alpar@2391
|
1 |
/* -*- C++ -*-
|
alpar@2391
|
2 |
*
|
alpar@2391
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@2391
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
alpar@2391
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@2391
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@2391
|
8 |
*
|
alpar@2391
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@2391
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@2391
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@2391
|
12 |
*
|
alpar@2391
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@2391
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@2391
|
15 |
* purpose.
|
alpar@2391
|
16 |
*
|
alpar@2391
|
17 |
*/
|
alpar@2391
|
18 |
|
alpar@2196
|
19 |
/**
|
alpar@2196
|
20 |
\page maps2 Maps II.
|
alpar@2196
|
21 |
|
alpar@2196
|
22 |
Here we discuss some advanced map techniques. Like writing your own maps or how to
|
alpar@2196
|
23 |
extend/modify a maps functionality with adaptors.
|
alpar@2196
|
24 |
|
alpar@2196
|
25 |
\section custom_maps Writing Custom ReadMap
|
alpar@2196
|
26 |
\subsection custom_read_maps Readable Maps
|
alpar@2196
|
27 |
|
alpar@2196
|
28 |
Readable maps are very frequently used as the input of an
|
alpar@2196
|
29 |
algorithm. For this purpose the most straightforward way is the use of the
|
alpar@2196
|
30 |
default maps provided by LEMON's graph structures.
|
alpar@2196
|
31 |
Very often however, it is more
|
alpar@2196
|
32 |
convenient and/or more efficient to write your own readable map.
|
alpar@2196
|
33 |
|
alpar@2196
|
34 |
You can find some examples below. In these examples \c Graph is the
|
alpar@2196
|
35 |
type of the particular graph structure you use.
|
alpar@2196
|
36 |
|
alpar@2196
|
37 |
|
alpar@2196
|
38 |
This simple map assigns \f$\pi\f$ to each edge.
|
alpar@2196
|
39 |
|
alpar@2196
|
40 |
\code
|
alpar@2196
|
41 |
struct MyMap
|
alpar@2196
|
42 |
{
|
alpar@2196
|
43 |
typedef double Value;
|
alpar@2196
|
44 |
typedef Graph::Edge Key;
|
alpar@2408
|
45 |
double operator[](const Key &e) const { return M_PI;}
|
alpar@2196
|
46 |
};
|
alpar@2196
|
47 |
\endcode
|
alpar@2196
|
48 |
|
alpar@2196
|
49 |
An alternative way to define maps is to use MapBase
|
alpar@2196
|
50 |
|
alpar@2196
|
51 |
\code
|
alpar@2196
|
52 |
struct MyMap : public MapBase<Graph::Edge,double>
|
alpar@2196
|
53 |
{
|
alpar@2408
|
54 |
Value operator[](const Key& e) const { return M_PI;}
|
alpar@2196
|
55 |
};
|
alpar@2196
|
56 |
\endcode
|
alpar@2196
|
57 |
|
alpar@2196
|
58 |
Here is a bit more complex example.
|
alpar@2196
|
59 |
It provides a length function obtained
|
alpar@2196
|
60 |
from a base length function shifted by a potential difference.
|
alpar@2196
|
61 |
|
alpar@2196
|
62 |
\code
|
alpar@2196
|
63 |
class ReducedLengthMap : public MapBase<Graph::Edge,double>
|
alpar@2196
|
64 |
{
|
alpar@2196
|
65 |
const Graph &g;
|
alpar@2196
|
66 |
const Graph::EdgeMap<double> &orig_len;
|
alpar@2196
|
67 |
const Graph::NodeMap<double> &pot;
|
alpar@2196
|
68 |
|
alpar@2196
|
69 |
public:
|
alpar@2196
|
70 |
Value operator[](Key e) const {
|
alpar@2196
|
71 |
return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]);
|
alpar@2196
|
72 |
}
|
alpar@2196
|
73 |
|
alpar@2196
|
74 |
ReducedLengthMap(const Graph &_g,
|
alpar@2196
|
75 |
const Graph::EdgeMap &_o,
|
alpar@2196
|
76 |
const Graph::NodeMap &_p)
|
alpar@2196
|
77 |
: g(_g), orig_len(_o), pot(_p) {};
|
alpar@2196
|
78 |
};
|
alpar@2196
|
79 |
\endcode
|
alpar@2196
|
80 |
|
alpar@2196
|
81 |
Then, you can call e.g. Dijkstra algoritm on this map like this:
|
alpar@2196
|
82 |
\code
|
alpar@2196
|
83 |
...
|
alpar@2196
|
84 |
ReducedLengthMap rm(g,len,pot);
|
alpar@2196
|
85 |
Dijkstra<Graph,ReducedLengthMap> dij(g,rm);
|
alpar@2196
|
86 |
dij.run(s);
|
alpar@2196
|
87 |
...
|
alpar@2196
|
88 |
\endcode
|
alpar@2196
|
89 |
|
alpar@2196
|
90 |
*/
|