src/lemon/unionfind.h
author alpar
Sun, 06 Feb 2005 14:44:41 +0000
changeset 1128 6a347310d4c2
parent 914 174490f545f8
child 1164 80bb73097736
permissions -rw-r--r--
Several important changes:
- Named parameters for setting ReachedMap
- run() is separated into initialization and processing phase
- It is possible to run Dijkstra from multiple sources
- It is possible to stop the execution when a destination is reached.
alpar@906
     1
/* -*- C++ -*-
alpar@921
     2
 * src/lemon/unionfind.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@906
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@906
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_UNION_FIND_H
alpar@921
    18
#define LEMON_UNION_FIND_H
beckerjc@483
    19
klao@491
    20
//!\ingroup auxdat
beckerjc@483
    21
//!\file
beckerjc@483
    22
//!\brief Union-Find data structures.
alpar@774
    23
//!
alpar@774
    24
//!\bug unionfind_test.cc doesn't work with Intel compiler. It compiles but
alpar@774
    25
//!fails to run (Segmentation fault).
beckerjc@483
    26
beckerjc@483
    27
beckerjc@483
    28
#include <vector>
beckerjc@483
    29
#include <list>
beckerjc@483
    30
#include <utility>
beckerjc@483
    31
#include <algorithm>
beckerjc@483
    32
alpar@921
    33
#include <lemon/invalid.h>
beckerjc@483
    34
alpar@921
    35
namespace lemon {
beckerjc@483
    36
beckerjc@483
    37
  //! \addtogroup auxdat
beckerjc@483
    38
  //! @{
beckerjc@483
    39
beckerjc@483
    40
  /**
beckerjc@483
    41
   * \brief A \e Union-Find data structure implementation
beckerjc@483
    42
   *
beckerjc@483
    43
   * The class implements the \e Union-Find data structure. 
beckerjc@483
    44
   * The union operation uses rank heuristic, while
athos@649
    45
   * the find operation uses path compression.
beckerjc@483
    46
   * This is a very simple but efficient implementation, providing 
beckerjc@483
    47
   * only four methods: join (union), find, insert and size.
beckerjc@483
    48
   * For more features see the \ref UnionFindEnum class.
beckerjc@483
    49
   *
alpar@810
    50
   * It is primarily used in Kruskal algorithm for finding minimal
alpar@810
    51
   * cost spanning tree in a graph.
alpar@810
    52
   * \sa kruskal()
alpar@810
    53
   *
beckerjc@483
    54
   * \pre The elements are automatically added only if the map 
beckerjc@483
    55
   * given to the constructor was filled with -1's. Otherwise you
beckerjc@483
    56
   * need to add all the elements by the \ref insert() method.
alpar@810
    57
   * \bug It is not clear what the constructor parameter is used for.
beckerjc@483
    58
   */
beckerjc@483
    59
beckerjc@483
    60
  template <typename T, typename TIntMap>
beckerjc@483
    61
  class UnionFind {
beckerjc@483
    62
    
beckerjc@483
    63
  public:
beckerjc@483
    64
    typedef T ElementType;
beckerjc@483
    65
    typedef std::pair<int,int> PairType;
beckerjc@483
    66
beckerjc@483
    67
  private:
beckerjc@483
    68
    std::vector<PairType> data;
beckerjc@483
    69
    TIntMap& map;
beckerjc@483
    70
beckerjc@483
    71
  public:
beckerjc@483
    72
    UnionFind(TIntMap& m) : map(m) {}
beckerjc@483
    73
beckerjc@483
    74
    /**
beckerjc@483
    75
     * \brief Returns the index of the element's component.
beckerjc@483
    76
     *
beckerjc@483
    77
     * The method returns the index of the element's component.
beckerjc@483
    78
     * This is an integer between zero and the number of inserted elements.
beckerjc@483
    79
     */
beckerjc@483
    80
beckerjc@483
    81
    int find(T a)
beckerjc@483
    82
    {
beckerjc@483
    83
      int comp0 = map[a];
beckerjc@483
    84
      if (comp0 < 0) {
beckerjc@483
    85
	return insert(a);
beckerjc@483
    86
      }
beckerjc@483
    87
      int comp = comp0;
beckerjc@483
    88
      int next;
beckerjc@483
    89
      while ( (next = data[comp].first) != comp) {
beckerjc@483
    90
	comp = next;
beckerjc@483
    91
      }
beckerjc@483
    92
      while ( (next = data[comp0].first) != comp) {
beckerjc@483
    93
	data[comp0].first = comp;
beckerjc@483
    94
	comp0 = next;
beckerjc@483
    95
      }
beckerjc@483
    96
beckerjc@483
    97
      return comp;
beckerjc@483
    98
    }
beckerjc@483
    99
beckerjc@483
   100
    /**
beckerjc@483
   101
     * \brief Insert a new element into the structure.
beckerjc@483
   102
     *
beckerjc@483
   103
     * This method inserts a new element into the data structure. 
beckerjc@483
   104
     *
beckerjc@483
   105
     * It is not required to use this method:
beckerjc@483
   106
     * if the map given to the constructor was filled 
beckerjc@483
   107
     * with -1's then it is called automatically
beckerjc@483
   108
     * on the first \ref find or \ref join.
beckerjc@483
   109
     *
beckerjc@483
   110
     * The method returns the index of the new component.
beckerjc@483
   111
     */
beckerjc@483
   112
beckerjc@483
   113
    int insert(T a)
beckerjc@483
   114
    {
beckerjc@483
   115
      int n = data.size();
beckerjc@483
   116
      data.push_back(std::make_pair(n, 1));
beckerjc@483
   117
      map.set(a,n);
beckerjc@483
   118
      return n;
beckerjc@483
   119
    }
beckerjc@483
   120
beckerjc@483
   121
    /**
beckerjc@483
   122
     * \brief Joining the components of element \e a and element \e b.
beckerjc@483
   123
     *
beckerjc@483
   124
     * This is the \e union operation of the Union-Find structure. 
beckerjc@483
   125
     * Joins the component of elemenent \e a and component of
beckerjc@483
   126
     * element \e b. If \e a and \e b are in the same component then
beckerjc@483
   127
     * it returns false otherwise it returns true.
beckerjc@483
   128
     */
beckerjc@483
   129
beckerjc@483
   130
    bool join(T a, T b)
beckerjc@483
   131
    {
beckerjc@483
   132
      int ca = find(a);
beckerjc@483
   133
      int cb = find(b);
beckerjc@483
   134
beckerjc@483
   135
      if ( ca == cb ) 
beckerjc@483
   136
	return false;
beckerjc@483
   137
beckerjc@483
   138
      if ( data[ca].second > data[cb].second ) {
beckerjc@483
   139
	data[cb].first = ca;
beckerjc@483
   140
	data[ca].second += data[cb].second;
beckerjc@483
   141
      }
beckerjc@483
   142
      else {
beckerjc@483
   143
	data[ca].first = cb;
beckerjc@483
   144
	data[cb].second += data[ca].second;
beckerjc@483
   145
      }
beckerjc@483
   146
      return true;
beckerjc@483
   147
    }
beckerjc@483
   148
beckerjc@483
   149
    /**
beckerjc@483
   150
     * \brief Returns the size of the component of element \e a.
beckerjc@483
   151
     *
beckerjc@483
   152
     * Returns the size of the component of element \e a.
beckerjc@483
   153
     */
beckerjc@483
   154
beckerjc@483
   155
    int size(T a)
beckerjc@483
   156
    {
beckerjc@483
   157
      int ca = find(a);
beckerjc@483
   158
      return data[ca].second;
beckerjc@483
   159
    }
beckerjc@483
   160
beckerjc@483
   161
  };
beckerjc@483
   162
beckerjc@483
   163
beckerjc@483
   164
beckerjc@483
   165
beckerjc@483
   166
  /*******************************************************/
beckerjc@483
   167
beckerjc@483
   168
beckerjc@483
   169
#ifdef DEVELOPMENT_DOCS
beckerjc@483
   170
beckerjc@483
   171
  /**
beckerjc@483
   172
   * \brief The auxiliary class for the \ref UnionFindEnum class.
beckerjc@483
   173
   *
beckerjc@483
   174
   * In the \ref UnionFindEnum class all components are represented as
beckerjc@483
   175
   * a std::list. 
beckerjc@483
   176
   * Items of these lists are UnionFindEnumItem structures.
beckerjc@483
   177
   *
beckerjc@483
   178
   * The class has four fields:
beckerjc@483
   179
   *  - T me - the actual element 
beckerjc@483
   180
   *  - IIter parent - the parent of the element in the union-find structure
beckerjc@483
   181
   *  - int size - the size of the component of the element. 
beckerjc@483
   182
   *            Only valid if the element
beckerjc@483
   183
   *            is the leader of the component.
beckerjc@483
   184
   *  - CIter my_class - pointer into the list of components 
beckerjc@483
   185
   *            pointing to the component of the element.
beckerjc@483
   186
   *            Only valid if the element is the leader of the component.
beckerjc@483
   187
   */
beckerjc@483
   188
beckerjc@483
   189
#endif
beckerjc@483
   190
beckerjc@483
   191
  template <typename T>
beckerjc@483
   192
  struct UnionFindEnumItem {
beckerjc@483
   193
beckerjc@483
   194
    typedef std::list<UnionFindEnumItem> ItemList;
beckerjc@483
   195
    typedef std::list<ItemList> ClassList;
beckerjc@483
   196
    typedef typename ItemList::iterator IIter;
beckerjc@483
   197
    typedef typename ClassList::iterator CIter;
beckerjc@483
   198
beckerjc@483
   199
    T me;
beckerjc@483
   200
    IIter parent;
beckerjc@483
   201
    int size;
beckerjc@483
   202
    CIter my_class;
beckerjc@483
   203
beckerjc@483
   204
    UnionFindEnumItem() {}
beckerjc@483
   205
    UnionFindEnumItem(const T &_me, CIter _my_class): 
beckerjc@483
   206
      me(_me), size(1), my_class(_my_class) {}
beckerjc@483
   207
  };
beckerjc@483
   208
beckerjc@483
   209
beckerjc@483
   210
  /**
beckerjc@483
   211
   * \brief A \e Union-Find data structure implementation which
beckerjc@483
   212
   * is able to enumerate the components.
beckerjc@483
   213
   *
athos@649
   214
   * The class implements a \e Union-Find data structure
beckerjc@483
   215
   * which is able to enumerate the components and the items in
beckerjc@483
   216
   * a component. If you don't need this feature then perhaps it's
beckerjc@483
   217
   * better to use the \ref UnionFind class which is more efficient.
beckerjc@483
   218
   *
beckerjc@483
   219
   * The union operation uses rank heuristic, while
athos@649
   220
   * the find operation uses path compression.
beckerjc@483
   221
   *
beckerjc@483
   222
   * \pre You
beckerjc@483
   223
   * need to add all the elements by the \ref insert() method.
beckerjc@483
   224
   */
beckerjc@483
   225
beckerjc@483
   226
beckerjc@483
   227
  template <typename T, template <typename Item> class Map>
beckerjc@483
   228
  class UnionFindEnum {
beckerjc@483
   229
beckerjc@483
   230
    typedef std::list<UnionFindEnumItem<T> > ItemList;
beckerjc@483
   231
    typedef std::list<ItemList> ClassList;
beckerjc@483
   232
    typedef typename ItemList::iterator IIter;
beckerjc@483
   233
    typedef typename ItemList::const_iterator IcIter;
beckerjc@483
   234
    typedef typename ClassList::iterator CIter;
beckerjc@483
   235
    typedef typename ClassList::const_iterator CcIter;
beckerjc@483
   236
beckerjc@483
   237
  public:
beckerjc@483
   238
    typedef T ElementType;
beckerjc@483
   239
    typedef UnionFindEnumItem<T> ItemType;
beckerjc@483
   240
    typedef Map< IIter > MapType;
beckerjc@483
   241
beckerjc@483
   242
  private:
beckerjc@483
   243
    MapType& m;
beckerjc@483
   244
    ClassList classes;
beckerjc@483
   245
beckerjc@483
   246
    IIter _find(IIter a) const {
beckerjc@483
   247
      IIter comp = a;
beckerjc@483
   248
      IIter next;
beckerjc@483
   249
      while( (next = comp->parent) != comp ) {
beckerjc@483
   250
	comp = next;
beckerjc@483
   251
      }
beckerjc@483
   252
beckerjc@483
   253
      IIter comp1 = a;
beckerjc@483
   254
      while( (next = comp1->parent) != comp ) {
beckerjc@483
   255
	comp1->parent = comp->parent;
beckerjc@483
   256
	comp1 = next;
beckerjc@483
   257
      }
beckerjc@483
   258
      return comp;
beckerjc@483
   259
    }
beckerjc@483
   260
beckerjc@483
   261
  public:
beckerjc@483
   262
    UnionFindEnum(MapType& _m) : m(_m) {}
beckerjc@483
   263
beckerjc@483
   264
beckerjc@483
   265
    /**
beckerjc@483
   266
     * \brief Insert the given element into a new component.
beckerjc@483
   267
     *
beckerjc@483
   268
     * This method creates a new component consisting only of the
beckerjc@483
   269
     * given element.
beckerjc@483
   270
     */
beckerjc@483
   271
beckerjc@483
   272
    void insert(const T &a)
beckerjc@483
   273
    {
beckerjc@483
   274
beckerjc@483
   275
beckerjc@483
   276
      classes.push_back(ItemList());
beckerjc@483
   277
      CIter aclass = classes.end();
beckerjc@483
   278
      --aclass;
beckerjc@483
   279
beckerjc@483
   280
      ItemList &alist = *aclass;
beckerjc@483
   281
      alist.push_back(ItemType(a, aclass));
beckerjc@483
   282
      IIter ai = alist.begin();
beckerjc@483
   283
beckerjc@483
   284
      ai->parent = ai;
beckerjc@483
   285
      m.set(a, ai);
beckerjc@483
   286
beckerjc@483
   287
    }
beckerjc@483
   288
beckerjc@483
   289
    /**
beckerjc@483
   290
     * \brief Insert the given element into the component of the others.
beckerjc@483
   291
     *
beckerjc@483
   292
     * This methods insert the element \e a into the component of the
beckerjc@483
   293
     * element \e comp. 
beckerjc@483
   294
     */
beckerjc@483
   295
beckerjc@483
   296
    void insert(const T &a, const T &comp) {
beckerjc@483
   297
      
beckerjc@483
   298
      IIter clit = _find(m[comp]);
beckerjc@483
   299
      ItemList &c = *clit->my_class;
beckerjc@483
   300
      c.push_back(ItemType(a,0));
beckerjc@483
   301
      IIter ai = c.end();
beckerjc@483
   302
      --ai;
beckerjc@483
   303
      ai->parent = clit;
beckerjc@483
   304
      m.set(a, ai);
beckerjc@483
   305
      ++clit->size;
beckerjc@483
   306
    }
beckerjc@483
   307
beckerjc@483
   308
beckerjc@483
   309
    /**
beckerjc@483
   310
     * \brief Find the leader of the component of the given element.
beckerjc@483
   311
     *
beckerjc@483
   312
     * The method returns the leader of the component of the given element.
beckerjc@483
   313
     */
beckerjc@483
   314
beckerjc@483
   315
    T find(const T &a) const {
beckerjc@483
   316
      return _find(m[a])->me;
beckerjc@483
   317
    }
beckerjc@483
   318
beckerjc@483
   319
beckerjc@483
   320
    /**
beckerjc@483
   321
     * \brief Joining the component of element \e a and element \e b.
beckerjc@483
   322
     *
beckerjc@483
   323
     * This is the \e union operation of the Union-Find structure. 
beckerjc@483
   324
     * Joins the component of elemenent \e a and component of
beckerjc@483
   325
     * element \e b. If \e a and \e b are in the same component then
beckerjc@483
   326
     * returns false else returns true.
beckerjc@483
   327
     */
beckerjc@483
   328
beckerjc@483
   329
    bool join(T a, T b) {
beckerjc@483
   330
beckerjc@483
   331
      IIter ca = _find(m[a]);
beckerjc@483
   332
      IIter cb = _find(m[b]);
beckerjc@483
   333
beckerjc@483
   334
      if ( ca == cb ) {
beckerjc@483
   335
	return false;
beckerjc@483
   336
      }
beckerjc@483
   337
beckerjc@483
   338
      if ( ca->size > cb->size ) {
beckerjc@483
   339
beckerjc@483
   340
	cb->parent = ca->parent;
beckerjc@483
   341
	ca->size += cb->size;
beckerjc@483
   342
	
beckerjc@483
   343
	ItemList &alist = *ca->my_class;
beckerjc@483
   344
	alist.splice(alist.end(),*cb->my_class);
beckerjc@483
   345
beckerjc@483
   346
	classes.erase(cb->my_class);
beckerjc@483
   347
	cb->my_class = 0;
beckerjc@483
   348
      }
beckerjc@483
   349
      else {
beckerjc@483
   350
beckerjc@483
   351
	ca->parent = cb->parent;
beckerjc@483
   352
	cb->size += ca->size;
beckerjc@483
   353
	
beckerjc@483
   354
	ItemList &blist = *cb->my_class;
beckerjc@483
   355
	blist.splice(blist.end(),*ca->my_class);
beckerjc@483
   356
beckerjc@483
   357
	classes.erase(ca->my_class);
beckerjc@483
   358
	ca->my_class = 0;
beckerjc@483
   359
      }
beckerjc@483
   360
beckerjc@483
   361
      return true;
beckerjc@483
   362
    }
beckerjc@483
   363
beckerjc@483
   364
beckerjc@483
   365
    /**
beckerjc@483
   366
     * \brief Returns the size of the component of element \e a.
beckerjc@483
   367
     *
beckerjc@483
   368
     * Returns the size of the component of element \e a.
beckerjc@483
   369
     */
beckerjc@483
   370
beckerjc@483
   371
    int size(const T &a) const {
beckerjc@483
   372
      return _find(m[a])->size;
beckerjc@483
   373
    }
beckerjc@483
   374
beckerjc@483
   375
beckerjc@483
   376
    /**
beckerjc@483
   377
     * \brief Split up the component of the element. 
beckerjc@483
   378
     *
beckerjc@483
   379
     * Splitting the component of the element into sigleton
beckerjc@483
   380
     * components (component of size one).
beckerjc@483
   381
     */
beckerjc@483
   382
beckerjc@483
   383
    void split(const T &a) {
beckerjc@483
   384
beckerjc@483
   385
      IIter ca = _find(m[a]);
beckerjc@483
   386
 
beckerjc@483
   387
      if ( ca->size == 1 )
beckerjc@483
   388
	return;
beckerjc@483
   389
      
beckerjc@483
   390
      CIter aclass = ca->my_class;
beckerjc@483
   391
beckerjc@483
   392
      for(IIter curr = ca; ++curr != aclass->end(); curr=ca) {
beckerjc@483
   393
	classes.push_back(ItemList());
beckerjc@483
   394
	CIter nl = --classes.end();
beckerjc@483
   395
	nl->splice(nl->end(), *aclass, curr);
beckerjc@483
   396
beckerjc@483
   397
	curr->size=1;
beckerjc@483
   398
	curr->parent=curr;
beckerjc@483
   399
	curr->my_class = nl;
beckerjc@483
   400
      }
beckerjc@483
   401
beckerjc@483
   402
      ca->size=1;
beckerjc@483
   403
      return;
beckerjc@483
   404
    }
beckerjc@483
   405
beckerjc@483
   406
beckerjc@483
   407
    /**
beckerjc@483
   408
     * \brief Set the given element to the leader element of its component.
beckerjc@483
   409
     *
beckerjc@483
   410
     * Set the given element to the leader element of its component.
beckerjc@483
   411
     */
beckerjc@483
   412
beckerjc@483
   413
    void makeRep(const T &a) {
beckerjc@483
   414
beckerjc@483
   415
      IIter ia = m[a];
beckerjc@483
   416
      IIter la = _find(ia);
beckerjc@483
   417
      if (la == ia) return;
beckerjc@483
   418
beckerjc@483
   419
      ia->my_class = la->my_class;
beckerjc@483
   420
      la->my_class = 0;
beckerjc@483
   421
beckerjc@483
   422
      ia->size = la->size;
beckerjc@483
   423
beckerjc@483
   424
      CIter l = ia->my_class;
beckerjc@483
   425
      l->splice(l->begin(),*l,ia);
beckerjc@483
   426
beckerjc@483
   427
      ia->parent = ia;
beckerjc@483
   428
      la->parent = ia;
beckerjc@483
   429
    }
beckerjc@483
   430
beckerjc@483
   431
    /**
beckerjc@483
   432
     * \brief Move the given element to an other component.
beckerjc@483
   433
     *
beckerjc@483
   434
     * This method moves the element \e a from its component
beckerjc@483
   435
     * to the component of \e comp.
beckerjc@483
   436
     * If \e a and \e comp are in the same component then
beckerjc@483
   437
     * it returns false otherwise it returns true.
beckerjc@483
   438
     */
beckerjc@483
   439
beckerjc@483
   440
    bool move(const T &a, const T &comp) {
beckerjc@483
   441
beckerjc@483
   442
      IIter ai = m[a];
beckerjc@483
   443
      IIter lai = _find(ai);
beckerjc@483
   444
      IIter clit = _find(m[comp]);
beckerjc@483
   445
beckerjc@483
   446
      if (lai == clit)
beckerjc@483
   447
	return false;
beckerjc@483
   448
klao@914
   449
      ItemList &cl = *clit->my_class,
klao@914
   450
	&al = *lai->my_class;
beckerjc@483
   451
beckerjc@483
   452
      bool is_leader = (lai == ai);
beckerjc@483
   453
      bool singleton = false;
beckerjc@483
   454
beckerjc@483
   455
      if (is_leader) {
beckerjc@483
   456
	++lai;
beckerjc@483
   457
      }
beckerjc@483
   458
klao@914
   459
      cl.splice(cl.end(), al, ai);
beckerjc@483
   460
beckerjc@483
   461
      if (is_leader) {
beckerjc@483
   462
	if (ai->size == 1) {
beckerjc@483
   463
	  classes.erase(ai->my_class);
beckerjc@483
   464
	  singleton = true;
beckerjc@483
   465
	}
beckerjc@483
   466
	else {
beckerjc@483
   467
	  lai->size = ai->size; 
beckerjc@483
   468
	  lai->my_class = ai->my_class;	
beckerjc@483
   469
	}
beckerjc@483
   470
      }
beckerjc@483
   471
      if (!singleton) {
klao@914
   472
	for (IIter i = lai; i != al.end(); ++i)
beckerjc@483
   473
	  i->parent = lai;
beckerjc@483
   474
	--lai->size;
beckerjc@483
   475
      }
beckerjc@483
   476
beckerjc@483
   477
      ai->parent = clit;
beckerjc@483
   478
      ai->my_class = 0;
beckerjc@483
   479
      ++clit->size;
beckerjc@483
   480
beckerjc@483
   481
      return true;
beckerjc@483
   482
    }
beckerjc@483
   483
beckerjc@483
   484
beckerjc@483
   485
    /**
beckerjc@483
   486
     * \brief Remove the given element from the structure.
beckerjc@483
   487
     *
beckerjc@483
   488
     * Remove the given element from the structure.
beckerjc@483
   489
     *
beckerjc@483
   490
     * Removes the element from its component and if the component becomes
beckerjc@483
   491
     * empty then removes that component from the component list.
beckerjc@483
   492
     */
beckerjc@483
   493
    void erase(const T &a) {
beckerjc@483
   494
beckerjc@483
   495
      IIter ma = m[a];
beckerjc@483
   496
      if (ma == 0) return;
beckerjc@483
   497
beckerjc@483
   498
      IIter la = _find(ma);
beckerjc@483
   499
      if (la == ma) {
beckerjc@483
   500
	if (ma -> size == 1){
beckerjc@483
   501
	  classes.erase(ma->my_class);
beckerjc@483
   502
	  m.set(a,0);
beckerjc@483
   503
	  return;
beckerjc@483
   504
	}
beckerjc@483
   505
	++la;
beckerjc@483
   506
	la->size = ma->size; 
beckerjc@483
   507
	la->my_class = ma->my_class;	
beckerjc@483
   508
      }
beckerjc@483
   509
beckerjc@483
   510
      for (IIter i = la; i != la->my_class->end(); ++i) {
beckerjc@483
   511
	i->parent = la;
beckerjc@483
   512
      }
beckerjc@483
   513
beckerjc@483
   514
      la->size--;
beckerjc@483
   515
      la->my_class->erase(ma);
beckerjc@483
   516
      m.set(a,0);
beckerjc@483
   517
    }
beckerjc@483
   518
beckerjc@483
   519
    /**
beckerjc@483
   520
     * \brief Removes the component of the given element from the structure.
beckerjc@483
   521
     *
beckerjc@483
   522
     * Removes the component of the given element from the structure.
beckerjc@483
   523
     */
beckerjc@483
   524
beckerjc@483
   525
    void eraseClass(const T &a) {
beckerjc@483
   526
      IIter ma = m[a];
beckerjc@483
   527
      if (ma == 0) return;
beckerjc@483
   528
#     ifdef DEBUG
beckerjc@483
   529
      CIter c = _find(ma)->my_class;
beckerjc@483
   530
      for (IIter i=c->begin(); i!=c->end(); ++i)
beckerjc@483
   531
	m.set(i->me, 0);
beckerjc@483
   532
#     endif
beckerjc@483
   533
      classes.erase(_find(ma)->my_class);
beckerjc@483
   534
    }
beckerjc@483
   535
beckerjc@483
   536
beckerjc@483
   537
    class ClassIt {
beckerjc@483
   538
      friend class UnionFindEnum;
beckerjc@483
   539
beckerjc@483
   540
      CcIter i;
beckerjc@483
   541
    public:
beckerjc@483
   542
      ClassIt(Invalid): i(0) {}
beckerjc@483
   543
      ClassIt() {}
beckerjc@483
   544
      
beckerjc@483
   545
      operator const T& () const { 
beckerjc@483
   546
	ItemList const &ll = *i;
beckerjc@483
   547
	return (ll.begin())->me; }
beckerjc@483
   548
      bool operator == (ClassIt it) const {
beckerjc@483
   549
	return (i == it.i);
beckerjc@483
   550
      }
beckerjc@483
   551
      bool operator != (ClassIt it) const {
beckerjc@483
   552
	return (i != it.i);
beckerjc@483
   553
      }
beckerjc@483
   554
      bool operator < (ClassIt it) const {
beckerjc@483
   555
	return (i < it.i);
beckerjc@483
   556
      }
beckerjc@483
   557
beckerjc@483
   558
      bool valid() const { return i != 0; }
beckerjc@483
   559
    private:
beckerjc@483
   560
      void first(const ClassList &l) { i = l.begin(); validate(l); }
beckerjc@483
   561
      void next(const ClassList &l) {
beckerjc@483
   562
	++i; 
beckerjc@483
   563
	validate(l);
beckerjc@483
   564
      }
beckerjc@483
   565
      void validate(const ClassList &l) {
beckerjc@483
   566
	if ( i == l.end() ) 
beckerjc@483
   567
	  i = 0;
beckerjc@483
   568
      }
beckerjc@483
   569
    };
beckerjc@483
   570
beckerjc@483
   571
    /**
beckerjc@483
   572
     * \brief Sets the iterator to point to the first component.
beckerjc@483
   573
     * 
beckerjc@483
   574
     * Sets the iterator to point to the first component.
beckerjc@483
   575
     *
beckerjc@483
   576
     * With the \ref first, \ref valid and \ref next methods you can
beckerjc@483
   577
     * iterate through the components. For example:
beckerjc@483
   578
     * \code
beckerjc@483
   579
     * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
beckerjc@483
   580
     * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
beckerjc@483
   581
     * UnionFindEnum<Graph::Node, Graph::NodeMap>::ClassIt iter;
beckerjc@483
   582
     *  for (U.first(iter); U.valid(iter); U.next(iter)) {
beckerjc@483
   583
     *    // iter is convertible to Graph::Node
beckerjc@483
   584
     *    cout << iter << endl;
beckerjc@483
   585
     *  }
beckerjc@483
   586
     * \endcode
beckerjc@483
   587
     */
beckerjc@483
   588
beckerjc@483
   589
    ClassIt& first(ClassIt& it) const {
beckerjc@483
   590
      it.first(classes);
beckerjc@483
   591
      return it;
beckerjc@483
   592
    }
beckerjc@483
   593
beckerjc@483
   594
    /**
beckerjc@483
   595
     * \brief Returns whether the iterator is valid.
beckerjc@483
   596
     *
beckerjc@483
   597
     * Returns whether the iterator is valid.
beckerjc@483
   598
     *
beckerjc@483
   599
     * With the \ref first, \ref valid and \ref next methods you can
beckerjc@483
   600
     * iterate through the components. See the example here: \ref first.
beckerjc@483
   601
     */
beckerjc@483
   602
beckerjc@483
   603
    bool valid(ClassIt const &it) const {
beckerjc@483
   604
      return it.valid(); 
beckerjc@483
   605
    }
beckerjc@483
   606
beckerjc@483
   607
    /**
beckerjc@483
   608
     * \brief Steps the iterator to the next component. 
beckerjc@483
   609
     *
beckerjc@483
   610
     * Steps the iterator to the next component.
beckerjc@483
   611
     *
beckerjc@483
   612
     * With the \ref first, \ref valid and \ref next methods you can
beckerjc@483
   613
     * iterate through the components. See the example here: \ref first.
beckerjc@483
   614
     */
beckerjc@483
   615
beckerjc@483
   616
    ClassIt& next(ClassIt& it) const {
beckerjc@483
   617
      it.next(classes);
beckerjc@483
   618
      return it;
beckerjc@483
   619
    }
beckerjc@483
   620
beckerjc@483
   621
beckerjc@483
   622
    class ItemIt {
beckerjc@483
   623
      friend class UnionFindEnum;
beckerjc@483
   624
beckerjc@483
   625
      IcIter i;
beckerjc@483
   626
      const ItemList *l;
beckerjc@483
   627
    public:
beckerjc@483
   628
      ItemIt(Invalid): i(0) {}
beckerjc@483
   629
      ItemIt() {}
beckerjc@483
   630
      
beckerjc@483
   631
      operator const T& () const { return i->me; }
beckerjc@483
   632
      bool operator == (ItemIt it) const {
beckerjc@483
   633
	return (i == it.i);
beckerjc@483
   634
      }
beckerjc@483
   635
      bool operator != (ItemIt it) const {
beckerjc@483
   636
	return (i != it.i);
beckerjc@483
   637
      }
beckerjc@483
   638
      bool operator < (ItemIt it) const {
beckerjc@483
   639
	return (i < it.i);
beckerjc@483
   640
      }
beckerjc@483
   641
beckerjc@483
   642
      bool valid() const { return i != 0; }
beckerjc@483
   643
    private:
beckerjc@483
   644
      void first(const ItemList &il) { l=&il; i = l->begin(); validate(); }
beckerjc@483
   645
      void next() {
beckerjc@483
   646
	++i; 
beckerjc@483
   647
	validate();
beckerjc@483
   648
      }
beckerjc@483
   649
      void validate() {
beckerjc@483
   650
	if ( i == l->end() ) 
beckerjc@483
   651
	  i = 0;
beckerjc@483
   652
      }
beckerjc@483
   653
    };
beckerjc@483
   654
beckerjc@483
   655
beckerjc@483
   656
beckerjc@483
   657
    /**
beckerjc@483
   658
     * \brief Sets the iterator to point to the first element of the component.
beckerjc@483
   659
     * 
beckerjc@483
   660
     * \anchor first2 
beckerjc@483
   661
     * Sets the iterator to point to the first element of the component.
beckerjc@483
   662
     *
beckerjc@483
   663
     * With the \ref first2 "first", \ref valid2 "valid" 
beckerjc@483
   664
     * and \ref next2 "next" methods you can
beckerjc@483
   665
     * iterate through the elements of a component. For example
beckerjc@483
   666
     * (iterating through the component of the node \e node):
beckerjc@483
   667
     * \code
beckerjc@483
   668
     * Graph::Node node = ...;
beckerjc@483
   669
     * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
beckerjc@483
   670
     * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
beckerjc@483
   671
     * UnionFindEnum<Graph::Node, Graph::NodeMap>::ItemIt iiter;
beckerjc@483
   672
     *   for (U.first(iiter, node); U.valid(iiter); U.next(iiter)) {
beckerjc@483
   673
     *     // iiter is convertible to Graph::Node
beckerjc@483
   674
     *     cout << iiter << endl;
beckerjc@483
   675
     *   }
beckerjc@483
   676
     * \endcode
beckerjc@483
   677
     */
beckerjc@483
   678
    
beckerjc@483
   679
    ItemIt& first(ItemIt& it, const T& a) const {
beckerjc@483
   680
      it.first( * _find(m[a])->my_class );
beckerjc@483
   681
      return it;
beckerjc@483
   682
    }
beckerjc@483
   683
beckerjc@483
   684
    /**
beckerjc@483
   685
     * \brief Returns whether the iterator is valid.
beckerjc@483
   686
     *
beckerjc@483
   687
     * \anchor valid2
beckerjc@483
   688
     * Returns whether the iterator is valid.
beckerjc@483
   689
     *
beckerjc@483
   690
     * With the \ref first2 "first", \ref valid2 "valid" 
beckerjc@483
   691
     * and \ref next2 "next" methods you can
beckerjc@483
   692
     * iterate through the elements of a component.
beckerjc@483
   693
     * See the example here: \ref first2 "first".
beckerjc@483
   694
     */
beckerjc@483
   695
beckerjc@483
   696
    bool valid(ItemIt const &it) const {
beckerjc@483
   697
      return it.valid(); 
beckerjc@483
   698
    }
beckerjc@483
   699
beckerjc@483
   700
    /**
beckerjc@483
   701
     * \brief Steps the iterator to the next component. 
beckerjc@483
   702
     *
beckerjc@483
   703
     * \anchor next2
beckerjc@483
   704
     * Steps the iterator to the next component.
beckerjc@483
   705
     *
beckerjc@483
   706
     * With the \ref first2 "first", \ref valid2 "valid" 
beckerjc@483
   707
     * and \ref next2 "next" methods you can
beckerjc@483
   708
     * iterate through the elements of a component.
beckerjc@483
   709
     * See the example here: \ref first2 "first".
beckerjc@483
   710
     */
beckerjc@483
   711
beckerjc@483
   712
    ItemIt& next(ItemIt& it) const {
beckerjc@483
   713
      it.next();
beckerjc@483
   714
      return it;
beckerjc@483
   715
    }
beckerjc@483
   716
    
beckerjc@483
   717
  };
beckerjc@483
   718
beckerjc@483
   719
beckerjc@483
   720
  //! @}
beckerjc@483
   721
alpar@921
   722
} //namespace lemon
beckerjc@483
   723
alpar@921
   724
#endif //LEMON_UNION_FIND_H