deba@1698
|
1 |
/* -*- C++ -*-
|
deba@1698
|
2 |
* lemon/topology.h - Part of LEMON, a generic C++ optimization library
|
deba@1698
|
3 |
*
|
deba@1698
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@1698
|
5 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@1698
|
6 |
*
|
deba@1698
|
7 |
* Permission to use, modify and distribute this software is granted
|
deba@1698
|
8 |
* provided that this copyright notice appears in all copies. For
|
deba@1698
|
9 |
* precise terms see the accompanying LICENSE file.
|
deba@1698
|
10 |
*
|
deba@1698
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@1698
|
12 |
* express or implied, and with no claim as to its suitability for any
|
deba@1698
|
13 |
* purpose.
|
deba@1698
|
14 |
*
|
deba@1698
|
15 |
*/
|
deba@1698
|
16 |
|
deba@1698
|
17 |
#ifndef LEMON_TOPOLOGY_H
|
deba@1698
|
18 |
#define LEMON_TOPOLOGY_H
|
deba@1698
|
19 |
|
deba@1698
|
20 |
#include <lemon/dfs.h>
|
deba@1698
|
21 |
#include <lemon/graph_utils.h>
|
deba@1698
|
22 |
|
deba@1698
|
23 |
#include <lemon/concept/graph.h>
|
deba@1698
|
24 |
#include <lemon/concept/undir_graph.h>
|
deba@1698
|
25 |
#include <lemon/concept_check.h>
|
deba@1698
|
26 |
|
deba@1698
|
27 |
/// \ingroup flowalgs
|
deba@1698
|
28 |
/// \file
|
deba@1698
|
29 |
/// \brief Topology related algorithms
|
deba@1698
|
30 |
///
|
deba@1698
|
31 |
/// Topology related algorithms
|
deba@1698
|
32 |
|
deba@1698
|
33 |
namespace lemon {
|
deba@1698
|
34 |
|
deba@1698
|
35 |
namespace _topology_bits {
|
deba@1698
|
36 |
|
deba@1698
|
37 |
template <typename NodeMap>
|
deba@1698
|
38 |
class BackCounterMap {
|
deba@1698
|
39 |
public:
|
deba@1698
|
40 |
BackCounterMap(NodeMap& _nodeMap, int _counter)
|
deba@1698
|
41 |
: nodeMap(_nodeMap), counter(_counter) {}
|
deba@1698
|
42 |
|
deba@1698
|
43 |
void set(typename NodeMap::Key key, bool val) {
|
deba@1698
|
44 |
if (val) {
|
deba@1698
|
45 |
nodeMap.set(key, --counter);
|
deba@1698
|
46 |
} else {
|
deba@1698
|
47 |
nodeMap.set(key, -1);
|
deba@1698
|
48 |
}
|
deba@1698
|
49 |
}
|
deba@1698
|
50 |
|
deba@1698
|
51 |
bool operator[](typename NodeMap::Key key) const {
|
deba@1698
|
52 |
return nodeMap[key] != -1;
|
deba@1698
|
53 |
}
|
deba@1698
|
54 |
|
deba@1698
|
55 |
private:
|
deba@1698
|
56 |
NodeMap& nodeMap;
|
deba@1698
|
57 |
int counter;
|
deba@1698
|
58 |
};
|
deba@1698
|
59 |
}
|
deba@1698
|
60 |
|
deba@1698
|
61 |
// \todo Its to special output // ReadWriteMap
|
deba@1698
|
62 |
template <typename Graph, typename NodeMap>
|
deba@1698
|
63 |
bool topological_sort(const Graph& graph, NodeMap& nodeMap) {
|
deba@1698
|
64 |
using namespace _topology_bits;
|
deba@1698
|
65 |
|
deba@1698
|
66 |
checkConcept<concept::StaticGraph, Graph>();
|
deba@1698
|
67 |
checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
|
deba@1698
|
68 |
|
deba@1698
|
69 |
typedef typename Graph::Node Node;
|
deba@1698
|
70 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1698
|
71 |
typedef typename Graph::Edge Edge;
|
deba@1698
|
72 |
|
deba@1698
|
73 |
typedef BackCounterMap<NodeMap> ProcessedMap;
|
deba@1698
|
74 |
|
deba@1698
|
75 |
typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
|
deba@1709
|
76 |
Create dfs(graph);
|
deba@1698
|
77 |
|
deba@1698
|
78 |
ProcessedMap processed(nodeMap, countNodes(graph));
|
deba@1698
|
79 |
|
deba@1698
|
80 |
dfs.processedMap(processed);
|
deba@1698
|
81 |
dfs.init();
|
deba@1698
|
82 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
83 |
if (!dfs.reached(it)) {
|
deba@1698
|
84 |
dfs.addSource(it);
|
deba@1698
|
85 |
while (!dfs.emptyQueue()) {
|
deba@1698
|
86 |
Edge edge = dfs.nextEdge();
|
deba@1698
|
87 |
Node target = graph.target(edge);
|
deba@1698
|
88 |
if (dfs.reached(target) && !processed[target]) {
|
deba@1698
|
89 |
return false;
|
deba@1698
|
90 |
}
|
deba@1698
|
91 |
dfs.processNextEdge();
|
deba@1698
|
92 |
}
|
deba@1698
|
93 |
}
|
deba@1698
|
94 |
}
|
deba@1698
|
95 |
return true;
|
deba@1698
|
96 |
}
|
deba@1698
|
97 |
|
deba@1698
|
98 |
/// \brief Check that the given graph is a DAG.
|
deba@1698
|
99 |
///
|
deba@1698
|
100 |
/// Check that the given graph is a DAG. The DAG is
|
deba@1698
|
101 |
/// an Directed Acyclic Graph.
|
deba@1698
|
102 |
template <typename Graph>
|
deba@1698
|
103 |
bool dag(const Graph& graph) {
|
deba@1698
|
104 |
|
deba@1698
|
105 |
checkConcept<concept::StaticGraph, Graph>();
|
deba@1698
|
106 |
|
deba@1698
|
107 |
typedef typename Graph::Node Node;
|
deba@1698
|
108 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1698
|
109 |
typedef typename Graph::Edge Edge;
|
deba@1698
|
110 |
|
deba@1698
|
111 |
typedef typename Graph::template NodeMap<bool> ProcessedMap;
|
deba@1698
|
112 |
|
deba@1698
|
113 |
typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
|
deba@1709
|
114 |
Create dfs(graph);
|
deba@1698
|
115 |
|
deba@1698
|
116 |
ProcessedMap processed(graph);
|
deba@1698
|
117 |
dfs.processedMap(processed);
|
deba@1698
|
118 |
|
deba@1698
|
119 |
dfs.init();
|
deba@1698
|
120 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
121 |
if (!dfs.reached(it)) {
|
deba@1698
|
122 |
dfs.addSource(it);
|
deba@1698
|
123 |
while (!dfs.emptyQueue()) {
|
deba@1698
|
124 |
Edge edge = dfs.nextEdge();
|
deba@1698
|
125 |
Node target = graph.target(edge);
|
deba@1698
|
126 |
if (dfs.reached(target) && !processed[target]) {
|
deba@1698
|
127 |
return false;
|
deba@1698
|
128 |
}
|
deba@1698
|
129 |
dfs.processNextEdge();
|
deba@1698
|
130 |
}
|
deba@1698
|
131 |
}
|
deba@1698
|
132 |
}
|
deba@1698
|
133 |
return true;
|
deba@1698
|
134 |
}
|
deba@1698
|
135 |
|
deba@1698
|
136 |
// UndirGraph algorithms
|
deba@1698
|
137 |
|
deba@1698
|
138 |
/// \brief Check that the given undirected graph is connected.
|
deba@1698
|
139 |
///
|
deba@1698
|
140 |
/// Check that the given undirected graph connected.
|
deba@1698
|
141 |
template <typename UndirGraph>
|
deba@1698
|
142 |
bool connected(const UndirGraph& graph) {
|
deba@1698
|
143 |
checkConcept<concept::UndirGraph, UndirGraph>();
|
deba@1698
|
144 |
typedef typename UndirGraph::NodeIt NodeIt;
|
deba@1698
|
145 |
if (NodeIt(graph) == INVALID) return false;
|
deba@1698
|
146 |
Dfs<UndirGraph> dfs(graph);
|
deba@1698
|
147 |
dfs.run(NodeIt(graph));
|
deba@1698
|
148 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
149 |
if (!dfs.reached(it)) {
|
deba@1698
|
150 |
return false;
|
deba@1698
|
151 |
}
|
deba@1698
|
152 |
}
|
deba@1698
|
153 |
return true;
|
deba@1698
|
154 |
}
|
deba@1698
|
155 |
|
deba@1698
|
156 |
/// \brief Check that the given undirected graph is acyclic.
|
deba@1698
|
157 |
///
|
deba@1698
|
158 |
/// Check that the given undirected graph acyclic.
|
deba@1698
|
159 |
template <typename UndirGraph>
|
deba@1698
|
160 |
bool acyclic(const UndirGraph& graph) {
|
deba@1698
|
161 |
checkConcept<concept::UndirGraph, UndirGraph>();
|
deba@1698
|
162 |
typedef typename UndirGraph::Node Node;
|
deba@1698
|
163 |
typedef typename UndirGraph::NodeIt NodeIt;
|
deba@1698
|
164 |
typedef typename UndirGraph::Edge Edge;
|
deba@1698
|
165 |
Dfs<UndirGraph> dfs(graph);
|
deba@1698
|
166 |
dfs.init();
|
deba@1698
|
167 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
168 |
if (!dfs.reached(it)) {
|
deba@1698
|
169 |
dfs.addSource(it);
|
deba@1698
|
170 |
while (!dfs.emptyQueue()) {
|
deba@1698
|
171 |
Edge edge = dfs.nextEdge();
|
deba@1698
|
172 |
Node source = graph.source(edge);
|
deba@1698
|
173 |
Node target = graph.target(edge);
|
deba@1698
|
174 |
if (dfs.reached(target) &&
|
deba@1698
|
175 |
dfs.pred(source) != graph.oppositeEdge(edge)) {
|
deba@1698
|
176 |
return false;
|
deba@1698
|
177 |
}
|
deba@1698
|
178 |
dfs.processNextEdge();
|
deba@1698
|
179 |
}
|
deba@1698
|
180 |
}
|
deba@1698
|
181 |
}
|
deba@1698
|
182 |
return true;
|
deba@1698
|
183 |
}
|
deba@1698
|
184 |
|
deba@1698
|
185 |
/// \brief Check that the given undirected graph is tree.
|
deba@1698
|
186 |
///
|
deba@1698
|
187 |
/// Check that the given undirected graph is tree.
|
deba@1698
|
188 |
template <typename UndirGraph>
|
deba@1698
|
189 |
bool tree(const UndirGraph& graph) {
|
deba@1698
|
190 |
checkConcept<concept::UndirGraph, UndirGraph>();
|
deba@1698
|
191 |
typedef typename UndirGraph::Node Node;
|
deba@1698
|
192 |
typedef typename UndirGraph::NodeIt NodeIt;
|
deba@1698
|
193 |
typedef typename UndirGraph::Edge Edge;
|
deba@1698
|
194 |
if (NodeIt(graph) == INVALID) return false;
|
deba@1698
|
195 |
Dfs<UndirGraph> dfs(graph);
|
deba@1698
|
196 |
dfs.init();
|
deba@1698
|
197 |
dfs.addSource(NodeIt(graph));
|
deba@1698
|
198 |
while (!dfs.emptyQueue()) {
|
deba@1698
|
199 |
Edge edge = dfs.nextEdge();
|
deba@1698
|
200 |
Node source = graph.source(edge);
|
deba@1698
|
201 |
Node target = graph.target(edge);
|
deba@1698
|
202 |
if (dfs.reached(target) &&
|
deba@1698
|
203 |
dfs.pred(source) != graph.oppositeEdge(edge)) {
|
deba@1698
|
204 |
return false;
|
deba@1698
|
205 |
}
|
deba@1698
|
206 |
dfs.processNextEdge();
|
deba@1698
|
207 |
}
|
deba@1698
|
208 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1698
|
209 |
if (!dfs.reached(it)) {
|
deba@1698
|
210 |
return false;
|
deba@1698
|
211 |
}
|
deba@1698
|
212 |
}
|
deba@1698
|
213 |
return true;
|
deba@1698
|
214 |
}
|
deba@1698
|
215 |
|
deba@1698
|
216 |
|
deba@1698
|
217 |
} //namespace lemon
|
deba@1698
|
218 |
|
deba@1698
|
219 |
#endif //LEMON_TOPOLOGY_H
|