marci@455
|
1 |
// -*- c++ -*-
|
marci@543
|
2 |
#ifndef HUGO_BFS_DFS_MISC_H
|
marci@543
|
3 |
#define HUGO_BFS_DFS_MISC_H
|
marci@455
|
4 |
|
marci@455
|
5 |
#include <bfs_iterator.h>
|
marci@455
|
6 |
#include <for_each_macros.h>
|
marci@455
|
7 |
|
marci@455
|
8 |
namespace hugo {
|
marci@455
|
9 |
|
marci@455
|
10 |
/// This function eat a read-write \c BoolMap& bool_map,
|
marci@455
|
11 |
/// which have to work well up
|
marci@455
|
12 |
/// to its \c set and \c operator[]() method. Thus we have to deal
|
marci@455
|
13 |
/// very carefully with an uninitialized \c IterableBoolMap.
|
marci@455
|
14 |
template<typename Graph, typename BoolMap>
|
marci@455
|
15 |
bool isBipartite(const Graph& g, BoolMap& bool_map) {
|
marci@455
|
16 |
typedef typename Graph::template NodeMap<bool> ReachedMap;
|
marci@455
|
17 |
ReachedMap reached(g/*, false*/);
|
marci@455
|
18 |
BfsIterator<Graph, ReachedMap> bfs(g, reached);
|
marci@455
|
19 |
FOR_EACH_LOC(typename Graph::NodeIt, n, g) {
|
marci@455
|
20 |
if (!reached[n]) {
|
marci@455
|
21 |
bfs.pushAndSetReached(n);
|
marci@549
|
22 |
bool_map.set(n, false);
|
marci@549
|
23 |
while (!bfs.finished()) {
|
marci@549
|
24 |
if (bfs.isBNodeNewlyReached()) {
|
marci@549
|
25 |
bool_map.set(bfs.bNode())=!bfs.aNode();
|
marci@549
|
26 |
} else {
|
marci@549
|
27 |
if (bool_map[bfs.bNode()]==bool_map[bfs.aNode()]) {
|
marci@549
|
28 |
return false;
|
marci@455
|
29 |
}
|
marci@455
|
30 |
}
|
marci@549
|
31 |
++bfs;
|
marci@455
|
32 |
}
|
marci@455
|
33 |
}
|
marci@455
|
34 |
}
|
marci@549
|
35 |
|
marci@455
|
36 |
return true;
|
marci@455
|
37 |
}
|
marci@540
|
38 |
|
marci@540
|
39 |
/// experimental topsort,
|
marci@540
|
40 |
/// I think the final version will work as an iterator
|
marci@549
|
41 |
/// if the graph is not a acyclic, the na pre-topological order is obtained
|
marci@577
|
42 |
/// (see Schrijver's book).
|
marci@577
|
43 |
/// PredMap have to be a writtable node-map.
|
marci@577
|
44 |
/// If the graph is directed and not acyclic,
|
marci@577
|
45 |
/// then going back from the returned node via the pred information, a
|
marci@577
|
46 |
/// cycle is obtained.
|
marci@577
|
47 |
template<typename Graph, typename PredMap>
|
marci@577
|
48 |
typename Graph::Node
|
marci@577
|
49 |
topSort(const Graph& g, std::list<typename Graph::Node>& l,
|
marci@577
|
50 |
PredMap& pred) {
|
marci@540
|
51 |
l.clear();
|
marci@540
|
52 |
typedef typename Graph::template NodeMap<bool> ReachedMap;
|
marci@577
|
53 |
typedef typename Graph::template NodeMap<bool> ExaminedMap;
|
marci@540
|
54 |
ReachedMap reached(g/*, false*/);
|
marci@577
|
55 |
ExaminedMap examined(g/*, false*/);
|
marci@540
|
56 |
DfsIterator<Graph, ReachedMap> dfs(g, reached);
|
marci@540
|
57 |
FOR_EACH_LOC(typename Graph::NodeIt, n, g) {
|
marci@540
|
58 |
if (!reached[n]) {
|
marci@540
|
59 |
dfs.pushAndSetReached(n);
|
marci@577
|
60 |
pred.set(n, INVALID);
|
marci@543
|
61 |
while (!dfs.finished()) {
|
marci@552
|
62 |
++dfs;
|
marci@577
|
63 |
if (dfs.isBNodeNewlyReached()) {
|
marci@577
|
64 |
///\bug hugo 0.2-ben Edge kell
|
marci@577
|
65 |
pred.set(dfs.aNode(), typename Graph::OutEdgeIt(dfs));
|
marci@577
|
66 |
} else {
|
marci@577
|
67 |
///\bug ugyanaz
|
marci@577
|
68 |
if (g.valid(typename Graph::OutEdgeIt(dfs)) &&
|
marci@577
|
69 |
!examined[dfs.bNode()]) {
|
marci@577
|
70 |
///\bug hugo 0.2-ben Edge kell
|
marci@577
|
71 |
pred.set(dfs.bNode(), typename Graph::OutEdgeIt(dfs));
|
marci@577
|
72 |
return dfs.aNode();
|
marci@577
|
73 |
}
|
marci@577
|
74 |
}
|
marci@543
|
75 |
if (dfs.isANodeExamined()) {
|
marci@543
|
76 |
l.push_back(dfs.aNode());
|
marci@577
|
77 |
examined.set(dfs.aNode(), true);
|
marci@540
|
78 |
}
|
marci@540
|
79 |
}
|
marci@540
|
80 |
}
|
marci@540
|
81 |
}
|
marci@577
|
82 |
return INVALID;
|
marci@540
|
83 |
}
|
marci@548
|
84 |
} //namespace hugo
|
marci@548
|
85 |
|
marci@543
|
86 |
#endif //HUGO_BFS_DFS_MISC_H
|