doc/groups.dox
author kpeter
Thu, 04 Jun 2009 01:19:06 +0000
changeset 2638 61bf01404ede
parent 2553 bfced05fa852
permissions -rw-r--r--
Various improvements for NS pivot rules
alpar@2391
     1
/* -*- C++ -*-
alpar@2391
     2
 *
alpar@2391
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@2391
     4
 *
alpar@2553
     5
 * Copyright (C) 2003-2008
alpar@2391
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@2391
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@2391
     8
 *
alpar@2391
     9
 * Permission to use, modify and distribute this software is granted
alpar@2391
    10
 * provided that this copyright notice appears in all copies. For
alpar@2391
    11
 * precise terms see the accompanying LICENSE file.
alpar@2391
    12
 *
alpar@2391
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@2391
    14
 * express or implied, and with no claim as to its suitability for any
alpar@2391
    15
 * purpose.
alpar@2391
    16
 *
alpar@2391
    17
 */
alpar@814
    18
alpar@678
    19
/**
alpar@678
    20
@defgroup datas Data Structures
alpar@2566
    21
This group describes the several data structures implemented in LEMON.
alpar@678
    22
*/
alpar@430
    23
alpar@678
    24
/**
alpar@678
    25
@defgroup graphs Graph Structures
alpar@678
    26
@ingroup datas
alpar@921
    27
\brief Graph structures implemented in LEMON.
alpar@430
    28
marci@1172
    29
The implementation of combinatorial algorithms heavily relies on 
marci@1172
    30
efficient graph implementations. LEMON offers data structures which are 
marci@1172
    31
planned to be easily used in an experimental phase of implementation studies, 
marci@1172
    32
and thereafter the program code can be made efficient by small modifications. 
alpar@430
    33
deba@2084
    34
The most efficient implementation of diverse applications require the
deba@2084
    35
usage of different physical graph implementations. These differences
deba@2084
    36
appear in the size of graph we require to handle, memory or time usage
deba@2084
    37
limitations or in the set of operations through which the graph can be
deba@2084
    38
accessed.  LEMON provides several physical graph structures to meet
deba@2084
    39
the diverging requirements of the possible users.  In order to save on
deba@2084
    40
running time or on memory usage, some structures may fail to provide
deba@2084
    41
some graph features like edge or node deletion.
marci@1172
    42
marci@1172
    43
Alteration of standard containers need a very limited number of 
marci@1172
    44
operations, these together satisfy the everyday requirements. 
alpar@2117
    45
In the case of graph structures, different operations are needed which do 
alpar@2006
    46
not alter the physical graph, but gives another view. If some nodes or 
marci@1172
    47
edges have to be hidden or the reverse oriented graph have to be used, then 
alpar@2117
    48
this is the case. It also may happen that in a flow implementation 
alpar@2006
    49
the residual graph can be accessed by another algorithm, or a node-set 
alpar@2006
    50
is to be shrunk for another algorithm. 
marci@1172
    51
LEMON also provides a variety of graphs for these requirements called 
alpar@1401
    52
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only 
alpar@2566
    53
in conjunction with other graph representations. 
alpar@430
    54
alpar@678
    55
You are free to use the graph structure that fit your requirements
alpar@678
    56
the best, most graph algorithms and auxiliary data structures can be used
marci@1172
    57
with any graph structures. 
alpar@678
    58
*/
alpar@430
    59
alpar@678
    60
/**
alpar@2566
    61
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
deba@1866
    62
@ingroup graphs
deba@1866
    63
\brief Graph types between real graphs and graph adaptors.
deba@1866
    64
alpar@2566
    65
This group describes some graph types between real graphs and graph adaptors.
alpar@2566
    66
These classes wrap graphs to give new functionality as the adaptors do it. 
alpar@2566
    67
On the other hand they are not light-weight structures as the adaptors.
deba@1866
    68
*/
deba@1866
    69
deba@1866
    70
/**
alpar@1043
    71
@defgroup maps Maps 
alpar@1043
    72
@ingroup datas
alpar@2566
    73
\brief Map structures implemented in LEMON.
alpar@1043
    74
alpar@2566
    75
This group describes the map structures implemented in LEMON.
alpar@2566
    76
alpar@2566
    77
LEMON provides several special purpose maps that e.g. combine
alpar@1043
    78
new maps from existing ones.
alpar@1043
    79
*/
alpar@1043
    80
alpar@1402
    81
/**
alpar@1402
    82
@defgroup graph_maps Graph Maps 
alpar@1402
    83
@ingroup maps
alpar@1402
    84
\brief Special Graph-Related Maps.
alpar@1402
    85
alpar@2566
    86
This group describes maps that are specifically designed to assign
alpar@2566
    87
values to the nodes and edges of graphs.
alpar@1402
    88
*/
alpar@1402
    89
alpar@1402
    90
alpar@1402
    91
/**
alpar@1402
    92
\defgroup map_adaptors Map Adaptors
alpar@1402
    93
\ingroup maps
alpar@1402
    94
\brief Tools to create new maps from existing ones
alpar@1402
    95
alpar@2566
    96
This group describes map adaptors that are used to create "implicit"
alpar@2566
    97
maps from other maps.
alpar@1402
    98
alpar@2260
    99
Most of them are \ref lemon::concepts::ReadMap "ReadMap"s. They can
alpar@2117
   100
make arithmetic operations between one or two maps (negation, scaling,
alpar@1402
   101
addition, multiplication etc.) or e.g. convert a map to another one
alpar@1402
   102
of different Value type.
deba@2489
   103
alpar@2566
   104
The typical usage of this classes is passing implicit maps to
deba@2489
   105
algorithms.  If a function type algorithm is called then the function
deba@2489
   106
type map adaptors can be used comfortable. For example let's see the
deba@2489
   107
usage of map adaptors with the \c graphToEps() function:
deba@2489
   108
\code
deba@2489
   109
  Color nodeColor(int deg) {
deba@2489
   110
    if (deg >= 2) {
deba@2489
   111
      return Color(0.5, 0.0, 0.5);
deba@2489
   112
    } else if (deg == 1) {
deba@2489
   113
      return Color(1.0, 0.5, 1.0);
deba@2489
   114
    } else {
deba@2489
   115
      return Color(0.0, 0.0, 0.0);
deba@2489
   116
    }
deba@2489
   117
  }
deba@2489
   118
  
deba@2489
   119
  Graph::NodeMap<int> degree_map(graph);
deba@2489
   120
  
deba@2489
   121
  graphToEps(graph, "graph.eps")
deba@2489
   122
    .coords(coords).scaleToA4().undirected()
deba@2489
   123
    .nodeColors(composeMap(functorMap(nodeColor), degree_map)) 
deba@2489
   124
    .run();
deba@2489
   125
\endcode 
deba@2489
   126
The \c functorMap() function makes an \c int to \c Color map from the
deba@2489
   127
\e nodeColor() function. The \c composeMap() compose the \e degree_map
deba@2489
   128
and the previous created map. The composed map is proper function to
deba@2489
   129
get color of each node.
deba@2489
   130
deba@2489
   131
The usage with class type algorithms is little bit harder. In this
deba@2489
   132
case the function type map adaptors can not be used, because the
alpar@2566
   133
function map adaptors give back temporary objects.
deba@2489
   134
\code
deba@2489
   135
  Graph graph;
deba@2489
   136
  
deba@2489
   137
  typedef Graph::EdgeMap<double> DoubleEdgeMap;
deba@2489
   138
  DoubleEdgeMap length(graph);
deba@2489
   139
  DoubleEdgeMap speed(graph);
deba@2489
   140
  
deba@2489
   141
  typedef DivMap<DoubleEdgeMap, DoubleEdgeMap> TimeMap;
deba@2489
   142
  
deba@2489
   143
  TimeMap time(length, speed);
deba@2489
   144
  
deba@2489
   145
  Dijkstra<Graph, TimeMap> dijkstra(graph, time);
deba@2489
   146
  dijkstra.run(source, target);
deba@2489
   147
\endcode
deba@2489
   148
deba@2489
   149
We have a length map and a maximum speed map on a graph. The minimum
deba@2489
   150
time to pass the edge can be calculated as the division of the two
deba@2489
   151
maps which can be done implicitly with the \c DivMap template
deba@2489
   152
class. We use the implicit minimum time map as the length map of the
deba@2489
   153
\c Dijkstra algorithm.
alpar@1402
   154
*/
alpar@1402
   155
alpar@1043
   156
/**
alpar@2072
   157
@defgroup matrices Matrices 
alpar@2072
   158
@ingroup datas
alpar@2566
   159
\brief Two dimensional data storages implemented in LEMON.
alpar@2072
   160
alpar@2566
   161
This group describes two dimensional data storages implemented in LEMON.
alpar@2072
   162
*/
alpar@2072
   163
deba@2084
   164
/**
deba@2084
   165
@defgroup paths Path Structures
deba@2084
   166
@ingroup datas
deba@2084
   167
\brief Path structures implemented in LEMON.
deba@2084
   168
alpar@2566
   169
This group describes the path structures implemented in LEMON.
deba@2084
   170
alpar@2566
   171
LEMON provides flexible data structures to work with paths.
alpar@2566
   172
All of them have similar interfaces and they can be copied easily with
alpar@2566
   173
assignment operators and copy constructors. This makes it easy and
deba@2489
   174
efficient to have e.g. the Dijkstra algorithm to store its result in
deba@2489
   175
any kind of path structure.
deba@2084
   176
alpar@2260
   177
\sa lemon::concepts::Path
deba@2084
   178
deba@2084
   179
*/
alpar@2072
   180
alpar@2072
   181
/**
alpar@678
   182
@defgroup auxdat Auxiliary Data Structures
alpar@678
   183
@ingroup datas
alpar@2566
   184
\brief Auxiliary data structures implemented in LEMON.
alpar@406
   185
alpar@2566
   186
This group describes some data structures implemented in LEMON in
alpar@678
   187
order to make it easier to implement combinatorial algorithms.
alpar@678
   188
*/
alpar@406
   189
alpar@785
   190
alpar@785
   191
/**
deba@2084
   192
@defgroup algs Algorithms
deba@2084
   193
\brief This group describes the several algorithms
alpar@921
   194
implemented in LEMON.
alpar@947
   195
deba@2084
   196
This group describes the several algorithms
alpar@947
   197
implemented in LEMON.
alpar@947
   198
*/
alpar@947
   199
alpar@947
   200
/**
deba@2376
   201
@defgroup search Graph Search
deba@2084
   202
@ingroup algs
alpar@2566
   203
\brief Common graph search algorithms.
alpar@947
   204
alpar@2566
   205
This group describes the common graph search algorithms like 
alpar@2566
   206
Breadth-first search (Bfs) and Depth-first search (Dfs).
alpar@678
   207
*/
alpar@678
   208
alpar@678
   209
/**
deba@2376
   210
@defgroup shortest_path Shortest Path algorithms
deba@2084
   211
@ingroup algs
alpar@2566
   212
\brief Algorithms for finding shortest paths.
deba@2060
   213
alpar@2566
   214
This group describes the algorithms for finding shortest paths in graphs.
deba@2376
   215
*/
deba@2376
   216
deba@2376
   217
/** 
deba@2376
   218
@defgroup max_flow Maximum Flow algorithms 
deba@2376
   219
@ingroup algs 
alpar@2566
   220
\brief Algorithms for finding maximum flows.
deba@2376
   221
deba@2377
   222
This group describes the algorithms for finding maximum flows and
deba@2377
   223
feasible circulations.
deba@2060
   224
alpar@2566
   225
The maximum flow problem is to find a flow between a single source and
alpar@2566
   226
a single target that is maximum. Formally, there is a \f$G=(V,A)\f$
deba@2514
   227
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity
deba@2514
   228
function and given \f$s, t \in V\f$ source and target node. The
alpar@2566
   229
maximum flow is the \f$f_a\f$ solution of the next optimization problem:
deba@2514
   230
deba@2514
   231
\f[ 0 \le f_a \le c_a \f]
alpar@2566
   232
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} \qquad \forall u \in V \setminus \{s,t\}\f]
deba@2514
   233
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f]
deba@2514
   234
alpar@2566
   235
LEMON contains several algorithms for solving maximum flow problems:
deba@2514
   236
- \ref lemon::EdmondsKarp "Edmonds-Karp" 
deba@2514
   237
- \ref lemon::Preflow "Goldberg's Preflow algorithm"
alpar@2566
   238
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees"
deba@2514
   239
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees"
deba@2514
   240
alpar@2566
   241
In most cases the \ref lemon::Preflow "Preflow" algorithm provides the
deba@2514
   242
fastest method to compute the maximum flow. All impelementations
alpar@2566
   243
provides functions to query the minimum cut, which is the dual linear
alpar@2566
   244
programming problem of the maximum flow.
deba@2514
   245
alpar@678
   246
*/
alpar@678
   247
alpar@678
   248
/**
deba@2376
   249
@defgroup min_cost_flow Minimum Cost Flow algorithms
deba@2376
   250
@ingroup algs
deba@2376
   251
alpar@2566
   252
\brief Algorithms for finding minimum cost flows and circulations.
deba@2376
   253
deba@2376
   254
This group describes the algorithms for finding minimum cost flows and
deba@2376
   255
circulations.  
deba@2376
   256
*/
deba@2376
   257
deba@2376
   258
/**
deba@2530
   259
@defgroup min_cut Minimum Cut algorithms 
deba@2530
   260
@ingroup algs 
deba@2376
   261
alpar@2566
   262
\brief Algorithms for finding minimum cut in graphs.
deba@2530
   263
deba@2530
   264
This group describes the algorithms for finding minimum cut in graphs.
deba@2530
   265
deba@2530
   266
The minimum cut problem is to find a non-empty and non-complete
deba@2530
   267
\f$X\f$ subset of the vertices with minimum overall capacity on
deba@2530
   268
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an
deba@2530
   269
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
alpar@2566
   270
cut is the \f$X\f$ solution of the next optimization problem:
deba@2530
   271
deba@2530
   272
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f]
deba@2530
   273
alpar@2566
   274
LEMON contains several algorithms related to minimum cut problems:
deba@2530
   275
alpar@2566
   276
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut
deba@2530
   277
  in directed graphs  
alpar@2566
   278
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to
deba@2530
   279
  calculate minimum cut in undirected graphs
alpar@2566
   280
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all
deba@2530
   281
  pairs minimum cut in undirected graphs
deba@2530
   282
deba@2530
   283
If you want to find minimum cut just between two distinict nodes,
deba@2530
   284
please see the \ref max_flow "Maximum Flow page".
deba@2530
   285
deba@2376
   286
*/
deba@2376
   287
deba@2376
   288
/**
deba@2429
   289
@defgroup graph_prop Connectivity and other graph properties
deba@2084
   290
@ingroup algs
alpar@2566
   291
\brief Algorithms for discovering the graph properties
deba@2060
   292
alpar@2566
   293
This group describes the algorithms for discovering the graph properties
alpar@2566
   294
like connectivity, bipartiteness, euler property, simplicity etc.
deba@2060
   295
deba@2060
   296
\image html edge_biconnected_components.png
deba@2060
   297
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
deba@1750
   298
*/
deba@1750
   299
deba@1750
   300
/**
deba@2500
   301
@defgroup planar Planarity embedding and drawing
deba@2500
   302
@ingroup algs
alpar@2566
   303
\brief Algorithms for planarity checking, embedding and drawing
deba@2500
   304
alpar@2566
   305
This group describes the algorithms for planarity checking, embedding and drawing.
deba@2500
   306
deba@2500
   307
\image html planar.png
deba@2500
   308
\image latex planar.eps "Plane graph" width=\textwidth
deba@2500
   309
*/
deba@2500
   310
deba@2500
   311
/**
deba@2376
   312
@defgroup matching Matching algorithms 
deba@2084
   313
@ingroup algs
alpar@2566
   314
\brief Algorithms for finding matchings in graphs and bipartite graphs.
deba@2060
   315
alpar@2566
   316
This group contains algorithm objects and functions to calculate
deba@2548
   317
matchings in graphs and bipartite graphs. The general matching problem is
deba@2548
   318
finding a subset of the edges which does not shares common endpoints.
deba@2548
   319
 
deba@2548
   320
There are several different algorithms for calculate matchings in
deba@2548
   321
graphs.  The matching problems in bipartite graphs are generally
deba@2548
   322
easier than in general graphs. The goal of the matching optimization
deba@2548
   323
can be the finding maximum cardinality, maximum weight or minimum cost
deba@2548
   324
matching. The search can be constrained to find perfect or
deba@2548
   325
maximum cardinality matching.
deba@2548
   326
deba@2548
   327
Lemon contains the next algorithms:
deba@2548
   328
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp 
deba@2548
   329
  augmenting path algorithm for calculate maximum cardinality matching in 
deba@2548
   330
  bipartite graphs
deba@2548
   331
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel 
deba@2548
   332
  algorithm for calculate maximum cardinality matching in bipartite graphs 
deba@2548
   333
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching" 
deba@2548
   334
  Successive shortest path algorithm for calculate maximum weighted matching 
deba@2548
   335
  and maximum weighted bipartite matching in bipartite graph
deba@2548
   336
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching" 
deba@2548
   337
  Successive shortest path algorithm for calculate minimum cost maximum 
deba@2548
   338
  matching in bipartite graph
deba@2548
   339
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm
deba@2548
   340
  for calculate maximum cardinality matching in general graph
deba@2548
   341
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom
deba@2548
   342
  shrinking algorithm for calculate maximum weighted matching in general
deba@2548
   343
  graph
deba@2548
   344
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching"
deba@2548
   345
  Edmond's blossom shrinking algorithm for calculate maximum weighted
deba@2548
   346
  perfect matching in general graph
deba@2060
   347
deba@2060
   348
\image html bipartite_matching.png
deba@2060
   349
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
deba@2060
   350
deba@2042
   351
*/
deba@2042
   352
deba@2042
   353
/**
deba@2376
   354
@defgroup spantree Minimum Spanning Tree algorithms
deba@2084
   355
@ingroup algs
alpar@2566
   356
\brief Algorithms for finding a minimum cost spanning tree in a graph.
deba@2084
   357
alpar@2566
   358
This group describes the algorithms for finding a minimum cost spanning
deba@2084
   359
tree in a graph
deba@2084
   360
*/
deba@2084
   361
deba@2084
   362
deba@2084
   363
/**
deba@2376
   364
@defgroup auxalg Auxiliary algorithms
deba@2084
   365
@ingroup algs
alpar@2566
   366
\brief Auxiliary algorithms implemented in LEMON.
deba@2084
   367
alpar@2566
   368
This group describes some algorithms implemented in LEMON
alpar@2566
   369
in order to make it easier to implement complex algorithms.
deba@2376
   370
*/
deba@2084
   371
deba@2376
   372
/**
deba@2376
   373
@defgroup approx Approximation algorithms
alpar@2566
   374
\brief Approximation algorithms.
deba@2376
   375
alpar@2566
   376
This group describes the approximation and heuristic algorithms
alpar@2566
   377
implemented in LEMON.
deba@2084
   378
*/
deba@2084
   379
deba@2084
   380
/**
deba@2084
   381
@defgroup gen_opt_group General Optimization Tools
deba@2084
   382
\brief This group describes some general optimization frameworks
deba@2084
   383
implemented in LEMON.
deba@2084
   384
deba@2084
   385
This group describes some general optimization frameworks
deba@2084
   386
implemented in LEMON.
deba@2084
   387
alpar@1151
   388
*/
alpar@1151
   389
deba@2370
   390
/**
deba@2371
   391
@defgroup lp_group Lp and Mip solvers
deba@2370
   392
@ingroup gen_opt_group
deba@2370
   393
\brief Lp and Mip solver interfaces for LEMON.
deba@2370
   394
deba@2370
   395
This group describes Lp and Mip solver interfaces for LEMON. The
deba@2370
   396
various LP solvers could be used in the same manner with this
deba@2370
   397
interface.
deba@2370
   398
deba@2370
   399
*/
deba@2370
   400
deba@2368
   401
/** 
deba@2370
   402
@defgroup lp_utils Tools for Lp and Mip solvers 
deba@2370
   403
@ingroup lp_group
alpar@2566
   404
\brief Helper tools to the Lp and Mip solvers.
deba@2368
   405
deba@2368
   406
This group adds some helper tools to general optimization framework
deba@2368
   407
implemented in LEMON.
deba@2368
   408
*/
deba@2368
   409
alpar@1151
   410
/**
deba@2370
   411
@defgroup metah Metaheuristics
deba@2370
   412
@ingroup gen_opt_group
deba@2370
   413
\brief Metaheuristics for LEMON library.
deba@2370
   414
alpar@2566
   415
This group describes some metaheuristic optimization tools.
deba@2370
   416
*/
deba@2370
   417
deba@2370
   418
/**
deba@2376
   419
@defgroup utils Tools and Utilities 
alpar@2566
   420
\brief Tools and utilities for programming in LEMON
deba@2376
   421
alpar@2566
   422
Tools and utilities for programming in LEMON.
deba@2376
   423
*/
deba@2376
   424
deba@2376
   425
/**
deba@2376
   426
@defgroup gutils Basic Graph Utilities
deba@2376
   427
@ingroup utils
alpar@2566
   428
\brief Simple basic graph utilities.
deba@2376
   429
deba@2376
   430
This group describes some simple basic graph utilities.
deba@2376
   431
*/
deba@2376
   432
deba@2376
   433
/**
alpar@678
   434
@defgroup misc Miscellaneous Tools
deba@2376
   435
@ingroup utils
alpar@2566
   436
\brief Tools for development, debugging and testing.
alpar@2566
   437
alpar@2566
   438
This group describes several useful tools for development,
alpar@678
   439
debugging and testing.
alpar@678
   440
*/
alpar@678
   441
alpar@678
   442
/**
alpar@1847
   443
@defgroup timecount Time measuring and Counting
alpar@1847
   444
@ingroup misc
alpar@2566
   445
\brief Simple tools for measuring the performance of algorithms.
alpar@2566
   446
alpar@2566
   447
This group describes simple tools for measuring the performance
alpar@1847
   448
of algorithms.
alpar@1847
   449
*/
alpar@1847
   450
alpar@1847
   451
/**
deba@2376
   452
@defgroup graphbits Tools for Graph Implementation
deba@2376
   453
@ingroup utils
alpar@2566
   454
\brief Tools to make it easier to create graphs.
deba@2376
   455
alpar@2566
   456
This group describes the tools that makes it easier to create graphs and
deba@2376
   457
the maps that dynamically update with the graph changes.
deba@2376
   458
*/
deba@2376
   459
deba@2376
   460
/**
deba@2376
   461
@defgroup exceptions Exceptions
deba@2376
   462
@ingroup utils
alpar@2566
   463
\brief Exceptions defined in LEMON.
alpar@2566
   464
alpar@2566
   465
This group describes the exceptions defined in LEMON.
deba@2376
   466
*/
deba@2376
   467
deba@2376
   468
/**
deba@2016
   469
@defgroup io_group Input-Output
alpar@2566
   470
\brief Graph Input-Output methods
deba@2084
   471
alpar@2566
   472
This group describes the tools for importing and exporting graphs 
deba@2084
   473
and graph related data. Now it supports the LEMON format, the
alpar@2566
   474
\c DIMACS format and the encapsulated postscript (EPS) format.
deba@2084
   475
*/
deba@2084
   476
deba@2084
   477
/**
deba@2084
   478
@defgroup lemon_io Lemon Input-Output
deba@2084
   479
@ingroup io_group
deba@2084
   480
\brief Reading and writing LEMON format
deba@2084
   481
alpar@2566
   482
This group describes methods for reading and writing LEMON format. 
alpar@2566
   483
You can find more about this format on the \ref graph-io-page "Graph Input-Output"
deba@2084
   484
tutorial pages.
alpar@1287
   485
*/
alpar@1287
   486
alpar@1287
   487
/**
deba@2016
   488
@defgroup section_io Section readers and writers
deba@2084
   489
@ingroup lemon_io
alpar@2566
   490
\brief Section readers and writers for LEMON Input-Output.
deba@2016
   491
alpar@2566
   492
This group describes section reader and writer classes that can be 
alpar@2566
   493
attached to \ref LemonReader and \ref LemonWriter.
deba@2016
   494
*/
deba@2016
   495
deba@2016
   496
/**
alpar@2566
   497
@defgroup item_io Item readers and writers
deba@2084
   498
@ingroup lemon_io
alpar@2566
   499
\brief Item readers and writers for LEMON Input-Output.
deba@2016
   500
alpar@2566
   501
This group describes reader and writer classes for various data types
alpar@2566
   502
(e.g. map or attribute values). These classes can be attached to
alpar@2566
   503
\ref LemonReader and \ref LemonWriter.
deba@2016
   504
*/
deba@2016
   505
deba@2016
   506
/**
deba@2084
   507
@defgroup eps_io Postscript exporting
deba@2084
   508
@ingroup io_group
alpar@2117
   509
\brief General \c EPS drawer and graph exporter
deba@2084
   510
alpar@2566
   511
This group describes general \c EPS drawing methods and special
deba@2084
   512
graph exporting tools. 
deba@2084
   513
*/
deba@2084
   514
deba@2084
   515
deba@2084
   516
/**
klao@1030
   517
@defgroup concept Concepts
klao@959
   518
\brief Skeleton classes and concept checking classes
alpar@794
   519
klao@959
   520
This group describes the data/algorithm skeletons and concept checking
klao@1030
   521
classes implemented in LEMON.
klao@1030
   522
alpar@2117
   523
The purpose of the classes in this group is fourfold.
alpar@2117
   524
 
alpar@2117
   525
- These classes contain the documentations of the concepts. In order
alpar@2117
   526
  to avoid document multiplications, an implementation of a concept
alpar@2117
   527
  simply refers to the corresponding concept class.
klao@1030
   528
alpar@2233
   529
- These classes declare every functions, <tt>typedef</tt>s etc. an
alpar@2117
   530
  implementation of the concepts should provide, however completely
alpar@2117
   531
  without implementations and real data structures behind the
alpar@2117
   532
  interface. On the other hand they should provide nothing else. All
alpar@2117
   533
  the algorithms working on a data structure meeting a certain concept
alpar@2117
   534
  should compile with these classes. (Though it will not run properly,
alpar@2117
   535
  of course.) In this way it is easily to check if an algorithm
alpar@2117
   536
  doesn't use any extra feature of a certain implementation.
alpar@2117
   537
alpar@2233
   538
- The concept descriptor classes also provide a <em>checker class</em>
alpar@2566
   539
  that makes it possible to check whether a certain implementation of a
alpar@2117
   540
  concept indeed provides all the required features.
alpar@2117
   541
alpar@2117
   542
- Finally, They can serve as a skeleton of a new implementation of a concept.
klao@1030
   543
alpar@794
   544
*/
alpar@794
   545
deba@2084
   546
klao@1030
   547
/**
klao@1030
   548
@defgroup graph_concepts Graph Structure Concepts
klao@1030
   549
@ingroup concept
klao@1030
   550
\brief Skeleton and concept checking classes for graph structures
klao@1030
   551
alpar@2566
   552
This group describes the skeletons and concept checking classes of LEMON's
klao@1030
   553
graph structures and helper classes used to implement these.
klao@1030
   554
*/
alpar@794
   555
alpar@1587
   556
/* --- Unused group
alpar@678
   557
@defgroup experimental Experimental Structures and Algorithms
alpar@2566
   558
This group describes some Experimental structures and algorithms.
alpar@678
   559
The stuff here is subject to change.
alpar@678
   560
*/
alpar@1151
   561
alpar@1558
   562
/**
athos@1582
   563
\anchor demoprograms
athos@1582
   564
alpar@1558
   565
@defgroup demos Demo programs
alpar@1558
   566
alpar@1559
   567
Some demo programs are listed here. Their full source codes can be found in
alpar@1558
   568
the \c demo subdirectory of the source tree.
alpar@1558
   569
alpar@2566
   570
It order to compile them, use <tt>--enable-demo</tt> configure option when
alpar@2566
   571
build the library.
alpar@1558
   572
*/
alpar@1558
   573
deba@2491
   574
/**
deba@2491
   575
@defgroup tools Standalone utility applications
deba@2491
   576
deba@2491
   577
Some utility applications are listed here. 
deba@2491
   578
deba@2491
   579
The standard compilation procedure (<tt>./configure;make</tt>) will compile
deba@2491
   580
them, as well. 
deba@2491
   581
*/
deba@2491
   582