athos@1247
|
1 |
/* -*- C++ -*-
|
alpar@1253
|
2 |
* src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
|
athos@1247
|
3 |
*
|
athos@1247
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
athos@1247
|
5 |
* (Egervary Combinatorial Optimization Research Group, EGRES).
|
athos@1247
|
6 |
*
|
athos@1247
|
7 |
* Permission to use, modify and distribute this software is granted
|
athos@1247
|
8 |
* provided that this copyright notice appears in all copies. For
|
athos@1247
|
9 |
* precise terms see the accompanying LICENSE file.
|
athos@1247
|
10 |
*
|
athos@1247
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
athos@1247
|
12 |
* express or implied, and with no claim as to its suitability for any
|
athos@1247
|
13 |
* purpose.
|
athos@1247
|
14 |
*
|
athos@1247
|
15 |
*/
|
athos@1247
|
16 |
|
athos@1246
|
17 |
#ifndef LEMON_LP_BASE_H
|
athos@1246
|
18 |
#define LEMON_LP_BASE_H
|
athos@1246
|
19 |
|
alpar@1253
|
20 |
#include<vector>
|
alpar@1272
|
21 |
#include<map>
|
alpar@1256
|
22 |
#include<limits>
|
alpar@1273
|
23 |
#include<math.h>
|
alpar@1253
|
24 |
|
alpar@1256
|
25 |
#include<lemon/utility.h>
|
alpar@1253
|
26 |
#include<lemon/error.h>
|
alpar@1256
|
27 |
#include<lemon/invalid.h>
|
alpar@1253
|
28 |
|
alpar@1272
|
29 |
//#include"lin_expr.h"
|
alpar@1272
|
30 |
|
athos@1246
|
31 |
///\file
|
athos@1246
|
32 |
///\brief The interface of the LP solver interface.
|
athos@1246
|
33 |
namespace lemon {
|
alpar@1253
|
34 |
|
alpar@1253
|
35 |
///Internal data structure to convert floating id's to fix one's
|
alpar@1253
|
36 |
|
alpar@1279
|
37 |
///\todo This might be implemented to be also usable in other places.
|
alpar@1253
|
38 |
class _FixId
|
alpar@1253
|
39 |
{
|
alpar@1253
|
40 |
std::vector<int> index;
|
alpar@1253
|
41 |
std::vector<int> cross;
|
alpar@1253
|
42 |
int first_free;
|
alpar@1253
|
43 |
public:
|
alpar@1253
|
44 |
_FixId() : first_free(-1) {};
|
alpar@1253
|
45 |
///Convert a floating id to a fix one
|
alpar@1253
|
46 |
|
alpar@1253
|
47 |
///\param n is a floating id
|
alpar@1253
|
48 |
///\return the corresponding fix id
|
alpar@1253
|
49 |
int fixId(int n) {return cross[n];}
|
alpar@1253
|
50 |
///Convert a fix id to a floating one
|
alpar@1253
|
51 |
|
alpar@1253
|
52 |
///\param n is a fix id
|
alpar@1253
|
53 |
///\return the corresponding floating id
|
alpar@1253
|
54 |
int floatingId(int n) { return index[n];}
|
alpar@1253
|
55 |
///Add a new floating id.
|
alpar@1253
|
56 |
|
alpar@1253
|
57 |
///\param n is a floating id
|
alpar@1253
|
58 |
///\return the fix id of the new value
|
alpar@1253
|
59 |
///\todo Multiple additions should also be handled.
|
alpar@1253
|
60 |
int insert(int n)
|
alpar@1253
|
61 |
{
|
alpar@1253
|
62 |
if(n>=int(cross.size())) {
|
alpar@1253
|
63 |
cross.resize(n+1);
|
alpar@1253
|
64 |
if(first_free==-1) {
|
alpar@1253
|
65 |
cross[n]=index.size();
|
alpar@1253
|
66 |
index.push_back(n);
|
alpar@1253
|
67 |
}
|
alpar@1253
|
68 |
else {
|
alpar@1253
|
69 |
cross[n]=first_free;
|
alpar@1253
|
70 |
int next=index[first_free];
|
alpar@1253
|
71 |
index[first_free]=n;
|
alpar@1253
|
72 |
first_free=next;
|
alpar@1253
|
73 |
}
|
alpar@1256
|
74 |
return cross[n];
|
alpar@1253
|
75 |
}
|
alpar@1273
|
76 |
///\todo Create an own exception type.
|
alpar@1253
|
77 |
else throw LogicError(); //floatingId-s must form a continuous range;
|
alpar@1253
|
78 |
}
|
alpar@1253
|
79 |
///Remove a fix id.
|
alpar@1253
|
80 |
|
alpar@1253
|
81 |
///\param n is a fix id
|
alpar@1253
|
82 |
///
|
alpar@1253
|
83 |
void erase(int n)
|
alpar@1253
|
84 |
{
|
alpar@1253
|
85 |
int fl=index[n];
|
alpar@1253
|
86 |
index[n]=first_free;
|
alpar@1253
|
87 |
first_free=n;
|
alpar@1253
|
88 |
for(int i=fl+1;i<int(cross.size());++i) {
|
alpar@1253
|
89 |
cross[i-1]=cross[i];
|
alpar@1253
|
90 |
index[cross[i]]--;
|
alpar@1253
|
91 |
}
|
alpar@1253
|
92 |
cross.pop_back();
|
alpar@1253
|
93 |
}
|
alpar@1253
|
94 |
///An upper bound on the largest fix id.
|
alpar@1253
|
95 |
|
alpar@1253
|
96 |
///\todo Do we need this?
|
alpar@1253
|
97 |
///
|
alpar@1253
|
98 |
std::size_t maxFixId() { return cross.size()-1; }
|
alpar@1253
|
99 |
|
alpar@1253
|
100 |
};
|
alpar@1253
|
101 |
|
alpar@1253
|
102 |
///Common base class for LP solvers
|
athos@1246
|
103 |
class LpSolverBase {
|
alpar@1253
|
104 |
|
athos@1247
|
105 |
public:
|
athos@1247
|
106 |
|
alpar@1263
|
107 |
///\e
|
alpar@1263
|
108 |
enum SolutionType {
|
alpar@1263
|
109 |
///\e
|
alpar@1263
|
110 |
INFEASIBLE = 0,
|
alpar@1263
|
111 |
///\e
|
alpar@1263
|
112 |
UNBOUNDED = 1,
|
alpar@1263
|
113 |
///\e
|
alpar@1263
|
114 |
OPTIMAL = 2,
|
alpar@1263
|
115 |
///\e
|
alpar@1263
|
116 |
FEASIBLE = 3,
|
alpar@1263
|
117 |
};
|
alpar@1263
|
118 |
|
alpar@1256
|
119 |
///The floating point type used by the solver
|
athos@1247
|
120 |
typedef double Value;
|
alpar@1256
|
121 |
///The infinity constant
|
athos@1247
|
122 |
static const Value INF;
|
alpar@1264
|
123 |
///The not a number constant
|
alpar@1264
|
124 |
static const Value NaN;
|
alpar@1253
|
125 |
|
alpar@1256
|
126 |
///Refer to a column of the LP.
|
alpar@1256
|
127 |
|
alpar@1256
|
128 |
///This type is used to refer to a column of the LP.
|
alpar@1256
|
129 |
///
|
alpar@1256
|
130 |
///Its value remains valid and correct even after the addition or erase of
|
alpar@1273
|
131 |
///other columns.
|
alpar@1256
|
132 |
///
|
alpar@1256
|
133 |
///\todo Document what can one do with a Col (INVALID, comparing,
|
alpar@1256
|
134 |
///it is similar to Node/Edge)
|
alpar@1256
|
135 |
class Col {
|
alpar@1256
|
136 |
protected:
|
alpar@1256
|
137 |
int id;
|
alpar@1256
|
138 |
friend class LpSolverBase;
|
alpar@1256
|
139 |
public:
|
alpar@1259
|
140 |
typedef Value ExprValue;
|
alpar@1256
|
141 |
typedef True LpSolverCol;
|
alpar@1256
|
142 |
Col() {}
|
alpar@1256
|
143 |
Col(const Invalid&) : id(-1) {}
|
alpar@1256
|
144 |
bool operator<(Col c) const {return id<c.id;}
|
alpar@1256
|
145 |
bool operator==(Col c) const {return id==c.id;}
|
alpar@1256
|
146 |
bool operator!=(Col c) const {return id==c.id;}
|
alpar@1256
|
147 |
};
|
alpar@1256
|
148 |
|
alpar@1256
|
149 |
///Refer to a row of the LP.
|
alpar@1256
|
150 |
|
alpar@1256
|
151 |
///This type is used to refer to a row of the LP.
|
alpar@1256
|
152 |
///
|
alpar@1256
|
153 |
///Its value remains valid and correct even after the addition or erase of
|
alpar@1273
|
154 |
///other rows.
|
alpar@1256
|
155 |
///
|
alpar@1256
|
156 |
///\todo Document what can one do with a Row (INVALID, comparing,
|
alpar@1256
|
157 |
///it is similar to Node/Edge)
|
alpar@1256
|
158 |
class Row {
|
alpar@1256
|
159 |
protected:
|
alpar@1256
|
160 |
int id;
|
alpar@1256
|
161 |
friend class LpSolverBase;
|
alpar@1256
|
162 |
public:
|
alpar@1259
|
163 |
typedef Value ExprValue;
|
alpar@1256
|
164 |
typedef True LpSolverRow;
|
alpar@1256
|
165 |
Row() {}
|
alpar@1256
|
166 |
Row(const Invalid&) : id(-1) {}
|
alpar@1256
|
167 |
typedef True LpSolverRow;
|
alpar@1256
|
168 |
bool operator<(Row c) const {return id<c.id;}
|
alpar@1256
|
169 |
bool operator==(Row c) const {return id==c.id;}
|
alpar@1256
|
170 |
bool operator!=(Row c) const {return id==c.id;}
|
alpar@1256
|
171 |
};
|
alpar@1259
|
172 |
|
alpar@1279
|
173 |
///Linear expression of variables and a constant component
|
alpar@1279
|
174 |
|
alpar@1279
|
175 |
///This data structure strores a linear expression of the variables
|
alpar@1279
|
176 |
///(\ref Col "Col"s) and also has a constant component.
|
alpar@1279
|
177 |
///
|
alpar@1279
|
178 |
///There are several ways to access and modify the contents of this
|
alpar@1279
|
179 |
///container.
|
alpar@1279
|
180 |
///- Its it fully compatible with \c std::map<Col,double>, so for expamle
|
alpar@1279
|
181 |
///if \c e is an Expr and \c v and \c w are of type \ref Col then you can
|
alpar@1279
|
182 |
///read and modify the coefficients like
|
alpar@1279
|
183 |
///these.
|
alpar@1279
|
184 |
///\code
|
alpar@1279
|
185 |
///e[v]=5;
|
alpar@1279
|
186 |
///e[v]+=12;
|
alpar@1279
|
187 |
///e.erase(v);
|
alpar@1279
|
188 |
///\endcode
|
alpar@1279
|
189 |
///or you can also iterate through its elements.
|
alpar@1279
|
190 |
///\code
|
alpar@1279
|
191 |
///double s=0;
|
alpar@1279
|
192 |
///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
|
alpar@1279
|
193 |
/// s+=i->second;
|
alpar@1279
|
194 |
///\endcode
|
alpar@1279
|
195 |
///(This code computes the sum of all coefficients).
|
alpar@1279
|
196 |
///- Numbers (<tt>double</tt>'s)
|
alpar@1279
|
197 |
///and variables (\ref Col "Col"s) directly convert to an
|
alpar@1279
|
198 |
///\ref Expr and the usual linear operations are defined so
|
alpar@1279
|
199 |
///\code
|
alpar@1279
|
200 |
///v+w
|
alpar@1279
|
201 |
///2*v-3.12*(v-w/2)+2
|
alpar@1279
|
202 |
///v*2.1+(3*v+(v*12+w+6)*3)/2
|
alpar@1279
|
203 |
///\endcode
|
alpar@1279
|
204 |
///are valid expressions. The usual assignment operations are also defined.
|
alpar@1279
|
205 |
///\code
|
alpar@1279
|
206 |
///e=v+w;
|
alpar@1279
|
207 |
///e+=2*v-3.12*(v-w/2)+2;
|
alpar@1279
|
208 |
///e*=3.4;
|
alpar@1279
|
209 |
///e/=5;
|
alpar@1279
|
210 |
///\endcode
|
alpar@1279
|
211 |
///- The constant member can be set and read by \ref constComp()
|
alpar@1279
|
212 |
///\code
|
alpar@1279
|
213 |
///e.constComp()=12;
|
alpar@1279
|
214 |
///double c=e.constComp();
|
alpar@1279
|
215 |
///\endcode
|
alpar@1279
|
216 |
///
|
alpar@1279
|
217 |
///\note that \ref clear() not only sets all coefficients to 0 but also
|
alpar@1279
|
218 |
///clears the constant components.
|
alpar@1273
|
219 |
class Expr : public std::map<Col,Value>
|
alpar@1272
|
220 |
{
|
alpar@1272
|
221 |
public:
|
alpar@1273
|
222 |
typedef LpSolverBase::Col Key;
|
alpar@1273
|
223 |
typedef LpSolverBase::Value Value;
|
alpar@1272
|
224 |
|
alpar@1272
|
225 |
protected:
|
alpar@1273
|
226 |
typedef std::map<Col,Value> Base;
|
alpar@1272
|
227 |
|
alpar@1273
|
228 |
Value const_comp;
|
alpar@1272
|
229 |
public:
|
alpar@1272
|
230 |
typedef True IsLinExpression;
|
alpar@1272
|
231 |
///\e
|
alpar@1272
|
232 |
Expr() : Base(), const_comp(0) { }
|
alpar@1272
|
233 |
///\e
|
alpar@1273
|
234 |
Expr(const Key &v) : const_comp(0) {
|
alpar@1272
|
235 |
Base::insert(std::make_pair(v, 1));
|
alpar@1272
|
236 |
}
|
alpar@1272
|
237 |
///\e
|
alpar@1273
|
238 |
Expr(const Value &v) : const_comp(v) {}
|
alpar@1272
|
239 |
///\e
|
alpar@1273
|
240 |
void set(const Key &v,const Value &c) {
|
alpar@1272
|
241 |
Base::insert(std::make_pair(v, c));
|
alpar@1272
|
242 |
}
|
alpar@1272
|
243 |
///\e
|
alpar@1273
|
244 |
Value &constComp() { return const_comp; }
|
alpar@1272
|
245 |
///\e
|
alpar@1273
|
246 |
const Value &constComp() const { return const_comp; }
|
alpar@1272
|
247 |
|
alpar@1272
|
248 |
///Removes the components with zero coefficient.
|
alpar@1272
|
249 |
void simplify() {
|
alpar@1272
|
250 |
for (Base::iterator i=Base::begin(); i!=Base::end();) {
|
alpar@1272
|
251 |
Base::iterator j=i;
|
alpar@1272
|
252 |
++j;
|
alpar@1272
|
253 |
if ((*i).second==0) Base::erase(i);
|
alpar@1272
|
254 |
j=i;
|
alpar@1272
|
255 |
}
|
alpar@1272
|
256 |
}
|
alpar@1273
|
257 |
|
alpar@1273
|
258 |
///Sets all coefficients and the constant component to 0.
|
alpar@1273
|
259 |
void clear() {
|
alpar@1273
|
260 |
Base::clear();
|
alpar@1273
|
261 |
const_comp=0;
|
alpar@1273
|
262 |
}
|
alpar@1273
|
263 |
|
alpar@1272
|
264 |
///\e
|
alpar@1272
|
265 |
Expr &operator+=(const Expr &e) {
|
alpar@1272
|
266 |
for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
|
alpar@1272
|
267 |
(*this)[j->first]+=j->second;
|
alpar@1272
|
268 |
///\todo it might be speeded up using "hints"
|
alpar@1272
|
269 |
const_comp+=e.const_comp;
|
alpar@1272
|
270 |
return *this;
|
alpar@1272
|
271 |
}
|
alpar@1272
|
272 |
///\e
|
alpar@1272
|
273 |
Expr &operator-=(const Expr &e) {
|
alpar@1272
|
274 |
for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
|
alpar@1272
|
275 |
(*this)[j->first]-=j->second;
|
alpar@1272
|
276 |
const_comp-=e.const_comp;
|
alpar@1272
|
277 |
return *this;
|
alpar@1272
|
278 |
}
|
alpar@1272
|
279 |
///\e
|
alpar@1273
|
280 |
Expr &operator*=(const Value &c) {
|
alpar@1272
|
281 |
for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
|
alpar@1272
|
282 |
j->second*=c;
|
alpar@1272
|
283 |
const_comp*=c;
|
alpar@1272
|
284 |
return *this;
|
alpar@1272
|
285 |
}
|
alpar@1272
|
286 |
///\e
|
alpar@1273
|
287 |
Expr &operator/=(const Value &c) {
|
alpar@1272
|
288 |
for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
|
alpar@1272
|
289 |
j->second/=c;
|
alpar@1272
|
290 |
const_comp/=c;
|
alpar@1272
|
291 |
return *this;
|
alpar@1272
|
292 |
}
|
alpar@1272
|
293 |
};
|
alpar@1272
|
294 |
|
alpar@1264
|
295 |
///Linear constraint
|
alpar@1272
|
296 |
//typedef LinConstr<Expr> Constr;
|
alpar@1272
|
297 |
class Constr
|
alpar@1272
|
298 |
{
|
alpar@1272
|
299 |
public:
|
alpar@1272
|
300 |
typedef LpSolverBase::Expr Expr;
|
alpar@1273
|
301 |
typedef Expr::Key Key;
|
alpar@1273
|
302 |
typedef Expr::Value Value;
|
alpar@1272
|
303 |
|
alpar@1273
|
304 |
static const Value INF;
|
alpar@1273
|
305 |
static const Value NaN;
|
alpar@1273
|
306 |
// static const Value INF=0;
|
alpar@1273
|
307 |
// static const Value NaN=1;
|
alpar@1272
|
308 |
|
alpar@1273
|
309 |
protected:
|
alpar@1273
|
310 |
Expr _expr;
|
alpar@1273
|
311 |
Value _lb,_ub;
|
alpar@1273
|
312 |
public:
|
alpar@1273
|
313 |
///\e
|
alpar@1273
|
314 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {}
|
alpar@1273
|
315 |
///\e
|
alpar@1273
|
316 |
Constr(Value lb,const Expr &e,Value ub) :
|
alpar@1273
|
317 |
_expr(e), _lb(lb), _ub(ub) {}
|
alpar@1273
|
318 |
///\e
|
alpar@1273
|
319 |
Constr(const Expr &e,Value ub) :
|
alpar@1273
|
320 |
_expr(e), _lb(NaN), _ub(ub) {}
|
alpar@1273
|
321 |
///\e
|
alpar@1273
|
322 |
Constr(Value lb,const Expr &e) :
|
alpar@1273
|
323 |
_expr(e), _lb(lb), _ub(NaN) {}
|
alpar@1273
|
324 |
///\e
|
alpar@1272
|
325 |
Constr(const Expr &e) :
|
alpar@1273
|
326 |
_expr(e), _lb(NaN), _ub(NaN) {}
|
alpar@1273
|
327 |
///\e
|
alpar@1273
|
328 |
void clear()
|
alpar@1273
|
329 |
{
|
alpar@1273
|
330 |
_expr.clear();
|
alpar@1273
|
331 |
_lb=_ub=NaN;
|
alpar@1273
|
332 |
}
|
alpar@1273
|
333 |
///\e
|
alpar@1273
|
334 |
Expr &expr() { return _expr; }
|
alpar@1273
|
335 |
///\e
|
alpar@1273
|
336 |
const Expr &expr() const { return _expr; }
|
alpar@1273
|
337 |
///\e
|
alpar@1273
|
338 |
Value &lowerBound() { return _lb; }
|
alpar@1273
|
339 |
///\e
|
alpar@1273
|
340 |
const Value &lowerBound() const { return _lb; }
|
alpar@1273
|
341 |
///\e
|
alpar@1273
|
342 |
Value &upperBound() { return _ub; }
|
alpar@1273
|
343 |
///\e
|
alpar@1273
|
344 |
const Value &upperBound() const { return _ub; }
|
alpar@1275
|
345 |
///\e
|
alpar@1275
|
346 |
bool lowerBounded() const { return std::isfinite(_lb); }
|
alpar@1275
|
347 |
///\e
|
alpar@1275
|
348 |
bool upperBounded() const { return std::isfinite(_ub); }
|
alpar@1272
|
349 |
};
|
alpar@1272
|
350 |
|
alpar@1253
|
351 |
|
alpar@1253
|
352 |
protected:
|
alpar@1253
|
353 |
_FixId rows;
|
alpar@1253
|
354 |
_FixId cols;
|
athos@1246
|
355 |
|
athos@1246
|
356 |
/// \e
|
athos@1246
|
357 |
virtual int _addCol() = 0;
|
athos@1246
|
358 |
/// \e
|
athos@1246
|
359 |
virtual int _addRow() = 0;
|
athos@1246
|
360 |
/// \e
|
alpar@1253
|
361 |
|
athos@1246
|
362 |
/// \warning Arrays are indexed from 1 (datum at index 0 is ignored)
|
alpar@1253
|
363 |
///
|
athos@1246
|
364 |
virtual void _setRowCoeffs(int i,
|
athos@1251
|
365 |
int length,
|
athos@1247
|
366 |
int const * indices,
|
athos@1247
|
367 |
Value const * values ) = 0;
|
athos@1246
|
368 |
/// \e
|
alpar@1253
|
369 |
|
athos@1246
|
370 |
/// \warning Arrays are indexed from 1 (datum at index 0 is ignored)
|
alpar@1253
|
371 |
///
|
athos@1246
|
372 |
virtual void _setColCoeffs(int i,
|
athos@1251
|
373 |
int length,
|
athos@1247
|
374 |
int const * indices,
|
athos@1247
|
375 |
Value const * values ) = 0;
|
athos@1246
|
376 |
|
athos@1247
|
377 |
/// \e
|
alpar@1253
|
378 |
|
athos@1247
|
379 |
/// The lower bound of a variable (column) have to be given by an
|
athos@1247
|
380 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
381 |
/// Value or -\ref INF.
|
athos@1247
|
382 |
virtual void _setColLowerBound(int i, Value value) = 0;
|
athos@1247
|
383 |
/// \e
|
alpar@1253
|
384 |
|
athos@1247
|
385 |
/// The upper bound of a variable (column) have to be given by an
|
athos@1247
|
386 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
387 |
/// Value or \ref INF.
|
athos@1247
|
388 |
virtual void _setColUpperBound(int i, Value value) = 0;
|
athos@1247
|
389 |
/// \e
|
alpar@1253
|
390 |
|
athos@1247
|
391 |
/// The lower bound of a linear expression (row) have to be given by an
|
athos@1247
|
392 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
393 |
/// Value or -\ref INF.
|
athos@1247
|
394 |
virtual void _setRowLowerBound(int i, Value value) = 0;
|
athos@1247
|
395 |
/// \e
|
alpar@1253
|
396 |
|
athos@1247
|
397 |
/// The upper bound of a linear expression (row) have to be given by an
|
athos@1247
|
398 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
399 |
/// Value or \ref INF.
|
athos@1247
|
400 |
virtual void _setRowUpperBound(int i, Value value) = 0;
|
athos@1247
|
401 |
|
athos@1247
|
402 |
/// \e
|
athos@1247
|
403 |
virtual void _setObjCoeff(int i, Value obj_coef) = 0;
|
alpar@1253
|
404 |
|
alpar@1253
|
405 |
///\e
|
alpar@1263
|
406 |
|
alpar@1263
|
407 |
///\bug Wrong interface
|
alpar@1263
|
408 |
///
|
alpar@1263
|
409 |
virtual SolutionType _solve() = 0;
|
alpar@1263
|
410 |
|
alpar@1263
|
411 |
///\e
|
alpar@1263
|
412 |
|
alpar@1263
|
413 |
///\bug Wrong interface
|
alpar@1263
|
414 |
///
|
alpar@1263
|
415 |
virtual Value _getSolution(int i) = 0;
|
alpar@1263
|
416 |
///\e
|
alpar@1253
|
417 |
|
alpar@1253
|
418 |
///\bug unimplemented!!!!
|
alpar@1253
|
419 |
void clearObj() {}
|
alpar@1253
|
420 |
public:
|
alpar@1253
|
421 |
|
alpar@1253
|
422 |
|
alpar@1253
|
423 |
///\e
|
alpar@1253
|
424 |
virtual ~LpSolverBase() {}
|
alpar@1253
|
425 |
|
alpar@1263
|
426 |
///\name Building up and modification of the LP
|
alpar@1263
|
427 |
|
alpar@1263
|
428 |
///@{
|
alpar@1263
|
429 |
|
alpar@1253
|
430 |
///Add a new empty column (i.e a new variable) to the LP
|
alpar@1253
|
431 |
Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
|
alpar@1263
|
432 |
|
alpar@1256
|
433 |
///\brief Fill the elements of a container with newly created columns
|
alpar@1256
|
434 |
///(i.e a new variables)
|
alpar@1256
|
435 |
///
|
alpar@1273
|
436 |
///This magic function takes a container as its argument
|
alpar@1256
|
437 |
///and fills its elements
|
alpar@1256
|
438 |
///with new columns (i.e. variables)
|
alpar@1273
|
439 |
///\param t can be
|
alpar@1273
|
440 |
///- a standard STL compatible iterable container with
|
alpar@1273
|
441 |
///\ref Col as its \c values_type
|
alpar@1273
|
442 |
///like
|
alpar@1273
|
443 |
///\code
|
alpar@1273
|
444 |
///std::vector<LpSolverBase::Col>
|
alpar@1273
|
445 |
///std::list<LpSolverBase::Col>
|
alpar@1273
|
446 |
///\endcode
|
alpar@1273
|
447 |
///- a standard STL compatible iterable container with
|
alpar@1273
|
448 |
///\ref Col as its \c mapped_type
|
alpar@1273
|
449 |
///like
|
alpar@1273
|
450 |
///\code
|
alpar@1273
|
451 |
///std::map<AnyType,LpSolverBase::Col>
|
alpar@1273
|
452 |
///\endcode
|
alpar@1273
|
453 |
///- an iterable lemon \ref concept::WriteMap "write map" like
|
alpar@1273
|
454 |
///\code
|
alpar@1273
|
455 |
///ListGraph::NodeMap<LpSolverBase::Col>
|
alpar@1273
|
456 |
///ListGraph::EdgeMap<LpSolverBase::Col>
|
alpar@1273
|
457 |
///\endcode
|
alpar@1256
|
458 |
///\return The number of the created column.
|
alpar@1256
|
459 |
///\bug Iterable nodemap hasn't been implemented yet.
|
alpar@1256
|
460 |
#ifdef DOXYGEN
|
alpar@1256
|
461 |
template<class T>
|
alpar@1256
|
462 |
int addColSet(T &t) { return 0;}
|
alpar@1256
|
463 |
#else
|
alpar@1256
|
464 |
template<class T>
|
alpar@1256
|
465 |
typename enable_if<typename T::value_type::LpSolverCol,int>::type
|
alpar@1256
|
466 |
addColSet(T &t,dummy<0> = 0) {
|
alpar@1256
|
467 |
int s=0;
|
alpar@1256
|
468 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
|
alpar@1256
|
469 |
return s;
|
alpar@1256
|
470 |
}
|
alpar@1256
|
471 |
template<class T>
|
alpar@1256
|
472 |
typename enable_if<typename T::value_type::second_type::LpSolverCol,
|
alpar@1256
|
473 |
int>::type
|
alpar@1256
|
474 |
addColSet(T &t,dummy<1> = 1) {
|
alpar@1256
|
475 |
int s=0;
|
alpar@1256
|
476 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
alpar@1256
|
477 |
i->second=addCol();
|
alpar@1256
|
478 |
s++;
|
alpar@1256
|
479 |
}
|
alpar@1256
|
480 |
return s;
|
alpar@1256
|
481 |
}
|
alpar@1272
|
482 |
template<class T>
|
alpar@1272
|
483 |
typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
|
alpar@1272
|
484 |
int>::type
|
alpar@1272
|
485 |
addColSet(T &t,dummy<2> = 2) {
|
alpar@1272
|
486 |
///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
|
alpar@1272
|
487 |
int s=0;
|
alpar@1272
|
488 |
for(typename T::ValueSet::iterator i=t.valueSet().begin();
|
alpar@1272
|
489 |
i!=t.valueSet().end();
|
alpar@1272
|
490 |
++i)
|
alpar@1272
|
491 |
{
|
alpar@1272
|
492 |
*i=addCol();
|
alpar@1272
|
493 |
s++;
|
alpar@1272
|
494 |
}
|
alpar@1272
|
495 |
return s;
|
alpar@1272
|
496 |
}
|
alpar@1256
|
497 |
#endif
|
alpar@1263
|
498 |
|
alpar@1253
|
499 |
///Add a new empty row (i.e a new constaint) to the LP
|
alpar@1258
|
500 |
|
alpar@1258
|
501 |
///This function adds a new empty row (i.e a new constaint) to the LP.
|
alpar@1258
|
502 |
///\return The created row
|
alpar@1253
|
503 |
Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
|
alpar@1253
|
504 |
|
alpar@1258
|
505 |
///Set a row (i.e a constaint) of the LP
|
alpar@1253
|
506 |
|
alpar@1258
|
507 |
///\param r is the row to be modified
|
alpar@1259
|
508 |
///\param l is lower bound (-\ref INF means no bound)
|
alpar@1258
|
509 |
///\param e is a linear expression (see \ref Expr)
|
alpar@1259
|
510 |
///\param u is the upper bound (\ref INF means no bound)
|
alpar@1253
|
511 |
///\bug This is a temportary function. The interface will change to
|
alpar@1253
|
512 |
///a better one.
|
alpar@1258
|
513 |
void setRow(Row r, Value l,const Expr &e, Value u) {
|
alpar@1253
|
514 |
std::vector<int> indices;
|
alpar@1253
|
515 |
std::vector<Value> values;
|
alpar@1253
|
516 |
indices.push_back(0);
|
alpar@1253
|
517 |
values.push_back(0);
|
alpar@1258
|
518 |
for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
|
alpar@1256
|
519 |
if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
|
alpar@1256
|
520 |
indices.push_back(cols.floatingId((*i).first.id));
|
alpar@1256
|
521 |
values.push_back((*i).second);
|
alpar@1256
|
522 |
}
|
alpar@1253
|
523 |
_setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
|
alpar@1253
|
524 |
&indices[0],&values[0]);
|
alpar@1256
|
525 |
_setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
|
alpar@1256
|
526 |
_setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
|
alpar@1258
|
527 |
}
|
alpar@1258
|
528 |
|
alpar@1264
|
529 |
///Set a row (i.e a constaint) of the LP
|
alpar@1264
|
530 |
|
alpar@1264
|
531 |
///\param r is the row to be modified
|
alpar@1264
|
532 |
///\param c is a linear expression (see \ref Constr)
|
alpar@1264
|
533 |
void setRow(Row r, const Constr &c) {
|
alpar@1273
|
534 |
setRow(r,
|
alpar@1275
|
535 |
c.lowerBounded()?c.lowerBound():-INF,
|
alpar@1273
|
536 |
c.expr(),
|
alpar@1275
|
537 |
c.upperBounded()?c.upperBound():INF);
|
alpar@1264
|
538 |
}
|
alpar@1264
|
539 |
|
alpar@1258
|
540 |
///Add a new row (i.e a new constaint) to the LP
|
alpar@1258
|
541 |
|
alpar@1259
|
542 |
///\param l is the lower bound (-\ref INF means no bound)
|
alpar@1258
|
543 |
///\param e is a linear expression (see \ref Expr)
|
alpar@1259
|
544 |
///\param u is the upper bound (\ref INF means no bound)
|
alpar@1258
|
545 |
///\return The created row.
|
alpar@1258
|
546 |
///\bug This is a temportary function. The interface will change to
|
alpar@1258
|
547 |
///a better one.
|
alpar@1258
|
548 |
Row addRow(Value l,const Expr &e, Value u) {
|
alpar@1258
|
549 |
Row r=addRow();
|
alpar@1258
|
550 |
setRow(r,l,e,u);
|
alpar@1253
|
551 |
return r;
|
alpar@1253
|
552 |
}
|
alpar@1253
|
553 |
|
alpar@1264
|
554 |
///Add a new row (i.e a new constaint) to the LP
|
alpar@1264
|
555 |
|
alpar@1264
|
556 |
///\param c is a linear expression (see \ref Constr)
|
alpar@1264
|
557 |
///\return The created row.
|
alpar@1264
|
558 |
Row addRow(const Constr &c) {
|
alpar@1264
|
559 |
Row r=addRow();
|
alpar@1264
|
560 |
setRow(r,c);
|
alpar@1264
|
561 |
return r;
|
alpar@1264
|
562 |
}
|
alpar@1264
|
563 |
|
alpar@1253
|
564 |
/// Set the lower bound of a column (i.e a variable)
|
alpar@1253
|
565 |
|
alpar@1253
|
566 |
/// The upper bound of a variable (column) have to be given by an
|
alpar@1253
|
567 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
568 |
/// Value or -\ref INF.
|
alpar@1253
|
569 |
virtual void setColLowerBound(Col c, Value value) {
|
alpar@1253
|
570 |
_setColLowerBound(cols.floatingId(c.id),value);
|
alpar@1253
|
571 |
}
|
alpar@1253
|
572 |
/// Set the upper bound of a column (i.e a variable)
|
alpar@1253
|
573 |
|
alpar@1253
|
574 |
/// The upper bound of a variable (column) have to be given by an
|
alpar@1253
|
575 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
576 |
/// Value or \ref INF.
|
alpar@1253
|
577 |
virtual void setColUpperBound(Col c, Value value) {
|
alpar@1253
|
578 |
_setColUpperBound(cols.floatingId(c.id),value);
|
alpar@1253
|
579 |
};
|
alpar@1253
|
580 |
/// Set the lower bound of a row (i.e a constraint)
|
alpar@1253
|
581 |
|
alpar@1253
|
582 |
/// The lower bound of a linear expression (row) have to be given by an
|
alpar@1253
|
583 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
584 |
/// Value or -\ref INF.
|
alpar@1253
|
585 |
virtual void setRowLowerBound(Row r, Value value) {
|
alpar@1253
|
586 |
_setRowLowerBound(rows.floatingId(r.id),value);
|
alpar@1253
|
587 |
};
|
alpar@1253
|
588 |
/// Set the upper bound of a row (i.e a constraint)
|
alpar@1253
|
589 |
|
alpar@1253
|
590 |
/// The upper bound of a linear expression (row) have to be given by an
|
alpar@1253
|
591 |
/// extended number of type Value, i.e. a finite number of type
|
alpar@1259
|
592 |
/// Value or \ref INF.
|
alpar@1253
|
593 |
virtual void setRowUpperBound(Row r, Value value) {
|
alpar@1253
|
594 |
_setRowUpperBound(rows.floatingId(r.id),value);
|
alpar@1253
|
595 |
};
|
alpar@1253
|
596 |
///Set an element of the objective function
|
alpar@1253
|
597 |
void setObjCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
|
alpar@1253
|
598 |
///Set the objective function
|
alpar@1253
|
599 |
|
alpar@1253
|
600 |
///\param e is a linear expression of type \ref Expr.
|
alpar@1253
|
601 |
///\todo What to do with the constant component?
|
alpar@1253
|
602 |
void setObj(Expr e) {
|
alpar@1253
|
603 |
clearObj();
|
alpar@1253
|
604 |
for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
|
alpar@1253
|
605 |
setObjCoeff((*i).first,(*i).second);
|
alpar@1253
|
606 |
}
|
alpar@1263
|
607 |
|
alpar@1263
|
608 |
///@}
|
alpar@1263
|
609 |
|
alpar@1263
|
610 |
|
alpar@1263
|
611 |
///\name Solving the LP
|
alpar@1263
|
612 |
|
alpar@1263
|
613 |
///@{
|
alpar@1263
|
614 |
|
alpar@1263
|
615 |
///\e
|
alpar@1263
|
616 |
SolutionType solve() { return _solve(); }
|
alpar@1263
|
617 |
|
alpar@1263
|
618 |
///@}
|
alpar@1263
|
619 |
|
alpar@1263
|
620 |
///\name Obtaining the solution LP
|
alpar@1263
|
621 |
|
alpar@1263
|
622 |
///@{
|
alpar@1263
|
623 |
|
alpar@1263
|
624 |
///\e
|
alpar@1263
|
625 |
Value solution(Col c) { return _getSolution(cols.floatingId(c.id)); }
|
alpar@1263
|
626 |
|
alpar@1263
|
627 |
///@}
|
alpar@1253
|
628 |
|
athos@1248
|
629 |
};
|
athos@1246
|
630 |
|
alpar@1272
|
631 |
///\e
|
alpar@1272
|
632 |
|
alpar@1272
|
633 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
634 |
///
|
alpar@1272
|
635 |
inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
|
alpar@1272
|
636 |
const LpSolverBase::Expr &b)
|
alpar@1272
|
637 |
{
|
alpar@1272
|
638 |
LpSolverBase::Expr tmp(a);
|
alpar@1272
|
639 |
tmp+=b; ///\todo Don't STL have some special 'merge' algorithm?
|
alpar@1272
|
640 |
return tmp;
|
alpar@1272
|
641 |
}
|
alpar@1272
|
642 |
///\e
|
alpar@1272
|
643 |
|
alpar@1272
|
644 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
645 |
///
|
alpar@1272
|
646 |
inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
|
alpar@1272
|
647 |
const LpSolverBase::Expr &b)
|
alpar@1272
|
648 |
{
|
alpar@1272
|
649 |
LpSolverBase::Expr tmp(a);
|
alpar@1272
|
650 |
tmp-=b; ///\todo Don't STL have some special 'merge' algorithm?
|
alpar@1272
|
651 |
return tmp;
|
alpar@1272
|
652 |
}
|
alpar@1272
|
653 |
///\e
|
alpar@1272
|
654 |
|
alpar@1272
|
655 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
656 |
///
|
alpar@1272
|
657 |
inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
|
alpar@1273
|
658 |
const LpSolverBase::Value &b)
|
alpar@1272
|
659 |
{
|
alpar@1272
|
660 |
LpSolverBase::Expr tmp(a);
|
alpar@1272
|
661 |
tmp*=b; ///\todo Don't STL have some special 'merge' algorithm?
|
alpar@1272
|
662 |
return tmp;
|
alpar@1272
|
663 |
}
|
alpar@1272
|
664 |
|
alpar@1272
|
665 |
///\e
|
alpar@1272
|
666 |
|
alpar@1272
|
667 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
668 |
///
|
alpar@1273
|
669 |
inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
|
alpar@1272
|
670 |
const LpSolverBase::Expr &b)
|
alpar@1272
|
671 |
{
|
alpar@1272
|
672 |
LpSolverBase::Expr tmp(b);
|
alpar@1272
|
673 |
tmp*=a; ///\todo Don't STL have some special 'merge' algorithm?
|
alpar@1272
|
674 |
return tmp;
|
alpar@1272
|
675 |
}
|
alpar@1272
|
676 |
///\e
|
alpar@1272
|
677 |
|
alpar@1272
|
678 |
///\relates LpSolverBase::Expr
|
alpar@1272
|
679 |
///
|
alpar@1272
|
680 |
inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
|
alpar@1273
|
681 |
const LpSolverBase::Value &b)
|
alpar@1272
|
682 |
{
|
alpar@1272
|
683 |
LpSolverBase::Expr tmp(a);
|
alpar@1272
|
684 |
tmp/=b; ///\todo Don't STL have some special 'merge' algorithm?
|
alpar@1272
|
685 |
return tmp;
|
alpar@1272
|
686 |
}
|
alpar@1272
|
687 |
|
alpar@1272
|
688 |
///\e
|
alpar@1272
|
689 |
|
alpar@1272
|
690 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
691 |
///
|
alpar@1272
|
692 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
|
alpar@1272
|
693 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
694 |
{
|
alpar@1272
|
695 |
return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
|
alpar@1272
|
696 |
}
|
alpar@1272
|
697 |
|
alpar@1272
|
698 |
///\e
|
alpar@1272
|
699 |
|
alpar@1272
|
700 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
701 |
///
|
alpar@1273
|
702 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
|
alpar@1272
|
703 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
704 |
{
|
alpar@1272
|
705 |
return LpSolverBase::Constr(e,f);
|
alpar@1272
|
706 |
}
|
alpar@1272
|
707 |
|
alpar@1272
|
708 |
///\e
|
alpar@1272
|
709 |
|
alpar@1272
|
710 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
711 |
///
|
alpar@1272
|
712 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
|
alpar@1273
|
713 |
const LpSolverBase::Value &f)
|
alpar@1272
|
714 |
{
|
alpar@1272
|
715 |
return LpSolverBase::Constr(e,f);
|
alpar@1272
|
716 |
}
|
alpar@1272
|
717 |
|
alpar@1272
|
718 |
///\e
|
alpar@1272
|
719 |
|
alpar@1272
|
720 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
721 |
///
|
alpar@1272
|
722 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
|
alpar@1272
|
723 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
724 |
{
|
alpar@1272
|
725 |
return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
|
alpar@1272
|
726 |
}
|
alpar@1272
|
727 |
|
alpar@1272
|
728 |
|
alpar@1272
|
729 |
///\e
|
alpar@1272
|
730 |
|
alpar@1272
|
731 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
732 |
///
|
alpar@1273
|
733 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
|
alpar@1272
|
734 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
735 |
{
|
alpar@1272
|
736 |
return LpSolverBase::Constr(f,e);
|
alpar@1272
|
737 |
}
|
alpar@1272
|
738 |
|
alpar@1272
|
739 |
|
alpar@1272
|
740 |
///\e
|
alpar@1272
|
741 |
|
alpar@1272
|
742 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
743 |
///
|
alpar@1272
|
744 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
|
alpar@1273
|
745 |
const LpSolverBase::Value &f)
|
alpar@1272
|
746 |
{
|
alpar@1272
|
747 |
return LpSolverBase::Constr(f,e);
|
alpar@1272
|
748 |
}
|
alpar@1272
|
749 |
|
alpar@1272
|
750 |
///\e
|
alpar@1272
|
751 |
|
alpar@1272
|
752 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
753 |
///
|
alpar@1272
|
754 |
inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
|
alpar@1272
|
755 |
const LpSolverBase::Expr &f)
|
alpar@1272
|
756 |
{
|
alpar@1272
|
757 |
return LpSolverBase::Constr(0,e-f,0);
|
alpar@1272
|
758 |
}
|
alpar@1272
|
759 |
|
alpar@1272
|
760 |
///\e
|
alpar@1272
|
761 |
|
alpar@1272
|
762 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
763 |
///
|
alpar@1273
|
764 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
|
alpar@1272
|
765 |
const LpSolverBase::Constr&c)
|
alpar@1272
|
766 |
{
|
alpar@1272
|
767 |
LpSolverBase::Constr tmp(c);
|
alpar@1273
|
768 |
///\todo Create an own exception type.
|
alpar@1273
|
769 |
if(!isnan(tmp.lowerBound())) throw LogicError();
|
alpar@1273
|
770 |
else tmp.lowerBound()=n;
|
alpar@1272
|
771 |
return tmp;
|
alpar@1272
|
772 |
}
|
alpar@1272
|
773 |
///\e
|
alpar@1272
|
774 |
|
alpar@1272
|
775 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
776 |
///
|
alpar@1272
|
777 |
inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
|
alpar@1273
|
778 |
const LpSolverBase::Value &n)
|
alpar@1272
|
779 |
{
|
alpar@1272
|
780 |
LpSolverBase::Constr tmp(c);
|
alpar@1273
|
781 |
///\todo Create an own exception type.
|
alpar@1273
|
782 |
if(!isnan(tmp.upperBound())) throw LogicError();
|
alpar@1273
|
783 |
else tmp.upperBound()=n;
|
alpar@1272
|
784 |
return tmp;
|
alpar@1272
|
785 |
}
|
alpar@1272
|
786 |
|
alpar@1272
|
787 |
///\e
|
alpar@1272
|
788 |
|
alpar@1272
|
789 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
790 |
///
|
alpar@1273
|
791 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
|
alpar@1272
|
792 |
const LpSolverBase::Constr&c)
|
alpar@1272
|
793 |
{
|
alpar@1272
|
794 |
LpSolverBase::Constr tmp(c);
|
alpar@1273
|
795 |
///\todo Create an own exception type.
|
alpar@1273
|
796 |
if(!isnan(tmp.upperBound())) throw LogicError();
|
alpar@1273
|
797 |
else tmp.upperBound()=n;
|
alpar@1272
|
798 |
return tmp;
|
alpar@1272
|
799 |
}
|
alpar@1272
|
800 |
///\e
|
alpar@1272
|
801 |
|
alpar@1272
|
802 |
///\relates LpSolverBase::Constr
|
alpar@1272
|
803 |
///
|
alpar@1272
|
804 |
inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
|
alpar@1273
|
805 |
const LpSolverBase::Value &n)
|
alpar@1272
|
806 |
{
|
alpar@1272
|
807 |
LpSolverBase::Constr tmp(c);
|
alpar@1273
|
808 |
///\todo Create an own exception type.
|
alpar@1273
|
809 |
if(!isnan(tmp.lowerBound())) throw LogicError();
|
alpar@1273
|
810 |
else tmp.lowerBound()=n;
|
alpar@1272
|
811 |
return tmp;
|
alpar@1272
|
812 |
}
|
alpar@1272
|
813 |
|
alpar@1272
|
814 |
|
athos@1246
|
815 |
} //namespace lemon
|
athos@1246
|
816 |
|
athos@1246
|
817 |
#endif //LEMON_LP_BASE_H
|