lemon/fib_heap.h
author alpar
Thu, 02 Feb 2006 08:49:41 +0000
changeset 1939 591e717155ac
parent 1903 f3d24016dad5
child 1956 a055123339d5
permissions -rw-r--r--
Towards icc-8.0 compatibility...
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/fib_heap.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1875
     4
 * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@255
    16
alpar@921
    17
#ifndef LEMON_FIB_HEAP_H
alpar@921
    18
#define LEMON_FIB_HEAP_H
alpar@255
    19
jacint@857
    20
///\file
klao@491
    21
///\ingroup auxdat
alpar@255
    22
///\brief Fibonacci Heap implementation.
alpar@255
    23
alpar@255
    24
#include <vector>
alpar@255
    25
#include <functional>
deba@1332
    26
#include <cmath>
alpar@255
    27
alpar@921
    28
namespace lemon {
alpar@255
    29
  
deba@1834
    30
  /// \ingroup auxdat
alpar@430
    31
jacint@857
    32
  /// Fibonacci Heap.
jacint@373
    33
jacint@857
    34
  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
jacint@857
    35
  ///is a data structure for storing items with specified values called \e
jacint@857
    36
  ///priorities in such a way that finding the item with minimum priority is
alpar@911
    37
  ///efficient. \c Compare specifies the ordering of the priorities. In a heap
jacint@857
    38
  ///one can change the priority of an item, add or erase an item, etc.
jacint@857
    39
  ///
jacint@857
    40
  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
jacint@857
    41
  ///heap. In case of many calls to these operations, it is better to use a
jacint@857
    42
  ///\e binary \e heap.
jacint@857
    43
  ///
jacint@857
    44
  ///\param Item Type of the items to be stored.  
jacint@857
    45
  ///\param Prio Type of the priority of the items.
alpar@1204
    46
  ///\param ItemIntMap A read and writable Item int map, used internally
alpar@1204
    47
  ///to handle the cross references.
jacint@857
    48
  ///\param Compare A class for the ordering of the priorities. The
jacint@857
    49
  ///default is \c std::less<Prio>.
jacint@857
    50
  ///
alpar@967
    51
  ///\sa BinHeap
alpar@967
    52
  ///\sa Dijkstra
jacint@857
    53
  ///\author Jacint Szabo 
jacint@857
    54
 
jacint@373
    55
#ifdef DOXYGEN
jacint@373
    56
  template <typename Item, 
jacint@373
    57
	    typename Prio, 
jacint@373
    58
	    typename ItemIntMap, 
jacint@373
    59
	    typename Compare>
jacint@373
    60
#else
jacint@373
    61
  template <typename Item, 
jacint@373
    62
	    typename Prio, 
jacint@373
    63
	    typename ItemIntMap, 
alpar@255
    64
	    typename Compare = std::less<Prio> >
jacint@373
    65
#endif
alpar@255
    66
  class FibHeap {
jacint@387
    67
  public:     
alpar@255
    68
    typedef Prio PrioType;
alpar@255
    69
    
jacint@373
    70
  private:
alpar@255
    71
    class store;
alpar@255
    72
    
alpar@255
    73
    std::vector<store> container;
alpar@255
    74
    int minimum;
alpar@255
    75
    ItemIntMap &iimap;
alpar@255
    76
    Compare comp;
alpar@255
    77
    int num_items;
jacint@373
    78
    
alpar@255
    79
  public:
alpar@1127
    80
    ///Status of the nodes
alpar@255
    81
    enum state_enum {
alpar@1127
    82
      ///The node is in the heap
alpar@255
    83
      IN_HEAP = 0,
alpar@1127
    84
      ///The node has never been in the heap
alpar@255
    85
      PRE_HEAP = -1,
alpar@1127
    86
      ///The node was in the heap but it got out of it
alpar@255
    87
      POST_HEAP = -2
alpar@255
    88
    };
alpar@255
    89
    
deba@1717
    90
    /// \brief The constructor
deba@1717
    91
    ///
deba@1717
    92
    /// \c _iimap should be given to the constructor, since it is
deba@1717
    93
    ///   used internally to handle the cross references.
deba@1185
    94
    explicit FibHeap(ItemIntMap &_iimap) 
deba@1185
    95
      : minimum(0), iimap(_iimap), num_items() {} 
jacint@1270
    96
 
deba@1717
    97
    /// \brief The constructor
deba@1717
    98
    ///
deba@1717
    99
    /// \c _iimap should be given to the constructor, since it is used
deba@1717
   100
    /// internally to handle the cross references. \c _comp is an
deba@1717
   101
    /// object for ordering of the priorities. 
jacint@373
   102
    FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), 
jacint@1270
   103
		  iimap(_iimap), comp(_comp), num_items() {}
alpar@255
   104
    
deba@1717
   105
    /// \brief The number of items stored in the heap.
deba@1717
   106
    ///
deba@1717
   107
    /// Returns the number of items stored in the heap.
jacint@373
   108
    int size() const { return num_items; }
jacint@373
   109
deba@1717
   110
    /// \brief Checks if the heap stores no items.
deba@1717
   111
    ///
deba@1717
   112
    ///   Returns \c true if and only if the heap stores no items.
jacint@373
   113
    bool empty() const { return num_items==0; }
jacint@373
   114
deba@1717
   115
    /// \brief Make empty this heap.
deba@1717
   116
    /// 
deba@1717
   117
    /// Make empty this heap.
deba@1753
   118
    void clear() {
deba@1753
   119
      if (num_items != 0) {
deba@1753
   120
	for (int i = 0; i < (int)container.size(); ++i) {
deba@1753
   121
	  iimap[container[i].name] = -2;
deba@1753
   122
	}
deba@1717
   123
      }
deba@1717
   124
      container.clear(); minimum = 0; num_items = 0;
deba@1717
   125
    }
jacint@373
   126
deba@1717
   127
    /// \brief \c item gets to the heap with priority \c value independently 
deba@1717
   128
    /// if \c item was already there.
deba@1717
   129
    ///
deba@1717
   130
    /// This method calls \ref push(\c item, \c value) if \c item is not
deba@1717
   131
    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
deba@1717
   132
    /// \ref increase(\c item, \c value) otherwise.
jacint@387
   133
    void set (Item const item, PrioType const value); 
jacint@373
   134
    
deba@1717
   135
    /// \brief Adds \c item to the heap with priority \c value. 
deba@1717
   136
    ///    
deba@1717
   137
    /// Adds \c item to the heap with priority \c value. 
deba@1717
   138
    /// \pre \c item must not be stored in the heap. 
jacint@387
   139
    void push (Item const item, PrioType const value);
jacint@373
   140
    
deba@1717
   141
    /// \brief Returns the item with minimum priority relative to \c Compare.
deba@1717
   142
    ///
deba@1717
   143
    /// This method returns the item with minimum priority relative to \c
deba@1717
   144
    /// Compare.  
deba@1717
   145
    /// \pre The heap must be nonempty.  
jacint@373
   146
    Item top() const { return container[minimum].name; }
jacint@373
   147
deba@1717
   148
    /// \brief Returns the minimum priority relative to \c Compare.
deba@1717
   149
    ///
deba@1717
   150
    /// It returns the minimum priority relative to \c Compare.
deba@1717
   151
    /// \pre The heap must be nonempty.
jacint@373
   152
    PrioType prio() const { return container[minimum].prio; }
jacint@373
   153
    
deba@1717
   154
    /// \brief Returns the priority of \c item.
deba@1717
   155
    ///
deba@1717
   156
    /// This function returns the priority of \c item.
deba@1717
   157
    /// \pre \c item must be in the heap.
jacint@387
   158
    PrioType& operator[](const Item& item) { 
jacint@387
   159
      return container[iimap[item]].prio; 
jacint@387
   160
    }
jacint@373
   161
    
deba@1717
   162
    /// \brief Returns the priority of \c item.
deba@1717
   163
    ///
deba@1717
   164
    /// It returns the priority of \c item.
deba@1717
   165
    /// \pre \c item must be in the heap.
jacint@387
   166
    const PrioType& operator[](const Item& item) const { 
jacint@387
   167
      return container[iimap[item]].prio; 
alpar@255
   168
    }
alpar@255
   169
alpar@255
   170
deba@1717
   171
    /// \brief Deletes the item with minimum priority relative to \c Compare.
deba@1717
   172
    ///
deba@1717
   173
    /// This method deletes the item with minimum priority relative to \c
deba@1717
   174
    /// Compare from the heap.  
deba@1717
   175
    /// \pre The heap must be non-empty.  
jacint@373
   176
    void pop();
jacint@373
   177
deba@1717
   178
    /// \brief Deletes \c item from the heap.
deba@1717
   179
    ///
deba@1717
   180
    /// This method deletes \c item from the heap, if \c item was already
deba@1717
   181
    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
jacint@387
   182
    void erase (const Item& item); 
jacint@373
   183
deba@1717
   184
    /// \brief Decreases the priority of \c item to \c value.
deba@1717
   185
    ///
deba@1717
   186
    /// This method decreases the priority of \c item to \c value.
deba@1717
   187
    /// \pre \c item must be stored in the heap with priority at least \c
deba@1717
   188
    ///   value relative to \c Compare.
jacint@387
   189
    void decrease (Item item, PrioType const value); 
jacint@373
   190
deba@1717
   191
    /// \brief Increases the priority of \c item to \c value.
deba@1717
   192
    ///
deba@1717
   193
    /// This method sets the priority of \c item to \c value. Though
deba@1717
   194
    /// there is no precondition on the priority of \c item, this
deba@1717
   195
    /// method should be used only if it is indeed necessary to increase
deba@1717
   196
    /// (relative to \c Compare) the priority of \c item, because this
deba@1717
   197
    /// method is inefficient.
jacint@387
   198
    void increase (Item item, PrioType const value) {
jacint@387
   199
      erase(item);
jacint@387
   200
      push(item, value);
jacint@373
   201
    }
jacint@373
   202
jacint@373
   203
deba@1717
   204
    /// \brief Returns if \c item is in, has already been in, or has never 
deba@1717
   205
    /// been in the heap.
deba@1717
   206
    ///
deba@1717
   207
    /// This method returns PRE_HEAP if \c item has never been in the
deba@1717
   208
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
deba@1717
   209
    /// otherwise. In the latter case it is possible that \c item will
deba@1717
   210
    /// get back to the heap again.
jacint@387
   211
    state_enum state(const Item &item) const {
jacint@387
   212
      int i=iimap[item];
jacint@387
   213
      if( i>=0 ) {
jacint@387
   214
	if ( container[i].in ) i=0;
jacint@387
   215
	else i=-2; 
jacint@387
   216
      }
jacint@387
   217
      return state_enum(i);
jacint@387
   218
    }    
deba@1902
   219
deba@1902
   220
    /// \brief Sets the state of the \c item in the heap.
deba@1902
   221
    ///
deba@1902
   222
    /// Sets the state of the \c item in the heap. It can be used to
deba@1902
   223
    /// manually clear the heap when it is important to achive the
deba@1902
   224
    /// better time complexity.
deba@1902
   225
    /// \param i The item.
deba@1902
   226
    /// \param st The state. It should not be \c IN_HEAP. 
deba@1902
   227
    void state(const Item& i, state_enum st) {
deba@1902
   228
      switch (st) {
deba@1902
   229
      case POST_HEAP:
deba@1902
   230
      case PRE_HEAP:
deba@1902
   231
        if (state(i) == IN_HEAP) {
deba@1902
   232
          erase(i);
deba@1902
   233
        }
deba@1903
   234
        iimap[i] = st;
deba@1902
   235
        break;
deba@1906
   236
      case IN_HEAP:
deba@1906
   237
        break;
deba@1902
   238
      }
deba@1902
   239
    }
jacint@387
   240
    
jacint@387
   241
  private:
jacint@387
   242
    
jacint@387
   243
    void balance();
jacint@387
   244
    void makeroot(int c);
jacint@387
   245
    void cut(int a, int b);
jacint@387
   246
    void cascade(int a);
jacint@387
   247
    void fuse(int a, int b);
jacint@387
   248
    void unlace(int a);
jacint@373
   249
jacint@373
   250
jacint@387
   251
    class store {
jacint@387
   252
      friend class FibHeap;
jacint@387
   253
      
jacint@387
   254
      Item name;
jacint@387
   255
      int parent;
jacint@387
   256
      int left_neighbor;
jacint@387
   257
      int right_neighbor;
jacint@387
   258
      int child;
jacint@387
   259
      int degree;  
jacint@387
   260
      bool marked;
jacint@387
   261
      bool in;
jacint@387
   262
      PrioType prio;
jacint@387
   263
      
jacint@387
   264
      store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
jacint@387
   265
    };
jacint@387
   266
  };    
jacint@387
   267
 
jacint@387
   268
jacint@373
   269
jacint@373
   270
    // **********************************************************************
jacint@373
   271
    //  IMPLEMENTATIONS
jacint@373
   272
    // **********************************************************************
jacint@373
   273
    
jacint@387
   274
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   275
    typename Compare>
jacint@387
   276
  void FibHeap<Item, Prio, ItemIntMap, Compare>::set 
jacint@387
   277
  (Item const item, PrioType const value) 
jacint@387
   278
  {
jacint@387
   279
    int i=iimap[item];
jacint@387
   280
    if ( i >= 0 && container[i].in ) {
jacint@387
   281
      if ( comp(value, container[i].prio) ) decrease(item, value); 
jacint@387
   282
      if ( comp(container[i].prio, value) ) increase(item, value); 
jacint@387
   283
    } else push(item, value);
jacint@387
   284
  }
alpar@255
   285
    
jacint@387
   286
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   287
    typename Compare>
jacint@387
   288
  void FibHeap<Item, Prio, ItemIntMap, Compare>::push 
jacint@387
   289
  (Item const item, PrioType const value) {
jacint@387
   290
      int i=iimap[item];      
alpar@255
   291
      if ( i < 0 ) {
alpar@255
   292
	int s=container.size();
jacint@387
   293
	iimap.set( item, s );	
alpar@255
   294
	store st;
jacint@387
   295
	st.name=item;
alpar@255
   296
	container.push_back(st);
alpar@255
   297
	i=s;
alpar@255
   298
      } else {
alpar@255
   299
	container[i].parent=container[i].child=-1;
alpar@255
   300
	container[i].degree=0;
alpar@255
   301
	container[i].in=true;
alpar@255
   302
	container[i].marked=false;
alpar@255
   303
      }
alpar@255
   304
alpar@255
   305
      if ( num_items ) {
alpar@255
   306
	container[container[minimum].right_neighbor].left_neighbor=i;
alpar@255
   307
	container[i].right_neighbor=container[minimum].right_neighbor;
alpar@255
   308
	container[minimum].right_neighbor=i;
alpar@255
   309
	container[i].left_neighbor=minimum;
alpar@255
   310
	if ( comp( value, container[minimum].prio) ) minimum=i; 
alpar@255
   311
      } else {
alpar@255
   312
	container[i].right_neighbor=container[i].left_neighbor=i;
alpar@255
   313
	minimum=i;	
alpar@255
   314
      }
alpar@255
   315
      container[i].prio=value;
alpar@255
   316
      ++num_items;
alpar@255
   317
    }
alpar@255
   318
    
jacint@387
   319
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   320
    typename Compare>
jacint@387
   321
  void FibHeap<Item, Prio, ItemIntMap, Compare>::pop() {
alpar@255
   322
      /*The first case is that there are only one root.*/
alpar@255
   323
      if ( container[minimum].left_neighbor==minimum ) {
alpar@255
   324
	container[minimum].in=false;
alpar@255
   325
	if ( container[minimum].degree!=0 ) { 
alpar@255
   326
	  makeroot(container[minimum].child);
alpar@255
   327
	  minimum=container[minimum].child;
alpar@255
   328
	  balance();
alpar@255
   329
	}
alpar@255
   330
      } else {
alpar@255
   331
	int right=container[minimum].right_neighbor;
alpar@255
   332
	unlace(minimum);
alpar@255
   333
	container[minimum].in=false;
alpar@255
   334
	if ( container[minimum].degree > 0 ) {
alpar@255
   335
	  int left=container[minimum].left_neighbor;
alpar@255
   336
	  int child=container[minimum].child;
alpar@255
   337
	  int last_child=container[child].left_neighbor;
alpar@255
   338
	
alpar@255
   339
	  makeroot(child);
alpar@255
   340
	  
alpar@255
   341
	  container[left].right_neighbor=child;
alpar@255
   342
	  container[child].left_neighbor=left;
alpar@255
   343
	  container[right].left_neighbor=last_child;
alpar@255
   344
	  container[last_child].right_neighbor=right;
alpar@255
   345
	}
alpar@255
   346
	minimum=right;
alpar@255
   347
	balance();
alpar@255
   348
      } // the case where there are more roots
alpar@255
   349
      --num_items;   
alpar@255
   350
    }
alpar@255
   351
jacint@387
   352
jacint@387
   353
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   354
    typename Compare>
jacint@387
   355
  void FibHeap<Item, Prio, ItemIntMap, Compare>::erase 
jacint@387
   356
  (const Item& item) {
jacint@387
   357
      int i=iimap[item];
alpar@255
   358
      
alpar@255
   359
      if ( i >= 0 && container[i].in ) { 	
alpar@255
   360
	if ( container[i].parent!=-1 ) {
alpar@255
   361
	  int p=container[i].parent;
alpar@255
   362
	  cut(i,p);	    
alpar@255
   363
	  cascade(p);
alpar@255
   364
	}
alpar@255
   365
	minimum=i;     //As if its prio would be -infinity
alpar@255
   366
	pop();
alpar@255
   367
      }
jacint@387
   368
  }
alpar@255
   369
    
jacint@387
   370
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   371
    typename Compare>
jacint@387
   372
  void FibHeap<Item, Prio, ItemIntMap, Compare>::decrease 
jacint@387
   373
  (Item item, PrioType const value) {
jacint@387
   374
      int i=iimap[item];
alpar@255
   375
      container[i].prio=value;
alpar@255
   376
      int p=container[i].parent;
alpar@255
   377
      
alpar@255
   378
      if ( p!=-1 && comp(value, container[p].prio) ) {
alpar@255
   379
	cut(i,p);	    
alpar@255
   380
	cascade(p);
alpar@255
   381
      }      
alpar@255
   382
      if ( comp(value, container[minimum].prio) ) minimum=i; 
jacint@387
   383
  }
jacint@387
   384
 
alpar@255
   385
jacint@387
   386
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   387
    typename Compare>
jacint@387
   388
  void FibHeap<Item, Prio, ItemIntMap, Compare>::balance() {      
alpar@255
   389
deba@1332
   390
    int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
alpar@255
   391
  
alpar@255
   392
    std::vector<int> A(maxdeg,-1); 
alpar@255
   393
    
alpar@255
   394
    /*
alpar@255
   395
     *Recall that now minimum does not point to the minimum prio element.
alpar@255
   396
     *We set minimum to this during balance().
alpar@255
   397
     */
alpar@255
   398
    int anchor=container[minimum].left_neighbor; 
alpar@255
   399
    int next=minimum; 
alpar@255
   400
    bool end=false; 
alpar@255
   401
    	
alpar@255
   402
       do {
alpar@255
   403
	int active=next;
alpar@255
   404
	if ( anchor==active ) end=true;
alpar@255
   405
	int d=container[active].degree;
alpar@255
   406
	next=container[active].right_neighbor;
alpar@255
   407
alpar@255
   408
	while (A[d]!=-1) {	  
alpar@255
   409
	  if( comp(container[active].prio, container[A[d]].prio) ) {
alpar@255
   410
	    fuse(active,A[d]); 
alpar@255
   411
	  } else { 
alpar@255
   412
	    fuse(A[d],active);
alpar@255
   413
	    active=A[d];
alpar@255
   414
	  } 
alpar@255
   415
	  A[d]=-1;
alpar@255
   416
	  ++d;
alpar@255
   417
	}	
alpar@255
   418
	A[d]=active;
alpar@255
   419
       } while ( !end );
alpar@255
   420
alpar@255
   421
alpar@255
   422
       while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
alpar@255
   423
       int s=minimum;
alpar@255
   424
       int m=minimum;
alpar@255
   425
       do {  
alpar@255
   426
	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
alpar@255
   427
	 s=container[s].right_neighbor;
alpar@255
   428
       } while ( s != m );
alpar@255
   429
    }
alpar@255
   430
jacint@387
   431
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   432
    typename Compare>
jacint@387
   433
  void FibHeap<Item, Prio, ItemIntMap, Compare>::makeroot 
jacint@387
   434
  (int c) {
alpar@255
   435
      int s=c;
alpar@255
   436
      do {  
alpar@255
   437
	container[s].parent=-1;
alpar@255
   438
	s=container[s].right_neighbor;
alpar@255
   439
      } while ( s != c );
alpar@255
   440
    }
jacint@387
   441
  
jacint@387
   442
  
jacint@387
   443
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   444
    typename Compare>
jacint@387
   445
  void FibHeap<Item, Prio, ItemIntMap, Compare>::cut 
jacint@387
   446
  (int a, int b) {    
jacint@387
   447
    /*
jacint@387
   448
     *Replacing a from the children of b.
jacint@387
   449
     */
jacint@387
   450
    --container[b].degree;
alpar@255
   451
    
jacint@387
   452
    if ( container[b].degree !=0 ) {
jacint@387
   453
      int child=container[b].child;
jacint@387
   454
      if ( child==a ) 
jacint@387
   455
	container[b].child=container[child].right_neighbor;
jacint@387
   456
      unlace(a);
jacint@387
   457
    }
jacint@387
   458
    
jacint@387
   459
    
jacint@387
   460
    /*Lacing a to the roots.*/
jacint@387
   461
    int right=container[minimum].right_neighbor;
jacint@387
   462
    container[minimum].right_neighbor=a;
jacint@387
   463
    container[a].left_neighbor=minimum;
jacint@387
   464
    container[a].right_neighbor=right;
jacint@387
   465
    container[right].left_neighbor=a;
jacint@387
   466
    
jacint@387
   467
    container[a].parent=-1;
jacint@387
   468
    container[a].marked=false;
jacint@387
   469
  }
jacint@387
   470
  
alpar@255
   471
jacint@387
   472
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   473
    typename Compare>
jacint@387
   474
  void FibHeap<Item, Prio, ItemIntMap, Compare>::cascade 
jacint@387
   475
  (int a) 
alpar@255
   476
    {
alpar@255
   477
      if ( container[a].parent!=-1 ) {
alpar@255
   478
	int p=container[a].parent;
alpar@255
   479
	
alpar@255
   480
	if ( container[a].marked==false ) container[a].marked=true;
alpar@255
   481
	else {
alpar@255
   482
	  cut(a,p);
alpar@255
   483
	  cascade(p);
alpar@255
   484
	}
alpar@255
   485
      }
alpar@255
   486
    }
alpar@255
   487
alpar@255
   488
jacint@387
   489
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   490
    typename Compare>
jacint@387
   491
  void FibHeap<Item, Prio, ItemIntMap, Compare>::fuse 
jacint@387
   492
  (int a, int b) {
alpar@255
   493
      unlace(b);
alpar@255
   494
      
alpar@255
   495
      /*Lacing b under a.*/
alpar@255
   496
      container[b].parent=a;
alpar@255
   497
alpar@255
   498
      if (container[a].degree==0) {
alpar@255
   499
	container[b].left_neighbor=b;
alpar@255
   500
	container[b].right_neighbor=b;
alpar@255
   501
	container[a].child=b;	
alpar@255
   502
      } else {
alpar@255
   503
	int child=container[a].child;
alpar@255
   504
	int last_child=container[child].left_neighbor;
alpar@255
   505
	container[child].left_neighbor=b;
alpar@255
   506
	container[b].right_neighbor=child;
alpar@255
   507
	container[last_child].right_neighbor=b;
alpar@255
   508
	container[b].left_neighbor=last_child;
alpar@255
   509
      }
alpar@255
   510
alpar@255
   511
      ++container[a].degree;
alpar@255
   512
      
alpar@255
   513
      container[b].marked=false;
alpar@255
   514
    }
alpar@255
   515
jacint@387
   516
  
jacint@387
   517
  /*
jacint@387
   518
   *It is invoked only if a has siblings.
jacint@387
   519
   */
jacint@387
   520
  template <typename Item, typename Prio, typename ItemIntMap, 
jacint@387
   521
    typename Compare>
jacint@387
   522
  void FibHeap<Item, Prio, ItemIntMap, Compare>::unlace 
jacint@387
   523
  (int a) {      
alpar@255
   524
      int leftn=container[a].left_neighbor;
alpar@255
   525
      int rightn=container[a].right_neighbor;
alpar@255
   526
      container[leftn].right_neighbor=rightn;
alpar@255
   527
      container[rightn].left_neighbor=leftn;
jacint@387
   528
  }
alpar@255
   529
  
alpar@430
   530
alpar@921
   531
} //namespace lemon
alpar@477
   532
alpar@921
   533
#endif //LEMON_FIB_HEAP_H
alpar@477
   534