ladanyi@666
|
1 |
/*!
|
ladanyi@666
|
2 |
|
ladanyi@666
|
3 |
\page graphs How to use graphs
|
ladanyi@666
|
4 |
|
alpar@756
|
5 |
The primary data structures of HugoLib are the graph classes. They all
|
alpar@756
|
6 |
provide a node list - edge list interface, i.e. they have
|
alpar@756
|
7 |
functionalities to list the nodes and the edges of the graph as well
|
alpar@756
|
8 |
as in incoming and outgoing edges of a given node.
|
alpar@756
|
9 |
|
alpar@756
|
10 |
|
alpar@756
|
11 |
Each graph should meet the \ref ConstGraph concept. This concept does
|
alpar@756
|
12 |
makes it possible to change the graph (i.e. it is not possible to add
|
alpar@756
|
13 |
or delete edges or nodes). Most of the graph algorithms will run on
|
alpar@756
|
14 |
these graphs.
|
alpar@756
|
15 |
|
alpar@756
|
16 |
The graphs meeting the \ref ExtendableGraph concept allow node and
|
alpar@756
|
17 |
edge addition. You can also "clear" (i.e. erase all edges and nodes)
|
alpar@756
|
18 |
such a graph.
|
alpar@756
|
19 |
|
alpar@756
|
20 |
In case of graphs meeting the full feature \ref ErasableGraph concept
|
alpar@756
|
21 |
you can also erase individual edges and node in arbitrary order.
|
alpar@756
|
22 |
|
alpar@756
|
23 |
The implemented graph structures are the following.
|
alpar@756
|
24 |
\li \ref hugo::ListGraph "ListGraph" is the most versatile graph class. It meets
|
alpar@756
|
25 |
the ErasableGraph concept and it also have some convenience features.
|
alpar@756
|
26 |
\li \ref hugo::SmartGraph "SmartGraph" is a more memory
|
alpar@756
|
27 |
efficient version of \ref hugo::ListGraph "ListGraph". The
|
alpar@756
|
28 |
price of it is that it only meets the \ref ExtendableGraph concept,
|
alpar@756
|
29 |
so you cannot delete individual edges or nodes.
|
alpar@756
|
30 |
\li \ref hugo::SymListGraph "SymListGraph" and
|
alpar@756
|
31 |
\ref hugo::SymSmartGraph "SymSmartGraph" classes are very similar to
|
alpar@756
|
32 |
\ref hugo::ListGraph "ListGraph" and \ref hugo::SmartGraph "SmartGraph".
|
alpar@756
|
33 |
The difference is that whenever you add a
|
alpar@756
|
34 |
new edge to the graph, it actually adds a pair of oppositely directed edges.
|
alpar@756
|
35 |
They are linked together so it is possible to access the counterpart of an
|
alpar@756
|
36 |
edge. An even more important feature is that using these classes you can also
|
alpar@756
|
37 |
attach data to the edges in such a way that the stored data
|
alpar@756
|
38 |
are shared by the edge pairs.
|
alpar@756
|
39 |
\li \ref hugo::FullGraph "FullGraph"
|
alpar@756
|
40 |
implements a full graph. It is a \ref ConstGraph, so you cannot
|
alpar@756
|
41 |
change the number of nodes once it is constructed. It is extremely memory
|
alpar@756
|
42 |
efficient: it uses constant amount of memory independently from the number of
|
alpar@756
|
43 |
the nodes of the graph. Of course, the size of the \ref maps "NodeMap"'s and
|
alpar@756
|
44 |
\ref maps "EdgeMap"'s will depend on the number of nodes.
|
alpar@756
|
45 |
|
alpar@756
|
46 |
\li \ref hugo::NodeSet "NodeSet" implements a graph with no edges. This class
|
alpar@756
|
47 |
can be used as a base class of \ref hugo::EdgeSet "EdgeSet".
|
alpar@756
|
48 |
\li \ref hugo::EdgeSet "EdgeSet" can be used to create a new graph on
|
alpar@756
|
49 |
the edge set of another graph. The base graph can be an arbitrary graph and it
|
alpar@756
|
50 |
is possible to attach several \ref hugo::EdgeSet "EdgeSet"'s to a base graph.
|
alpar@756
|
51 |
|
alpar@756
|
52 |
\todo Don't we need SmartNodeSet and SmartEdgeSet?
|
alpar@756
|
53 |
\todo Some cross-refs are wrong.
|
alpar@756
|
54 |
|
alpar@756
|
55 |
|
alpar@756
|
56 |
The graph structures itself can not store data attached
|
alpar@756
|
57 |
to the edges and nodes. However they all provide
|
alpar@756
|
58 |
\ref maps "map classes"
|
alpar@756
|
59 |
to dynamically attach data the to graph components.
|
alpar@756
|
60 |
|
alpar@756
|
61 |
|
alpar@756
|
62 |
|
alpar@756
|
63 |
|
ladanyi@666
|
64 |
The following program demonstrates the basic features of HugoLib's graph
|
ladanyi@666
|
65 |
structures.
|
ladanyi@666
|
66 |
|
ladanyi@666
|
67 |
\code
|
ladanyi@666
|
68 |
#include <iostream>
|
ladanyi@666
|
69 |
#include <hugo/list_graph.h>
|
ladanyi@666
|
70 |
|
ladanyi@666
|
71 |
using namespace hugo;
|
ladanyi@666
|
72 |
|
ladanyi@666
|
73 |
int main()
|
ladanyi@666
|
74 |
{
|
ladanyi@666
|
75 |
typedef ListGraph Graph;
|
ladanyi@666
|
76 |
\endcode
|
ladanyi@666
|
77 |
|
ladanyi@666
|
78 |
ListGraph is one of HugoLib's graph classes. It is based on linked lists,
|
ladanyi@666
|
79 |
therefore iterating throuh its edges and nodes is fast.
|
ladanyi@666
|
80 |
|
ladanyi@666
|
81 |
\code
|
ladanyi@666
|
82 |
typedef Graph::Edge Edge;
|
ladanyi@666
|
83 |
typedef Graph::InEdgeIt InEdgeIt;
|
ladanyi@666
|
84 |
typedef Graph::OutEdgeIt OutEdgeIt;
|
ladanyi@666
|
85 |
typedef Graph::EdgeIt EdgeIt;
|
ladanyi@666
|
86 |
typedef Graph::Node Node;
|
ladanyi@666
|
87 |
typedef Graph::NodeIt NodeIt;
|
ladanyi@666
|
88 |
|
ladanyi@666
|
89 |
Graph g;
|
ladanyi@666
|
90 |
|
ladanyi@666
|
91 |
for (int i = 0; i < 3; i++)
|
ladanyi@666
|
92 |
g.addNode();
|
ladanyi@666
|
93 |
|
ladanyi@666
|
94 |
for (NodeIt i(g); g.valid(i); g.next(i))
|
ladanyi@666
|
95 |
for (NodeIt j(g); g.valid(j); g.next(j))
|
ladanyi@666
|
96 |
if (i != j) g.addEdge(i, j);
|
ladanyi@666
|
97 |
\endcode
|
ladanyi@666
|
98 |
|
ladanyi@666
|
99 |
After some convenience typedefs we create a graph and add three nodes to it.
|
ladanyi@666
|
100 |
Then we add edges to it to form a full graph.
|
ladanyi@666
|
101 |
|
ladanyi@666
|
102 |
\code
|
ladanyi@666
|
103 |
std::cout << "Nodes:";
|
ladanyi@666
|
104 |
for (NodeIt i(g); g.valid(i); g.next(i))
|
ladanyi@666
|
105 |
std::cout << " " << g.id(i);
|
ladanyi@666
|
106 |
std::cout << std::endl;
|
ladanyi@666
|
107 |
\endcode
|
ladanyi@666
|
108 |
|
ladanyi@666
|
109 |
Here we iterate through all nodes of the graph. We use a constructor of the
|
ladanyi@666
|
110 |
node iterator to initialize it to the first node. The next member function is
|
ladanyi@666
|
111 |
used to step to the next node, and valid is used to check if we have passed the
|
ladanyi@666
|
112 |
last one.
|
ladanyi@666
|
113 |
|
ladanyi@666
|
114 |
\code
|
ladanyi@666
|
115 |
std::cout << "Nodes:";
|
ladanyi@666
|
116 |
NodeIt n;
|
ladanyi@666
|
117 |
for (g.first(n); n != INVALID; g.next(n))
|
ladanyi@666
|
118 |
std::cout << " " << g.id(n);
|
ladanyi@666
|
119 |
std::cout << std::endl;
|
ladanyi@666
|
120 |
\endcode
|
ladanyi@666
|
121 |
|
ladanyi@666
|
122 |
Here you can see an alternative way to iterate through all nodes. Here we use a
|
ladanyi@666
|
123 |
member function of the graph to initialize the node iterator to the first node
|
ladanyi@666
|
124 |
of the graph. Using next on the iterator pointing to the last node invalidates
|
ladanyi@666
|
125 |
the iterator i.e. sets its value to INVALID. Checking for this value is
|
ladanyi@666
|
126 |
equivalent to using the valid member function.
|
ladanyi@666
|
127 |
|
ladanyi@666
|
128 |
Both of the previous code fragments print out the same:
|
ladanyi@666
|
129 |
|
ladanyi@666
|
130 |
\code
|
ladanyi@666
|
131 |
Nodes: 2 1 0
|
ladanyi@666
|
132 |
\endcode
|
ladanyi@666
|
133 |
|
ladanyi@666
|
134 |
\code
|
ladanyi@666
|
135 |
std::cout << "Edges:";
|
ladanyi@666
|
136 |
for (EdgeIt i(g); g.valid(i); g.next(i))
|
ladanyi@666
|
137 |
std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")";
|
ladanyi@666
|
138 |
std::cout << std::endl;
|
ladanyi@666
|
139 |
\endcode
|
ladanyi@666
|
140 |
|
ladanyi@666
|
141 |
\code
|
ladanyi@666
|
142 |
Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0)
|
ladanyi@666
|
143 |
\endcode
|
ladanyi@666
|
144 |
|
ladanyi@666
|
145 |
We can also iterate through all edges of the graph very similarly. The head and
|
ladanyi@666
|
146 |
tail member functions can be used to access the endpoints of an edge.
|
ladanyi@666
|
147 |
|
ladanyi@666
|
148 |
\code
|
ladanyi@666
|
149 |
NodeIt first_node(g);
|
ladanyi@666
|
150 |
|
ladanyi@666
|
151 |
std::cout << "Out-edges of node " << g.id(first_node) << ":";
|
ladanyi@666
|
152 |
for (OutEdgeIt i(g, first_node); g.valid(i); g.next(i))
|
ladanyi@666
|
153 |
std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")";
|
ladanyi@666
|
154 |
std::cout << std::endl;
|
ladanyi@666
|
155 |
|
ladanyi@666
|
156 |
std::cout << "In-edges of node " << g.id(first_node) << ":";
|
ladanyi@666
|
157 |
for (InEdgeIt i(g, first_node); g.valid(i); g.next(i))
|
ladanyi@666
|
158 |
std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")";
|
ladanyi@666
|
159 |
std::cout << std::endl;
|
ladanyi@666
|
160 |
\endcode
|
ladanyi@666
|
161 |
|
ladanyi@666
|
162 |
\code
|
ladanyi@666
|
163 |
Out-edges of node 2: (2,0) (2,1)
|
ladanyi@666
|
164 |
In-edges of node 2: (0,2) (1,2)
|
ladanyi@666
|
165 |
\endcode
|
ladanyi@666
|
166 |
|
ladanyi@666
|
167 |
We can also iterate through the in and out-edges of a node. In the above
|
ladanyi@666
|
168 |
example we print out the in and out-edges of the first node of the graph.
|
ladanyi@666
|
169 |
|
ladanyi@666
|
170 |
\code
|
ladanyi@666
|
171 |
Graph::EdgeMap<int> m(g);
|
ladanyi@666
|
172 |
|
ladanyi@666
|
173 |
for (EdgeIt e(g); g.valid(e); g.next(e))
|
ladanyi@666
|
174 |
m.set(e, 10 - g.id(e));
|
ladanyi@666
|
175 |
|
ladanyi@666
|
176 |
std::cout << "Id Edge Value" << std::endl;
|
ladanyi@666
|
177 |
for (EdgeIt e(g); g.valid(e); g.next(e))
|
ladanyi@666
|
178 |
std::cout << g.id(e) << " (" << g.id(g.tail(e)) << "," << g.id(g.head(e))
|
ladanyi@666
|
179 |
<< ") " << m[e] << std::endl;
|
ladanyi@666
|
180 |
\endcode
|
ladanyi@666
|
181 |
|
ladanyi@666
|
182 |
\code
|
ladanyi@666
|
183 |
Id Edge Value
|
ladanyi@666
|
184 |
4 (0,2) 6
|
ladanyi@666
|
185 |
2 (1,2) 8
|
ladanyi@666
|
186 |
5 (0,1) 5
|
ladanyi@666
|
187 |
0 (2,1) 10
|
ladanyi@666
|
188 |
3 (1,0) 7
|
ladanyi@666
|
189 |
1 (2,0) 9
|
ladanyi@666
|
190 |
\endcode
|
ladanyi@666
|
191 |
|
ladanyi@666
|
192 |
In generic graph optimization programming graphs are not containers rather
|
ladanyi@666
|
193 |
incidence structures which are iterable in many ways. HugoLib introduces
|
ladanyi@666
|
194 |
concepts that allow us to attach containers to graphs. These containers are
|
ladanyi@666
|
195 |
called maps.
|
ladanyi@666
|
196 |
|
ladanyi@666
|
197 |
In the example above we create an EdgeMap which assigns an int value to all
|
ladanyi@666
|
198 |
edges of the graph. We use the set member function of the map to write values
|
ladanyi@666
|
199 |
into the map and the operator[] to retrieve them.
|
ladanyi@666
|
200 |
|
ladanyi@666
|
201 |
Here we used the maps provided by the ListGraph class, but you can also write
|
ladanyi@666
|
202 |
your own maps. You can read more about using maps \ref maps "here".
|
ladanyi@666
|
203 |
|
ladanyi@666
|
204 |
*/
|