src/hugo/dijkstra.h
author marci
Tue, 17 Aug 2004 13:20:46 +0000
changeset 764 615aca7091d2
parent 734 329832ac02b7
child 774 4297098d9677
permissions -rw-r--r--
An experimental LPSolverWrapper class which uses glpk. For a short
demo, max flow problems are solved with it. This demo does not
demonstrates, but the main aims of this class are row and column
generation capabilities, i.e. to be a core for easily
implementable branch-and-cut a column generetion algorithms.
alpar@255
     1
// -*- C++ -*-
alpar@255
     2
#ifndef HUGO_DIJKSTRA_H
alpar@255
     3
#define HUGO_DIJKSTRA_H
alpar@255
     4
alpar@758
     5
///\ingroup flowalgs
alpar@255
     6
///\file
alpar@255
     7
///\brief Dijkstra algorithm.
alpar@255
     8
ladanyi@542
     9
#include <hugo/bin_heap.h>
ladanyi@542
    10
#include <hugo/invalid.h>
alpar@255
    11
alpar@255
    12
namespace hugo {
jacint@385
    13
alpar@758
    14
/// \addtogroup flowalgs
alpar@430
    15
/// @{
alpar@430
    16
alpar@255
    17
  ///%Dijkstra algorithm class.
alpar@255
    18
alpar@255
    19
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
    20
  ///The edge lengths are passed to the algorithm using a
alpar@255
    21
  ///\ref ReadMapSkeleton "readable map",
alpar@255
    22
  ///so it is easy to change it to any kind of length.
alpar@255
    23
  ///
alpar@255
    24
  ///The type of the length is determined by the \c ValueType of the length map.
alpar@255
    25
  ///
alpar@255
    26
  ///It is also possible to change the underlying priority heap.
alpar@255
    27
  ///
alpar@584
    28
  ///\param GR The graph type the algorithm runs on.
alpar@584
    29
  ///\param LM This read-only
jacint@385
    30
  ///EdgeMap
jacint@385
    31
  ///determines the
jacint@385
    32
  ///lengths of the edges. It is read once for each edge, so the map
jacint@385
    33
  ///may involve in relatively time consuming process to compute the edge
jacint@385
    34
  ///length if it is necessary. The default map type is
jacint@385
    35
  ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
jacint@385
    36
  ///\param Heap The heap type used by the %Dijkstra
jacint@385
    37
  ///algorithm. The default
jacint@385
    38
  ///is using \ref BinHeap "binary heap".
alpar@456
    39
  ///
alpar@689
    40
  ///\author Jacint Szabo and Alpar Juttner
alpar@693
    41
  ///\todo We need a typedef-names should be standardized. (-:
alpar@734
    42
  ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap
alpar@734
    43
  ///should not be fixed. (Problematic to solve).
alpar@584
    44
alpar@255
    45
#ifdef DOXYGEN
alpar@584
    46
  template <typename GR,
alpar@584
    47
	    typename LM,
alpar@255
    48
	    typename Heap>
alpar@255
    49
#else
alpar@584
    50
  template <typename GR,
alpar@584
    51
	    typename LM=typename GR::template EdgeMap<int>,
alpar@532
    52
	    template <class,class,class,class> class Heap = BinHeap >
alpar@255
    53
#endif
alpar@255
    54
  class Dijkstra{
alpar@255
    55
  public:
alpar@584
    56
    ///The type of the underlying graph.
alpar@584
    57
    typedef GR Graph;
alpar@255
    58
    typedef typename Graph::Node Node;
alpar@255
    59
    typedef typename Graph::NodeIt NodeIt;
alpar@255
    60
    typedef typename Graph::Edge Edge;
alpar@255
    61
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
    62
    
alpar@584
    63
    ///The type of the length of the edges.
alpar@584
    64
    typedef typename LM::ValueType ValueType;
alpar@693
    65
    ///The type of the map that stores the edge lengths.
alpar@584
    66
    typedef LM LengthMap;
alpar@693
    67
    ///\brief The type of the map that stores the last
alpar@584
    68
    ///edges of the shortest paths.
marci@433
    69
    typedef typename Graph::template NodeMap<Edge> PredMap;
alpar@693
    70
    ///\brief The type of the map that stores the last but one
alpar@584
    71
    ///nodes of the shortest paths.
marci@433
    72
    typedef typename Graph::template NodeMap<Node> PredNodeMap;
alpar@693
    73
    ///The type of the map that stores the dists of the nodes.
marci@433
    74
    typedef typename Graph::template NodeMap<ValueType> DistMap;
alpar@255
    75
alpar@255
    76
  private:
alpar@688
    77
    const Graph *G;
alpar@688
    78
    const LM *length;
alpar@688
    79
    //    bool local_length;
alpar@688
    80
    PredMap *predecessor;
alpar@688
    81
    bool local_predecessor;
alpar@688
    82
    PredNodeMap *pred_node;
alpar@688
    83
    bool local_pred_node;
alpar@688
    84
    DistMap *distance;
alpar@688
    85
    bool local_distance;
alpar@688
    86
alpar@688
    87
    ///Initialize maps
alpar@688
    88
    
alpar@694
    89
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
    90
    ///\todo Better memory allocation (instead of new).
alpar@688
    91
    void init_maps() 
alpar@688
    92
    {
alpar@688
    93
//       if(!length) {
alpar@688
    94
// 	local_length = true;
alpar@688
    95
// 	length = new LM(G);
alpar@688
    96
//       }
alpar@688
    97
      if(!predecessor) {
alpar@688
    98
	local_predecessor = true;
alpar@688
    99
	predecessor = new PredMap(*G);
alpar@688
   100
      }
alpar@688
   101
      if(!pred_node) {
alpar@688
   102
	local_pred_node = true;
alpar@688
   103
	pred_node = new PredNodeMap(*G);
alpar@688
   104
      }
alpar@688
   105
      if(!distance) {
alpar@688
   106
	local_distance = true;
alpar@688
   107
	distance = new DistMap(*G);
alpar@688
   108
      }
alpar@688
   109
    }
alpar@255
   110
    
alpar@255
   111
  public :
alpar@255
   112
    
alpar@584
   113
    Dijkstra(const Graph& _G, const LM& _length) :
alpar@688
   114
      G(&_G), length(&_length),
alpar@707
   115
      predecessor(NULL), local_predecessor(false),
alpar@707
   116
      pred_node(NULL), local_pred_node(false),
alpar@707
   117
      distance(NULL), local_distance(false)
alpar@688
   118
    { }
alpar@688
   119
    
alpar@688
   120
    ~Dijkstra() 
alpar@688
   121
    {
alpar@688
   122
      //      if(local_length) delete length;
alpar@688
   123
      if(local_predecessor) delete predecessor;
alpar@688
   124
      if(local_pred_node) delete pred_node;
alpar@688
   125
      if(local_distance) delete distance;
alpar@688
   126
    }
alpar@688
   127
alpar@688
   128
    ///Sets the graph the algorithm will run on.
alpar@688
   129
alpar@688
   130
    ///Sets the graph the algorithm will run on.
alpar@688
   131
    ///\return <tt> (*this) </tt>
alpar@688
   132
    Dijkstra &setGraph(const Graph &_G) 
alpar@688
   133
    {
alpar@688
   134
      G = &_G;
alpar@688
   135
      return *this;
alpar@688
   136
    }
alpar@688
   137
    ///Sets the length map.
alpar@688
   138
alpar@688
   139
    ///Sets the length map.
alpar@688
   140
    ///\return <tt> (*this) </tt>
alpar@688
   141
    Dijkstra &setLengthMap(const LM &m) 
alpar@688
   142
    {
alpar@688
   143
//       if(local_length) {
alpar@688
   144
// 	delete length;
alpar@688
   145
// 	local_length=false;
alpar@688
   146
//       }
alpar@688
   147
      length = &m;
alpar@688
   148
      return *this;
alpar@688
   149
    }
alpar@688
   150
alpar@688
   151
    ///Sets the map storing the predecessor edges.
alpar@688
   152
alpar@688
   153
    ///Sets the map storing the predecessor edges.
alpar@688
   154
    ///If you don't use this function before calling \ref run(),
alpar@688
   155
    ///it will allocate one. The destuctor deallocates this
alpar@688
   156
    ///automatically allocated map, of course.
alpar@688
   157
    ///\return <tt> (*this) </tt>
alpar@688
   158
    Dijkstra &setPredMap(PredMap &m) 
alpar@688
   159
    {
alpar@688
   160
      if(local_predecessor) {
alpar@688
   161
	delete predecessor;
alpar@688
   162
	local_predecessor=false;
alpar@688
   163
      }
alpar@688
   164
      predecessor = &m;
alpar@688
   165
      return *this;
alpar@688
   166
    }
alpar@688
   167
alpar@688
   168
    ///Sets the map storing the predecessor nodes.
alpar@688
   169
alpar@688
   170
    ///Sets the map storing the predecessor nodes.
alpar@688
   171
    ///If you don't use this function before calling \ref run(),
alpar@688
   172
    ///it will allocate one. The destuctor deallocates this
alpar@688
   173
    ///automatically allocated map, of course.
alpar@688
   174
    ///\return <tt> (*this) </tt>
alpar@688
   175
    Dijkstra &setPredNodeMap(PredNodeMap &m) 
alpar@688
   176
    {
alpar@688
   177
      if(local_pred_node) {
alpar@688
   178
	delete pred_node;
alpar@688
   179
	local_pred_node=false;
alpar@688
   180
      }
alpar@688
   181
      pred_node = &m;
alpar@688
   182
      return *this;
alpar@688
   183
    }
alpar@688
   184
alpar@688
   185
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   186
alpar@688
   187
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   188
    ///If you don't use this function before calling \ref run(),
alpar@688
   189
    ///it will allocate one. The destuctor deallocates this
alpar@688
   190
    ///automatically allocated map, of course.
alpar@688
   191
    ///\return <tt> (*this) </tt>
alpar@688
   192
    Dijkstra &setDistMap(DistMap &m) 
alpar@688
   193
    {
alpar@688
   194
      if(local_distance) {
alpar@688
   195
	delete distance;
alpar@688
   196
	local_distance=false;
alpar@688
   197
      }
alpar@688
   198
      distance = &m;
alpar@688
   199
      return *this;
alpar@688
   200
    }
alpar@255
   201
    
alpar@694
   202
  ///Runs %Dijkstra algorithm from node \c s.
alpar@694
   203
alpar@694
   204
  ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@694
   205
  ///in order to
alpar@694
   206
  ///compute the
alpar@694
   207
  ///shortest path to each node. The algorithm computes
alpar@694
   208
  ///- The shortest path tree.
alpar@694
   209
  ///- The distance of each node from the root.
alpar@694
   210
    
alpar@694
   211
    void run(Node s) {
alpar@694
   212
      
alpar@694
   213
      init_maps();
alpar@694
   214
      
alpar@694
   215
      for ( NodeIt u(*G) ; G->valid(u) ; G->next(u) ) {
alpar@694
   216
	predecessor->set(u,INVALID);
alpar@694
   217
	pred_node->set(u,INVALID);
alpar@694
   218
      }
alpar@694
   219
      
alpar@694
   220
      typename GR::template NodeMap<int> heap_map(*G,-1);
alpar@694
   221
      
alpar@694
   222
      typedef Heap<Node, ValueType, typename GR::template NodeMap<int>,
alpar@694
   223
      std::less<ValueType> > 
alpar@694
   224
      HeapType;
alpar@694
   225
      
alpar@694
   226
      HeapType heap(heap_map);
alpar@694
   227
      
alpar@694
   228
      heap.push(s,0); 
alpar@694
   229
      
alpar@694
   230
      while ( !heap.empty() ) {
alpar@694
   231
	
alpar@694
   232
	Node v=heap.top(); 
alpar@694
   233
	ValueType oldvalue=heap[v];
alpar@694
   234
	heap.pop();
alpar@694
   235
	distance->set(v, oldvalue);
alpar@694
   236
	
alpar@694
   237
	
alpar@694
   238
	for(OutEdgeIt e(*G,v); G->valid(e); G->next(e)) {
alpar@694
   239
	  Node w=G->bNode(e); 
alpar@694
   240
	  
alpar@694
   241
	  switch(heap.state(w)) {
alpar@694
   242
	  case HeapType::PRE_HEAP:
alpar@694
   243
	    heap.push(w,oldvalue+(*length)[e]); 
alpar@694
   244
	    predecessor->set(w,e);
alpar@694
   245
	    pred_node->set(w,v);
alpar@694
   246
	    break;
alpar@694
   247
	  case HeapType::IN_HEAP:
alpar@694
   248
	    if ( oldvalue+(*length)[e] < heap[w] ) {
alpar@694
   249
	      heap.decrease(w, oldvalue+(*length)[e]); 
alpar@694
   250
	      predecessor->set(w,e);
alpar@694
   251
	      pred_node->set(w,v);
alpar@694
   252
	    }
alpar@694
   253
	    break;
alpar@694
   254
	  case HeapType::POST_HEAP:
alpar@694
   255
	    break;
alpar@694
   256
	  }
alpar@694
   257
	}
alpar@694
   258
      }
alpar@694
   259
    }
alpar@255
   260
    
jacint@385
   261
    ///The distance of a node from the root.
alpar@255
   262
jacint@385
   263
    ///Returns the distance of a node from the root.
alpar@255
   264
    ///\pre \ref run() must be called before using this function.
jacint@385
   265
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   266
    ///of this funcion is undefined.
alpar@688
   267
    ValueType dist(Node v) const { return (*distance)[v]; }
jacint@373
   268
alpar@584
   269
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   270
alpar@584
   271
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
jacint@385
   272
    ///i.e. it returns the last edge from a shortest path from the root to \c
alpar@688
   273
    ///v. It is \ref INVALID
alpar@688
   274
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   275
    ///shortest path tree used here is equal to the shortest path tree used in
jacint@385
   276
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
jacint@385
   277
    ///this function.
alpar@688
   278
    Edge pred(Node v) const { return (*predecessor)[v]; }
jacint@373
   279
alpar@584
   280
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   281
alpar@584
   282
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   283
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   284
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   285
    ///\c v=s. The shortest path tree used here is equal to the shortest path
jacint@385
   286
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
jacint@385
   287
    ///using this function.
alpar@688
   288
    Node predNode(Node v) const { return (*pred_node)[v]; }
alpar@255
   289
    
alpar@255
   290
    ///Returns a reference to the NodeMap of distances.
alpar@255
   291
jacint@385
   292
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   293
    ///be called before using this function.
alpar@688
   294
    const DistMap &distMap() const { return *distance;}
jacint@385
   295
 
alpar@255
   296
    ///Returns a reference to the shortest path tree map.
alpar@255
   297
alpar@255
   298
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   299
    ///shortest path tree.
alpar@255
   300
    ///\pre \ref run() must be called before using this function.
alpar@688
   301
    const PredMap &predMap() const { return *predecessor;}
jacint@385
   302
 
jacint@385
   303
    ///Returns a reference to the map of nodes of shortest paths.
alpar@255
   304
alpar@255
   305
    ///Returns a reference to the NodeMap of the last but one nodes of the
jacint@385
   306
    ///shortest path tree.
alpar@255
   307
    ///\pre \ref run() must be called before using this function.
alpar@688
   308
    const PredNodeMap &predNodeMap() const { return *pred_node;}
alpar@255
   309
jacint@385
   310
    ///Checks if a node is reachable from the root.
alpar@255
   311
jacint@385
   312
    ///Returns \c true if \c v is reachable from the root.
jacint@385
   313
    ///\warning the root node is reported to be unreached!
alpar@255
   314
    ///\todo Is this what we want?
alpar@255
   315
    ///\pre \ref run() must be called before using this function.
jacint@385
   316
    ///
alpar@688
   317
    bool reached(Node v) { return G->valid((*predecessor)[v]); }
alpar@255
   318
    
alpar@255
   319
  };
alpar@255
   320
  
alpar@255
   321
alpar@255
   322
  // **********************************************************************
alpar@255
   323
  //  IMPLEMENTATIONS
alpar@255
   324
  // **********************************************************************
alpar@255
   325
alpar@430
   326
/// @}
alpar@255
   327
  
alpar@255
   328
} //END OF NAMESPACE HUGO
alpar@255
   329
alpar@255
   330
#endif
alpar@255
   331
alpar@255
   332