
   383
      }
deba@1699
   384
    }
deba@1699
   385
    
deba@1699
   386
    /// \brief Adds a new source node.
deba@1699
   387
    ///
deba@1699
   388
    /// The optional second parameter is the initial distance of the node.
deba@1699
   389
    /// It just sets the distance of the node to the given value.
deba@1699
   390
    void addSource(Node source, Value dst = OperationTraits::zero()) {
deba@1699
   391
      _dist->set(source, dst);
deba@1699
   392
    }
deba@1699
   393
deba@1699
   394
    /// \brief Executes the algorithm.
deba@1699
   395
    ///
deba@1699
   396
    /// \pre init() must be called and at least one node should be added
deba@1699
   397
    /// with addSource() before using this function.
deba@1699
   398
    ///
deba@1699
   399
    /// This method runs the %BelmannFord algorithm from the root node(s)
deba@1699
   400
    /// in order to compute the shortest path to each node. The algorithm 
deba@1699
   401
    /// computes 
deba@1699
   402
    /// - The shortest path tree.
deba@1699
   403
    /// - The distance of each node from the root(s).
deba@1699
   404
    void start() {
deba@1699
   405
      bool ready = false;
deba@1699
   406
      while (!ready) {
deba@1699
   407
	ready = true;
deba@1699
   408
	for (EdgeIt it(*graph); it != INVALID; ++it) {
deba@1699
   409
	  Node source = graph->source(it);
deba@1699
   410
	  Node target = graph->target(it);
deba@1699
   411
	  Value relaxed = 
deba@1699
   412
	    OperationTraits::plus((*_dist)[source], (*length)[it]);
deba@1699
   413
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
deba@1699
   414
	    _pred->set(target, it);
deba@1699
   415
	    _dist->set(target, relaxed);
deba@1699
   416
	    ready = false; 
deba@1699
   417
	  }
deba@1699
   418
	}
deba@1699
   419
      }
deba@1699
   420
    }
deba@1699
   421
    
deba@1699
   422
    /// \brief Runs %BelmannFord algorithm from node \c s.
deba@1699
   423
    ///    
deba@1699
   424
    /// This method runs the %BelmannFord algorithm from a root node \c s
deba@1699
   425
    /// in order to compute the shortest path to each node. The algorithm 
deba@1699
   426
    /// computes
deba@1699
   427
    /// - The shortest path tree.
deba@1699
   428
    /// - The distance of each node from the root.
deba@1699
   429
    ///
deba@1699
   430
    /// \note d.run(s) is just a shortcut of the following code.
deba@1699
   431
    /// \code
deba@1699
   432
    ///  d.init();
deba@1699
   433
    ///  d.addSource(s);
deba@1699
   434
    ///  d.start();
deba@1699
   435
    /// \endcode
deba@1699
   436
    void run(Node s) {
deba@1699
   437
      init();
deba@1699
   438
      addSource(s);
deba@1699
   439
      start();
deba@1699
   440
    }
deba@1699
   441
    
deba@1699
   442
    ///@}
deba@1699
   443
deba@1699
   444
    /// \name Query Functions
deba@1699
   445
    /// The result of the %BelmannFord algorithm can be obtained using these
deba@1699
   446
    /// functions.\n
deba@1699
   447
    /// Before the use of these functions,
deba@1699
   448
    /// either run() or start() must be called.
deba@1699
   449
    
deba@1699
   450
    ///@{
deba@1699
   451
deba@1699
   452
    /// \brief Copies the shortest path to \c t into \c p
deba@1699
   453
    ///    
deba@1699
   454
    /// This function copies the shortest path to \c t into \c p.
deba@1699
   455
    /// If it \c t is a source itself or unreachable, then it does not
deba@1699
   456
    /// alter \c p.
deba@1699
   457
    /// \todo Is it the right way to handle unreachable nodes?
deba@1699
   458
    /// \return Returns \c true if a path to \c t was actually copied to \c p,
deba@1699
   459
    /// \c false otherwise.
deba@1699
   460
    /// \sa DirPath
deba@1699
   461
    template <typename Path>
deba@1699
   462
    bool getPath(Path &p, Node t) {
deba@1699
   463
      if(reached(t)) {
deba@1699
   464
	p.clear();
deba@1699
   465
	typename Path::Builder b(p);
deba@1699
   466
	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
deba@1699
   467
	  b.pushFront(pred(t));
deba@1699
   468
	b.commit();
deba@1699
   469
	return true;
deba@1699
   470
      }
deba@1699
   471
      return false;
deba@1699
   472
    }
deba@1699
   473
	  
deba@1699
   474
    /// \brief The distance of a node from the root.
deba@1699
   475
    ///
deba@1699
   476
    /// Returns the distance of a node from the root.
deba@1699
   477
    /// \pre \ref run() must be called before using this function.
deba@1699
   478
    /// \warning If node \c v in unreachable from the root the return value
deba@1699
   479
    /// of this funcion is undefined.
deba@1699
   480
    Value dist(Node v) const { return (*_dist)[v]; }
deba@1699
   481
deba@1699
   482
    /// \brief Returns the 'previous edge' of the shortest path tree.
deba@1699
   483
    ///
deba@1699
   484
    /// For a node \c v it returns the 'previous edge' of the shortest path 
deba@1699
   485
    /// tree, i.e. it returns the last edge of a shortest path from the root 
deba@1699
   486
    /// to \c v. It is \ref INVALID if \c v is unreachable from the root or 
deba@1699
   487
    /// if \c v=s. The shortest path tree used here is equal to the shortest 
deba@1699
   488
    /// path tree used in \ref predNode(). 
deba@1699
   489
    /// \pre \ref run() must be called before using
deba@1699
   490
    /// this function.
deba@1699
   491
    /// \todo predEdge could be a better name.
deba@1699
   492
    Edge pred(Node v) const { return (*_pred)[v]; }
deba@1699
   493
deba@1699
   494
    /// \brief Returns the 'previous node' of the shortest path tree.
deba@1699
   495
    ///
deba@1699
   496
    /// For a node \c v it returns the 'previous node' of the shortest path 
deba@1699
   497
    /// tree, i.e. it returns the last but one node from a shortest path from 
deba@1699
   498
    /// the root to \c /v. It is INVALID if \c v is unreachable from the root 
deba@1699
   499
    /// or if \c v=s. The shortest path tree used here is equal to the 
deba@1699
   500
    /// shortest path tree used in \ref pred().  \pre \ref run() must be 
deba@1699
   501
    /// called before using this function.
deba@1699
   502
    Node predNode(Node v) const { 
deba@1699
   503
      return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]); 
deba@1699
   504
    }
deba@1699
   505
    
deba@1699
   506
    /// \brief Returns a reference to the NodeMap of distances.
deba@1699
   507
    ///
deba@1699
   508
    /// Returns a reference to the NodeMap of distances. \pre \ref run() must
deba@1699
   509
    /// be called before using this function.
deba@1699
   510
    const DistMap &distMap() const { return *_dist;}
deba@1699
   511
 
deba@1699
   512
    /// \brief Returns a reference to the shortest path tree map.
deba@1699
   513
    ///
deba@1699
   514
    /// Returns a reference to the NodeMap of the edges of the
deba@1699
   515
    /// shortest path tree.
deba@1699
   516
    /// \pre \ref run() must be called before using this function.
deba@1699
   517
    const PredMap &predMap() const { return *_pred; }
deba@1699
   518
 
deba@1699
   519
    /// \brief Checks if a node is reachable from the root.
deba@1699
   520
    ///
deba@1699
   521
    /// Returns \c true if \c v is reachable from the root.
deba@1699
   522
    /// \pre \ref run() must be called before using this function.
deba@1699
   523
    ///
deba@1699
   524
    bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
deba@1699
   525
    
deba@1699
   526
    ///@}
deba@1699
   527
  };
deba@1699
   528
 
deba@1699
   529
  /// \brief Default traits class of BelmannFord function.
deba@1699
   530
  ///
deba@1699
   531
  /// Default traits class of BelmannFord function.
deba@1699
   532
  /// \param _Graph Graph type.
deba@1699
   533
  /// \param _LengthMap Type of length map.
deba@1699
   534
  template <typename _Graph, typename _LengthMap>
deba@1699
   535
  struct BelmannFordWizardDefaultTraits {
deba@1699
   536
    /// \brief The graph type the algorithm runs on. 
deba@1699
   537
    typedef _Graph Graph;
deba@1699
   538
deba@1699
   539
    /// \brief The type of the map that stores the edge lengths.
deba@1699
   540
    ///
deba@1699
   541
    /// The type of the map that stores the edge lengths.
deba@1699
   542
    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
deba@1699
   543
    typedef _LengthMap LengthMap;
deba@1699
   544
deba@1699
   545
    /// \brief The value type of the length map.
deba@1699
   546
    typedef typename _LengthMap::Value Value;
deba@1699
   547
deba@1699
   548
    /// \brief Operation traits for belmann-ford algorithm.
deba@1699
   549
    ///
deba@1699
   550
    /// It defines the infinity type on the given Value type
deba@1699
   551
    /// and the used operation.
deba@1699
   552
    /// \see BelmannFordDefaultOperationTraits
deba@1699
   553
    typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
deba@1699
   554
deba@1699
   555
    /// \brief The type of the map that stores the last
deba@1699
   556
    /// edges of the shortest paths.
deba@1699
   557
    /// 
deba@1699
   558
    /// The type of the map that stores the last
deba@1699
   559
    /// edges of the shortest paths.
deba@1699
   560
    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
deba@1699
   561
    typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
deba@1699
   562
deba@1699
   563
    /// \brief Instantiates a PredMap.
deba@1699
   564
    /// 
deba@1699
   565
    /// This function instantiates a \ref PredMap. 
deba@1699
   566
    static PredMap *createPredMap(const _Graph &) {
deba@1699
   567
      return new PredMap();
deba@1699
   568
    }
deba@1699
   569
    /// \brief The type of the map that stores the dists of the nodes.
deba@1699
   570
    ///
deba@1699
   571
    /// The type of the map that stores the dists of the nodes.
deba@1699
   572
    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
deba@1699
   573
    typedef NullMap<typename Graph::Node, Value> DistMap;
deba@1699
   574
    /// \brief Instantiates a DistMap.
deba@1699
   575
    ///
deba@1699
   576
    /// This function instantiates a \ref DistMap. 
deba@1699
   577
    static DistMap *createDistMap(const _Graph &) {
deba@1699
   578
      return new DistMap();
deba@1699
   579
    }
deba@1699
   580
  };
deba@1699
   581
  
deba@1699
   582
  /// \brief Default traits used by \ref BelmannFordWizard
deba@1699
   583
  ///
deba@1699
   584
  /// To make it easier to use BelmannFord algorithm
deba@1699
   585
  /// we have created a wizard class.
deba@1699
   586
  /// This \ref BelmannFordWizard class needs default traits,
deba@1699
   587
  /// as well as the \ref BelmannFord class.
deba@1699
   588
  /// The \ref BelmannFordWizardBase is a class to be the default traits of the
deba@1699
   589
  /// \ref BelmannFordWizard class.
deba@1699
   590
  /// \todo More named parameters are required...
deba@1699
   591
  template<class _Graph,class _LengthMap>
deba@1699
   592
  class BelmannFordWizardBase 
deba@1699
   593
    : public BelmannFordWizardDefaultTraits<_Graph,_LengthMap> {
deba@1699
   594
deba@1699
   595
    typedef BelmannFordWizardDefaultTraits<_Graph,_LengthMap> Base;
deba@1699
   596
  protected:
deba@1699
   597
    /// Type of the nodes in the graph.
deba@1699
   598
    typedef typename Base::Graph::Node Node;
deba@1699
   599
deba@1699
   600
    /// Pointer to the underlying graph.
deba@1699
   601
    void *_graph;
deba@1699
   602
    /// Pointer to the length map
deba@1699
   603
    void *_length;
deba@1699
   604
    ///Pointer to the map of predecessors edges.
deba@1699
   605
    void *_pred;
deba@1699
   606
    ///Pointer to the map of distances.
deba@1699
   607
    void *_dist;
deba@1699
   608
    ///Pointer to the source node.
deba@1699
   609
    Node _source;
deba@1699
   610
deba@1699
   611
    public:
deba@1699
   612
    /// Constructor.
deba@1699
   613
    
deba@1699
   614
    /// This constructor does not require parameters, therefore it initiates
deba@1699
   615
    /// all of the attributes to default values (0, INVALID).
deba@1699
   616
    BelmannFordWizardBase() : _graph(0), _length(0), _pred(0),
deba@1699
   617
			   _dist(0), _source(INVALID) {}
deba@1699
   618
deba@1699
   619
    /// Constructor.
deba@1699
   620
    
deba@1699
   621
    /// This constructor requires some parameters,
deba@1699
   622
    /// listed in the parameters list.
deba@1699
   623
    /// Others are initiated to 0.
deba@1699
   624
    /// \param graph is the initial value of  \ref _graph
deba@1699
   625
    /// \param length is the initial value of  \ref _length
deba@1699
   626
    /// \param source is the initial value of  \ref _source
deba@1699
   627
    BelmannFordWizardBase(const _Graph& graph, 
deba@1699
   628
			  const _LengthMap& length, 
deba@1699
   629
			  Node source = INVALID) :
deba@1699
   630
      _graph((void *)&graph), _length((void *)&length), _pred(0),
deba@1699
   631
      _dist(0), _source(source) {}
deba@1699
   632
deba@1699
   633
  };
deba@1699
   634
  
deba@1699
   635
  /// A class to make the usage of BelmannFord algorithm easier
deba@1699
   636
deba@1699
   637
  /// This class is created to make it easier to use BelmannFord algorithm.
deba@1699
   638
  /// It uses the functions and features of the plain \ref BelmannFord,
deba@1699
   639
  /// but it is much simpler to use it.
deba@1699
   640
  ///
deba@1699
   641
  /// Simplicity means that the way to change the types defined
deba@1699
   642
  /// in the traits class is based on functions that returns the new class
deba@1699
   643
  /// and not on templatable built-in classes.
deba@1699
   644
  /// When using the plain \ref BelmannFord
deba@1699
   645
  /// the new class with the modified type comes from
deba@1699
   646
  /// the original class by using the ::
deba@1699
   647
  /// operator. In the case of \ref BelmannFordWizard only
deba@1699
   648
  /// a function have to be called and it will
deba@1699
   649
  /// return the needed class.
deba@1699
   650
  ///
deba@1699
   651
  /// It does not have own \ref run method. When its \ref run method is called
deba@1699
   652
  /// it initiates a plain \ref BelmannFord class, and calls the \ref 
deba@1699
   653
  /// BelmannFord::run method of it.
deba@1699
   654
  template<class _Traits>
deba@1699
   655
  class BelmannFordWizard : public _Traits {
deba@1699
   656
    typedef _Traits Base;
deba@1699
   657
deba@1699
   658
    ///The type of the underlying graph.
deba@1699
   659
    typedef typename _Traits::Graph Graph;
deba@1699
   660
deba@1699
   661
    typedef typename Graph::Node Node;
deba@1699
   662
    typedef typename Graph::NodeIt NodeIt;
deba@1699
   663
    typedef typename Graph::Edge Edge;
deba@1699
   664
    typedef typename Graph::OutEdgeIt EdgeIt;
deba@1699
   665
    
deba@1699
   666
    ///The type of the map that stores the edge lengths.
deba@1699
   667
    typedef typename _Traits::LengthMap LengthMap;
deba@1699
   668
deba@1699
   669
    ///The type of the length of the edges.
deba@1699
   670
    typedef typename LengthMap::Value Value;
deba@1699
   671
deba@1699
   672
    ///\brief The type of the map that stores the last
deba@1699
   673
    ///edges of the shortest paths.
deba@1699
   674
    typedef typename _Traits::PredMap PredMap;
deba@1699
   675
deba@1699
   676
    ///The type of the map that stores the dists of the nodes.
deba@1699
   677
    typedef typename _Traits::DistMap DistMap;
deba@1699
   678
deba@1699
   679
  public:
deba@1699
   680
    /// Constructor.
deba@1699
   681
    BelmannFordWizard() : _Traits() {}
deba@1699
   682
deba@1699
   683
    /// \brief Constructor that requires parameters.
deba@1699
   684
    ///
deba@1699
   685
    /// Constructor that requires parameters.
deba@1699
   686
    /// These parameters will be the default values for the traits class.
deba@1699
   687
    BelmannFordWizard(const Graph& graph, const LengthMap& length, 
deba@1699
   688
		      Node source = INVALID) 
deba@1699
   689
      : _Traits(graph, length, source) {}
deba@1699
   690
deba@1699
   691
    /// \brief Copy constructor
deba@1699
   692
    BelmannFordWizard(const _Traits &b) : _Traits(b) {}
deba@1699
   693
deba@1699
   694
    ~BelmannFordWizard() {}
deba@1699
   695
deba@1699
   696
    /// \brief Runs BelmannFord algorithm from a given node.
deba@1699
   697
    ///    
deba@1699
   698
    /// Runs BelmannFord algorithm from a given node.
deba@1699
   699
    /// The node can be given by the \ref source function.
deba@1699
   700
    void run() {
deba@1699
   701
      if(Base::_source == INVALID) throw UninitializedParameter();
deba@1699
   702
      BelmannFord<Graph,LengthMap,_Traits> 
deba@1699
   703
	bf(*(Graph*)Base::_graph, *(LengthMap*)Base::_length);
deba@1699
   704
      if (Base::_pred) bf.predMap(*(PredMap*)Base::_pred);
deba@1699
   705
      if (Base::_dist) bf.distMap(*(DistMap*)Base::_dist);
deba@1699
   706
      bf.run(Base::_source);
deba@1699
   707
    }
deba@1699
   708
deba@1699
   709
    /// \brief Runs BelmannFord algorithm from the given node.
deba@1699
   710
    ///
deba@1699
   711
    /// Runs BelmannFord algorithm from the given node.
deba@1699
   712
    /// \param s is the given source.
deba@1699
   713
    void run(Node source) {
deba@1699
   714
      Base::_source = source;
deba@1699
   715
      run();
deba@1699
   716
    }
deba@1699
   717
deba@1699
   718
    template<class T>
deba@1699
   719
    struct DefPredMapBase : public Base {
deba@1699
   720
      typedef T PredMap;
deba@1699
   721
      static PredMap *createPredMap(const Graph &) { return 0; };
deba@1699
   722
      DefPredMapBase(const _Traits &b) : _Traits(b) {}
deba@1699
   723
    };
deba@1699
   724
    
deba@1699
   725
    ///\brief \ref named-templ-param "Named parameter"
deba@1699
   726
    ///function for setting PredMap type
deba@1699
   727
    ///
deba@1699
   728
    /// \ref named-templ-param "Named parameter"
deba@1699
   729
    ///function for setting PredMap type
deba@1699
   730
    ///
deba@1699
   731
    template<class T>
deba@1699
   732
    BelmannFordWizard<DefPredMapBase<T> > predMap(const T &t) 
deba@1699
   733
    {
deba@1699
   734
      Base::_pred=(void *)&t;
deba@1699
   735
      return BelmannFordWizard<DefPredMapBase<T> >(*this);
deba@1699
   736
    }
deba@1699
   737
    
deba@1699
   738
    template<class T>
deba@1699
   739
    struct DefDistMapBase : public Base {
deba@1699
   740
      typedef T DistMap;
deba@1699
   741
      static DistMap *createDistMap(const Graph &) { return 0; };
deba@1699
   742
      DefDistMapBase(const _Traits &b) : _Traits(b) {}
deba@1699
   743
    };
deba@1699
   744
    
deba@1699
   745
    ///\brief \ref named-templ-param "Named parameter"
deba@1699
   746
    ///function for setting DistMap type
deba@1699
   747
    ///
deba@1699
   748
    /// \ref named-templ-param "Named parameter"
deba@1699
   749
    ///function for setting DistMap type
deba@1699
   750
    ///
deba@1699
   751
    template<class T>
deba@1699
   752
    BelmannFordWizard<DefDistMapBase<T> > distMap(const T &t) {
deba@1699
   753
      Base::_dist=(void *)&t;
deba@1699
   754
      return BelmannFordWizard<DefDistMapBase<T> >(*this);
deba@1699
   755
    }
deba@1710
   756
deba@1710
   757
    template<class T>
deba@1710
   758
    struct DefOperationTraitsBase : public Base {
deba@1710
   759
      typedef T OperationTraits;
deba@1710
   760
      DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
deba@1710
   761
    };
deba@1710
   762
    
deba@1710
   763
    ///\brief \ref named-templ-param "Named parameter"
deba@1710
   764
    ///function for setting OperationTraits type
deba@1710
   765
    ///
deba@1710
   766
    /// \ref named-templ-param "Named parameter"
deba@1710
   767
    ///function for setting OperationTraits type
deba@1710
   768
    ///
deba@1710
   769
    template<class T>
deba@1710
   770
    BelmannFordWizard<DefOperationTraitsBase<T> > distMap() {
deba@1710
   771
      return BelmannFordWizard<DefDistMapBase<T> >(*this);
deba@1710
   772
    }
deba@1699
   773
    
deba@1699
   774
    /// \brief Sets the source node, from which the BelmannFord algorithm runs.
deba@1699
   775
    ///
deba@1699
   776
    /// Sets the source node, from which the BelmannFord algorithm runs.
deba@1699
   777
    /// \param s is the source node.
deba@1699
   778
    BelmannFordWizard<_Traits>& source(Node source) {
deba@1699
   779
      Base::_source = source;
deba@1699
   780
      return *this;
deba@1699
   781
    }
deba@1699
   782
    
deba@1699
   783
  };
deba@1699
   784
  
deba@1699
   785
  /// \brief Function type interface for BelmannFord algorithm.
deba@1699
   786
  ///
deba@1699
   787
  /// \ingroup flowalgs
deba@1699
   788
  /// Function type interface for BelmannFord algorithm.
deba@1699
   789
  ///
deba@1699
   790
  /// This function also has several \ref named-templ-func-param 
deba@1699
   791
  /// "named parameters", they are declared as the members of class 
deba@1699
   792
  /// \ref BelmannFordWizard.
deba@1699
   793
  /// The following
deba@1699
   794
  /// example shows how to use these parameters.
deba@1699
   795
  /// \code
deba@1699
   796
  /// belmannford(g,length,source).predMap(preds).run();
deba@1699
   797
  /// \endcode
deba@1699
   798
  /// \warning Don't forget to put the \ref BelmannFordWizard::run() "run()"
deba@1699
   799
  /// to the end of the parameter list.
deba@1699
   800
  /// \sa BelmannFordWizard
deba@1699
   801
  /// \sa BelmannFord
deba@1699
   802
  template<class _Graph, class _LengthMap>
deba@1699
   803
  BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
deba@1699
   804
  belmannFord(const _Graph& graph,
deba@1699
   805
	      const _LengthMap& length, 
deba@1699
   806
	      typename _Graph::Node source = INVALID) {
deba@1699
   807
    return BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
deba@1699
   808
      (graph, length, source);
deba@1699
   809
  }
deba@1699
   810
deba@1699
   811
} //END OF NAMESPACE LEMON
deba@1699
   812
deba@1699
   813
#endif
deba@1699
   814