lemon/suurballe.h
author deba
Mon, 13 Nov 2006 12:30:59 +0000
changeset 2300 69330d717235
parent 1956 a055123339d5
child 2335 27aa03cd3121
permissions -rw-r--r--
Conditional execution until the target is reached
/previous implementation: until the target is the next to process/

todo: query the target when we give nodemap as condition
alpar@906
     1
/* -*- C++ -*-
alpar@906
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     8
 *
alpar@906
     9
 * Permission to use, modify and distribute this software is granted
alpar@906
    10
 * provided that this copyright notice appears in all copies. For
alpar@906
    11
 * precise terms see the accompanying LICENSE file.
alpar@906
    12
 *
alpar@906
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    14
 * express or implied, and with no claim as to its suitability for any
alpar@906
    15
 * purpose.
alpar@906
    16
 *
alpar@906
    17
 */
alpar@906
    18
alpar@921
    19
#ifndef LEMON_SUURBALLE_H
alpar@921
    20
#define LEMON_SUURBALLE_H
alpar@899
    21
alpar@899
    22
///\ingroup flowalgs
alpar@899
    23
///\file
alpar@899
    24
///\brief An algorithm for finding k paths of minimal total length.
alpar@899
    25
alpar@899
    26
alpar@921
    27
#include <lemon/maps.h>
alpar@899
    28
#include <vector>
deba@2276
    29
#include <lemon/ssp_min_cost_flow.h>
alpar@899
    30
alpar@921
    31
namespace lemon {
alpar@899
    32
alpar@899
    33
/// \addtogroup flowalgs
alpar@899
    34
/// @{
alpar@899
    35
deba@2276
    36
  ///\brief Implementation of an algorithm for finding k edge-disjoint
deba@2276
    37
  /// paths between 2 nodes of minimal total length
alpar@899
    38
  ///
alpar@921
    39
  /// The class \ref lemon::Suurballe implements
alpar@899
    40
  /// an algorithm for finding k edge-disjoint paths
alpar@899
    41
  /// from a given source node to a given target node in an
alpar@899
    42
  /// edge-weighted directed graph having minimal total weight (length).
alpar@899
    43
  ///
athos@1527
    44
  ///\warning Length values should be nonnegative!
alpar@899
    45
  /// 
alpar@899
    46
  ///\param Graph The directed graph type the algorithm runs on.
alpar@899
    47
  ///\param LengthMap The type of the length map (values should be nonnegative).
alpar@899
    48
  ///
alpar@968
    49
  ///\note It it questionable whether it is correct to call this method after
alpar@1020
    50
  ///%Suurballe for it is just a special case of Edmonds' and Karp's algorithm
alpar@968
    51
  ///for finding minimum cost flows. In fact, this implementation just
deba@2276
    52
  ///wraps the SspMinCostFlow algorithms. The paper of both %Suurballe and
alpar@899
    53
  ///Edmonds-Karp published in 1972, therefore it is possibly right to
alpar@899
    54
  ///state that they are
alpar@899
    55
  ///independent results. Most frequently this special case is referred as
alpar@899
    56
  ///%Suurballe method in the literature, especially in communication
alpar@899
    57
  ///network context.
alpar@899
    58
  ///\author Attila Bernath
alpar@899
    59
  template <typename Graph, typename LengthMap>
alpar@899
    60
  class Suurballe{
alpar@899
    61
alpar@899
    62
alpar@987
    63
    typedef typename LengthMap::Value Length;
alpar@899
    64
    
alpar@899
    65
    typedef typename Graph::Node Node;
alpar@899
    66
    typedef typename Graph::NodeIt NodeIt;
alpar@899
    67
    typedef typename Graph::Edge Edge;
alpar@899
    68
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@899
    69
    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
alpar@899
    70
alpar@899
    71
    typedef ConstMap<Edge,int> ConstMap;
alpar@899
    72
alpar@899
    73
    const Graph& G;
alpar@899
    74
marci@941
    75
    Node s;
marci@941
    76
    Node t;
marci@941
    77
alpar@899
    78
    //Auxiliary variables
alpar@899
    79
    //This is the capacity map for the mincostflow problem
alpar@899
    80
    ConstMap const1map;
alpar@899
    81
    //This MinCostFlow instance will actually solve the problem
deba@2276
    82
    SspMinCostFlow<Graph, LengthMap, ConstMap> min_cost_flow;
alpar@899
    83
alpar@899
    84
    //Container to store found paths
alpar@899
    85
    std::vector< std::vector<Edge> > paths;
alpar@899
    86
alpar@899
    87
  public :
alpar@899
    88
alpar@899
    89
deba@2276
    90
    /// \brief The constructor of the class.
deba@2276
    91
    ///
deba@2276
    92
    /// \param _G The directed graph the algorithm runs on. 
deba@2276
    93
    /// \param _length The length (weight or cost) of the edges. 
deba@2276
    94
    /// \param _s Source node.
deba@2276
    95
    /// \param _t Target node.
marci@941
    96
    Suurballe(Graph& _G, LengthMap& _length, Node _s, Node _t) : 
marci@941
    97
      G(_G), s(_s), t(_t), const1map(1), 
marci@941
    98
      min_cost_flow(_G, _length, const1map, _s, _t) { }
alpar@899
    99
deba@2276
   100
    /// \brief Runs the algorithm.
alpar@899
   101
    ///
deba@2276
   102
    /// Runs the algorithm.
deba@2276
   103
    /// Returns k if there are at least k edge-disjoint paths from s to t.
deba@2276
   104
    /// Otherwise it returns the number of edge-disjoint paths found 
deba@2276
   105
    /// from s to t.
deba@2276
   106
    ///
deba@2276
   107
    /// \param k How many paths are we looking for?
alpar@899
   108
    ///
marci@941
   109
    int run(int k) {
marci@941
   110
      int i = min_cost_flow.run(k);
alpar@899
   111
alpar@899
   112
      //Let's find the paths
alpar@899
   113
      //We put the paths into stl vectors (as an inner representation). 
alpar@899
   114
      //In the meantime we lose the information stored in 'reversed'.
alpar@899
   115
      //We suppose the lengths to be positive now.
alpar@899
   116
marci@941
   117
      //We don't want to change the flow of min_cost_flow, so we make a copy
alpar@899
   118
      //The name here suggests that the flow has only 0/1 values.
alpar@899
   119
      EdgeIntMap reversed(G); 
alpar@899
   120
alpar@899
   121
      for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) 
marci@941
   122
	reversed[e] = min_cost_flow.getFlow()[e];
alpar@899
   123
      
alpar@899
   124
      paths.clear();
alpar@899
   125
      paths.resize(k);
alpar@899
   126
      for (int j=0; j<i; ++j){
alpar@899
   127
	Node n=s;
alpar@899
   128
alpar@899
   129
	while (n!=t){
alpar@899
   130
klao@946
   131
	  OutEdgeIt e(G, n);
alpar@899
   132
	  
alpar@899
   133
	  while (!reversed[e]){
alpar@899
   134
	    ++e;
alpar@899
   135
	  }
alpar@986
   136
	  n = G.target(e);
alpar@899
   137
	  paths[j].push_back(e);
alpar@899
   138
	  reversed[e] = 1-reversed[e];
alpar@899
   139
	}
alpar@899
   140
	
alpar@899
   141
      }
alpar@899
   142
      return i;
alpar@899
   143
    }
alpar@899
   144
alpar@899
   145
    
deba@2276
   146
    /// \brief Returns the total length of the paths.
deba@2276
   147
    ///
deba@2276
   148
    /// This function gives back the total length of the found paths.
alpar@899
   149
    Length totalLength(){
marci@941
   150
      return min_cost_flow.totalLength();
alpar@899
   151
    }
alpar@899
   152
deba@2276
   153
    /// \brief Returns the found flow.
deba@2276
   154
    ///
deba@2276
   155
    /// This function returns a const reference to the EdgeMap \c flow.
marci@941
   156
    const EdgeIntMap &getFlow() const { return min_cost_flow.flow;}
alpar@899
   157
deba@2276
   158
    /// \brief Returns the optimal dual solution
deba@2276
   159
    ///
deba@2276
   160
    /// This function returns a const reference to the NodeMap \c
deba@2276
   161
    /// potential (the dual solution).
marci@941
   162
    const EdgeIntMap &getPotential() const { return min_cost_flow.potential;}
alpar@899
   163
deba@2276
   164
    /// \brief Checks whether the complementary slackness holds.
deba@2276
   165
    ///
deba@2276
   166
    /// This function checks, whether the given solution is optimal.
deba@2276
   167
    /// Currently this function only checks optimality, doesn't bother
deba@2276
   168
    /// with feasibility.  It is meant for testing purposes.
alpar@899
   169
    bool checkComplementarySlackness(){
marci@941
   170
      return min_cost_flow.checkComplementarySlackness();
alpar@899
   171
    }
alpar@899
   172
deba@2276
   173
    /// \brief Read the found paths.
alpar@899
   174
    ///
deba@2276
   175
    /// This function gives back the \c j-th path in argument p.
deba@2276
   176
    /// Assumes that \c run() has been run and nothing has changed
deba@2276
   177
    /// since then.
deba@2276
   178
    ///
deba@2276
   179
    /// \warning It is assumed that \c p is constructed to be a path
deba@2276
   180
    /// of graph \c G.  If \c j is not less than the result of
deba@2276
   181
    /// previous \c run, then the result here will be an empty path
deba@2276
   182
    /// (\c j can be 0 as well).
deba@2276
   183
    ///
deba@2276
   184
    /// \param Path The type of the path structure to put the result
deba@2276
   185
    /// to (must meet lemon path concept).
deba@2276
   186
    /// \param p The path to put the result to.
deba@2276
   187
    /// \param j Which path you want to get from the found paths (in a
deba@2276
   188
    /// real application you would get the found paths iteratively).
alpar@899
   189
    template<typename Path>
alpar@899
   190
    void getPath(Path& p, size_t j){
alpar@899
   191
alpar@899
   192
      p.clear();
alpar@899
   193
      if (j>paths.size()-1){
alpar@899
   194
	return;
alpar@899
   195
      }
alpar@899
   196
      typename Path::Builder B(p);
alpar@899
   197
      for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
alpar@899
   198
	  i!=paths[j].end(); ++i ){
alpar@899
   199
	B.pushBack(*i);
alpar@899
   200
      }
alpar@899
   201
alpar@899
   202
      B.commit();
alpar@899
   203
    }
alpar@899
   204
alpar@899
   205
  }; //class Suurballe
alpar@899
   206
alpar@899
   207
  ///@}
alpar@899
   208
alpar@921
   209
} //namespace lemon
alpar@899
   210
alpar@921
   211
#endif //LEMON_SUURBALLE_H