lemon/graph_adaptor.h
author deba
Mon, 03 Oct 2005 10:11:29 +0000
changeset 1694 6d81e6f7a88d
parent 1681 84e43c7ca1e3
child 1697 4c593a4096da
permissions -rw-r--r--
Fixing naming conventions
Temporarly bugfix with named-parameters
Removing dead codes
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@1401
    17
#ifndef LEMON_GRAPH_ADAPTOR_H
alpar@1401
    18
#define LEMON_GRAPH_ADAPTOR_H
marci@556
    19
alpar@1401
    20
///\ingroup graph_adaptors
marci@556
    21
///\file
alpar@1401
    22
///\brief Several graph adaptors.
marci@556
    23
///
alpar@1401
    24
///This file contains several useful graph adaptor functions.
marci@556
    25
///
marci@556
    26
///\author Marton Makai
marci@556
    27
alpar@921
    28
#include <lemon/invalid.h>
alpar@921
    29
#include <lemon/maps.h>
deba@1472
    30
#include <lemon/bits/erasable_graph_extender.h>
deba@1472
    31
#include <lemon/bits/clearable_graph_extender.h>
deba@1472
    32
#include <lemon/bits/extendable_graph_extender.h>
deba@1307
    33
#include <lemon/bits/iterable_graph_extender.h>
deba@1472
    34
#include <lemon/bits/alteration_notifier.h>
deba@1472
    35
#include <lemon/bits/default_map.h>
marci@1383
    36
#include <lemon/bits/undir_graph_extender.h>
alpar@774
    37
#include <iostream>
marci@556
    38
alpar@921
    39
namespace lemon {
marci@556
    40
alpar@1401
    41
  // Graph adaptors
marci@556
    42
marci@1172
    43
  /*!
alpar@1401
    44
    \addtogroup graph_adaptors
marci@1004
    45
    @{
marci@1172
    46
   */
marci@556
    47
marci@1172
    48
  /*! 
alpar@1401
    49
    Base type for the Graph Adaptors
marci@1242
    50
    
alpar@1401
    51
    \warning Graph adaptors are in even more experimental state than the other
marci@1004
    52
    parts of the lib. Use them at you own risk.
marci@1242
    53
    
alpar@1401
    54
    This is the base type for most of LEMON graph adaptors. 
alpar@1401
    55
    This class implements a trivial graph adaptor i.e. it only wraps the 
marci@1004
    56
    functions and types of the graph. The purpose of this class is to 
alpar@1401
    57
    make easier implementing graph adaptors. E.g. if an adaptor is 
marci@1004
    58
    considered which differs from the wrapped graph only in some of its 
alpar@1401
    59
    functions or types, then it can be derived from GraphAdaptor, and only the 
marci@1004
    60
    differences should be implemented.
marci@1004
    61
  
marci@1004
    62
    \author Marton Makai 
marci@1004
    63
  */
marci@970
    64
  template<typename _Graph>
alpar@1401
    65
  class GraphAdaptorBase {
marci@970
    66
  public:
marci@970
    67
    typedef _Graph Graph;
marci@970
    68
    /// \todo Is it needed?
marci@970
    69
    typedef Graph BaseGraph;
marci@970
    70
    typedef Graph ParentGraph;
marci@970
    71
marci@556
    72
  protected:
marci@556
    73
    Graph* graph;
alpar@1401
    74
    GraphAdaptorBase() : graph(0) { }
marci@556
    75
    void setGraph(Graph& _graph) { graph=&_graph; }
marci@556
    76
marci@556
    77
  public:
alpar@1401
    78
    GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
marci@556
    79
 
alpar@774
    80
    typedef typename Graph::Node Node;
alpar@774
    81
    typedef typename Graph::Edge Edge;
marci@556
    82
   
marci@970
    83
    void first(Node& i) const { graph->first(i); }
marci@970
    84
    void first(Edge& i) const { graph->first(i); }
marci@970
    85
    void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
marci@970
    86
    void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
marci@556
    87
marci@970
    88
    void next(Node& i) const { graph->next(i); }
marci@970
    89
    void next(Edge& i) const { graph->next(i); }
marci@970
    90
    void nextIn(Edge& i) const { graph->nextIn(i); }
marci@970
    91
    void nextOut(Edge& i) const { graph->nextOut(i); }
marci@970
    92
alpar@986
    93
    Node source(const Edge& e) const { return graph->source(e); }
alpar@986
    94
    Node target(const Edge& e) const { return graph->target(e); }
marci@556
    95
marci@556
    96
    int nodeNum() const { return graph->nodeNum(); }
marci@556
    97
    int edgeNum() const { return graph->edgeNum(); }
marci@556
    98
  
marci@556
    99
    Node addNode() const { return Node(graph->addNode()); }
alpar@986
   100
    Edge addEdge(const Node& source, const Node& target) const { 
alpar@986
   101
      return Edge(graph->addEdge(source, target)); }
marci@556
   102
marci@556
   103
    void erase(const Node& i) const { graph->erase(i); }
marci@556
   104
    void erase(const Edge& i) const { graph->erase(i); }
marci@556
   105
  
marci@556
   106
    void clear() const { graph->clear(); }
marci@556
   107
    
marci@739
   108
    int id(const Node& v) const { return graph->id(v); }
marci@739
   109
    int id(const Edge& e) const { return graph->id(e); }
marci@650
   110
    
deba@1627
   111
    Edge oppositeNode(const Edge& e) const { 
deba@1627
   112
      return Edge(graph->opposite(e)); 
deba@1627
   113
    }
marci@650
   114
marci@970
   115
    template <typename _Value>
marci@970
   116
    class NodeMap : public _Graph::template NodeMap<_Value> {
marci@970
   117
    public:
marci@970
   118
      typedef typename _Graph::template NodeMap<_Value> Parent;
alpar@1401
   119
      NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
alpar@1401
   120
      NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
marci@970
   121
      : Parent(*gw.graph, value) { }
marci@970
   122
    };
marci@556
   123
marci@970
   124
    template <typename _Value>
marci@970
   125
    class EdgeMap : public _Graph::template EdgeMap<_Value> {
marci@970
   126
    public:
marci@970
   127
      typedef typename _Graph::template EdgeMap<_Value> Parent;
alpar@1401
   128
      EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
alpar@1401
   129
      EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
marci@970
   130
      : Parent(*gw.graph, value) { }
marci@970
   131
    };
deba@877
   132
marci@556
   133
  };
marci@556
   134
marci@970
   135
  template <typename _Graph>
alpar@1401
   136
  class GraphAdaptor :
alpar@1401
   137
    public IterableGraphExtender<GraphAdaptorBase<_Graph> > { 
marci@970
   138
  public:
marci@970
   139
    typedef _Graph Graph;
alpar@1401
   140
    typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
marci@970
   141
  protected:
alpar@1401
   142
    GraphAdaptor() : Parent() { }
marci@569
   143
marci@970
   144
  public:
alpar@1401
   145
    GraphAdaptor(Graph& _graph) { setGraph(_graph); }
marci@970
   146
  };
marci@569
   147
marci@997
   148
  template <typename _Graph>
alpar@1401
   149
  class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@997
   150
  public:
marci@997
   151
    typedef _Graph Graph;
alpar@1401
   152
    typedef GraphAdaptorBase<_Graph> Parent;
marci@997
   153
  protected:
alpar@1401
   154
    RevGraphAdaptorBase() : Parent() { }
marci@997
   155
  public:
marci@997
   156
    typedef typename Parent::Node Node;
marci@997
   157
    typedef typename Parent::Edge Edge;
marci@997
   158
marci@1383
   159
    //    using Parent::first;
marci@997
   160
    void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
marci@997
   161
    void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
marci@997
   162
marci@1383
   163
    //    using Parent::next;
marci@997
   164
    void nextIn(Edge& i) const { Parent::nextOut(i); }
marci@997
   165
    void nextOut(Edge& i) const { Parent::nextIn(i); }
marci@997
   166
marci@997
   167
    Node source(const Edge& e) const { return Parent::target(e); }
marci@997
   168
    Node target(const Edge& e) const { return Parent::source(e); }
marci@997
   169
  };
marci@997
   170
    
marci@997
   171
alpar@1401
   172
  /// A graph adaptor which reverses the orientation of the edges.
marci@556
   173
alpar@1401
   174
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
   175
  ///parts of the lib. Use them at you own risk.
alpar@879
   176
  ///
marci@923
   177
  /// Let \f$G=(V, A)\f$ be a directed graph and 
marci@923
   178
  /// suppose that a graph instange \c g of type 
marci@923
   179
  /// \c ListGraph implements \f$G\f$.
marci@923
   180
  /// \code
marci@923
   181
  /// ListGraph g;
marci@923
   182
  /// \endcode
marci@923
   183
  /// For each directed edge 
marci@923
   184
  /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
marci@923
   185
  /// reversing its orientation. 
alpar@1401
   186
  /// Then RevGraphAdaptor implements the graph structure with node-set 
marci@923
   187
  /// \f$V\f$ and edge-set 
marci@923
   188
  /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
marci@923
   189
  /// reversing the orientation of its edges. The following code shows how 
marci@923
   190
  /// such an instance can be constructed.
marci@923
   191
  /// \code
alpar@1401
   192
  /// RevGraphAdaptor<ListGraph> gw(g);
marci@923
   193
  /// \endcode
marci@556
   194
  ///\author Marton Makai
marci@997
   195
  template<typename _Graph>
alpar@1401
   196
  class RevGraphAdaptor : 
alpar@1401
   197
    public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
marci@650
   198
  public:
marci@997
   199
    typedef _Graph Graph;
marci@997
   200
    typedef IterableGraphExtender<
alpar@1401
   201
      RevGraphAdaptorBase<_Graph> > Parent;
marci@556
   202
  protected:
alpar@1401
   203
    RevGraphAdaptor() { }
marci@556
   204
  public:
alpar@1401
   205
    RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
marci@997
   206
  };
marci@556
   207
marci@992
   208
  
deba@1681
   209
  template <typename _Graph, typename NodeFilterMap, 
deba@1681
   210
	    typename EdgeFilterMap, bool checked = true>
alpar@1401
   211
  class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@992
   212
  public:
marci@992
   213
    typedef _Graph Graph;
alpar@1401
   214
    typedef GraphAdaptorBase<_Graph> Parent;
marci@992
   215
  protected:
marci@992
   216
    NodeFilterMap* node_filter_map;
marci@992
   217
    EdgeFilterMap* edge_filter_map;
alpar@1401
   218
    SubGraphAdaptorBase() : Parent(), 
marci@992
   219
			    node_filter_map(0), edge_filter_map(0) { }
marci@775
   220
marci@992
   221
    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
marci@992
   222
      node_filter_map=&_node_filter_map;
marci@992
   223
    }
marci@992
   224
    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
marci@992
   225
      edge_filter_map=&_edge_filter_map;
marci@992
   226
    }
marci@992
   227
marci@992
   228
  public:
marci@992
   229
marci@992
   230
    typedef typename Parent::Node Node;
marci@992
   231
    typedef typename Parent::Edge Edge;
marci@992
   232
marci@992
   233
    void first(Node& i) const { 
marci@992
   234
      Parent::first(i); 
marci@992
   235
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
marci@992
   236
    }
deba@1681
   237
deba@1681
   238
    void first(Edge& i) const { 
deba@1681
   239
      Parent::first(i); 
deba@1681
   240
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   241
	     || !(*node_filter_map)[Parent::source(i)]
deba@1681
   242
	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
deba@1681
   243
    }
deba@1681
   244
deba@1681
   245
    void firstIn(Edge& i, const Node& n) const { 
deba@1681
   246
      Parent::firstIn(i, n); 
deba@1681
   247
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   248
	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
deba@1681
   249
    }
deba@1681
   250
deba@1681
   251
    void firstOut(Edge& i, const Node& n) const { 
deba@1681
   252
      Parent::firstOut(i, n); 
deba@1681
   253
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   254
	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
deba@1681
   255
    }
deba@1681
   256
deba@1681
   257
    void next(Node& i) const { 
deba@1681
   258
      Parent::next(i); 
deba@1681
   259
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
deba@1681
   260
    }
deba@1681
   261
deba@1681
   262
    void next(Edge& i) const { 
deba@1681
   263
      Parent::next(i); 
deba@1681
   264
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   265
	     || !(*node_filter_map)[Parent::source(i)]
deba@1681
   266
	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
deba@1681
   267
    }
deba@1681
   268
deba@1681
   269
    void nextIn(Edge& i) const { 
deba@1681
   270
      Parent::nextIn(i); 
deba@1681
   271
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   272
	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
deba@1681
   273
    }
deba@1681
   274
deba@1681
   275
    void nextOut(Edge& i) const { 
deba@1681
   276
      Parent::nextOut(i); 
deba@1681
   277
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   278
	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
deba@1681
   279
    }
deba@1681
   280
deba@1681
   281
    /// This function hides \c n in the graph, i.e. the iteration 
deba@1681
   282
    /// jumps over it. This is done by simply setting the value of \c n  
deba@1681
   283
    /// to be false in the corresponding node-map.
deba@1681
   284
    void hide(const Node& n) const { node_filter_map->set(n, false); }
deba@1681
   285
deba@1681
   286
    /// This function hides \c e in the graph, i.e. the iteration 
deba@1681
   287
    /// jumps over it. This is done by simply setting the value of \c e  
deba@1681
   288
    /// to be false in the corresponding edge-map.
deba@1681
   289
    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
deba@1681
   290
deba@1681
   291
    /// The value of \c n is set to be true in the node-map which stores 
deba@1681
   292
    /// hide information. If \c n was hidden previuosly, then it is shown 
deba@1681
   293
    /// again
deba@1681
   294
     void unHide(const Node& n) const { node_filter_map->set(n, true); }
deba@1681
   295
deba@1681
   296
    /// The value of \c e is set to be true in the edge-map which stores 
deba@1681
   297
    /// hide information. If \c e was hidden previuosly, then it is shown 
deba@1681
   298
    /// again
deba@1681
   299
    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
deba@1681
   300
deba@1681
   301
    /// Returns true if \c n is hidden.
deba@1681
   302
    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
deba@1681
   303
deba@1681
   304
    /// Returns true if \c n is hidden.
deba@1681
   305
    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
deba@1681
   306
deba@1681
   307
    /// \warning This is a linear time operation and works only if s
deba@1681
   308
    /// \c Graph::NodeIt is defined.
deba@1681
   309
    /// \todo assign tags.
deba@1681
   310
    int nodeNum() const { 
deba@1681
   311
      int i=0;
deba@1681
   312
      Node n;
deba@1681
   313
      for (first(n); n!=INVALID; next(n)) ++i;
deba@1681
   314
      return i; 
deba@1681
   315
    }
deba@1681
   316
deba@1681
   317
    /// \warning This is a linear time operation and works only if 
deba@1681
   318
    /// \c Graph::EdgeIt is defined.
deba@1681
   319
    /// \todo assign tags.
deba@1681
   320
    int edgeNum() const { 
deba@1681
   321
      int i=0;
deba@1681
   322
      Edge e;
deba@1681
   323
      for (first(e); e!=INVALID; next(e)) ++i;
deba@1681
   324
      return i; 
deba@1681
   325
    }
deba@1681
   326
  };
deba@1681
   327
deba@1681
   328
  template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
deba@1681
   329
  class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
deba@1681
   330
    : public GraphAdaptorBase<_Graph> {
deba@1681
   331
  public:
deba@1681
   332
    typedef _Graph Graph;
deba@1681
   333
    typedef GraphAdaptorBase<_Graph> Parent;
deba@1681
   334
  protected:
deba@1681
   335
    NodeFilterMap* node_filter_map;
deba@1681
   336
    EdgeFilterMap* edge_filter_map;
deba@1681
   337
    SubGraphAdaptorBase() : Parent(), 
deba@1681
   338
			    node_filter_map(0), edge_filter_map(0) { }
deba@1681
   339
deba@1681
   340
    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
deba@1681
   341
      node_filter_map=&_node_filter_map;
deba@1681
   342
    }
deba@1681
   343
    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
deba@1681
   344
      edge_filter_map=&_edge_filter_map;
deba@1681
   345
    }
deba@1681
   346
deba@1681
   347
  public:
deba@1681
   348
deba@1681
   349
    typedef typename Parent::Node Node;
deba@1681
   350
    typedef typename Parent::Edge Edge;
deba@1681
   351
deba@1681
   352
    void first(Node& i) const { 
deba@1681
   353
      Parent::first(i); 
deba@1681
   354
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
deba@1681
   355
    }
deba@1681
   356
marci@992
   357
    void first(Edge& i) const { 
marci@992
   358
      Parent::first(i); 
marci@992
   359
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
marci@992
   360
    }
deba@1681
   361
marci@992
   362
    void firstIn(Edge& i, const Node& n) const { 
marci@992
   363
      Parent::firstIn(i, n); 
marci@992
   364
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
marci@992
   365
    }
deba@1681
   366
marci@992
   367
    void firstOut(Edge& i, const Node& n) const { 
marci@992
   368
      Parent::firstOut(i, n); 
marci@992
   369
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
marci@992
   370
    }
marci@992
   371
marci@992
   372
    void next(Node& i) const { 
marci@992
   373
      Parent::next(i); 
marci@992
   374
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
marci@992
   375
    }
marci@992
   376
    void next(Edge& i) const { 
marci@992
   377
      Parent::next(i); 
marci@992
   378
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
marci@992
   379
    }
marci@992
   380
    void nextIn(Edge& i) const { 
marci@992
   381
      Parent::nextIn(i); 
marci@992
   382
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
marci@992
   383
    }
deba@1681
   384
marci@992
   385
    void nextOut(Edge& i) const { 
marci@992
   386
      Parent::nextOut(i); 
marci@992
   387
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
marci@992
   388
    }
marci@992
   389
marci@992
   390
    /// This function hides \c n in the graph, i.e. the iteration 
marci@992
   391
    /// jumps over it. This is done by simply setting the value of \c n  
marci@992
   392
    /// to be false in the corresponding node-map.
marci@992
   393
    void hide(const Node& n) const { node_filter_map->set(n, false); }
marci@992
   394
marci@992
   395
    /// This function hides \c e in the graph, i.e. the iteration 
marci@992
   396
    /// jumps over it. This is done by simply setting the value of \c e  
marci@992
   397
    /// to be false in the corresponding edge-map.
marci@992
   398
    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
marci@992
   399
marci@992
   400
    /// The value of \c n is set to be true in the node-map which stores 
marci@992
   401
    /// hide information. If \c n was hidden previuosly, then it is shown 
marci@992
   402
    /// again
marci@992
   403
     void unHide(const Node& n) const { node_filter_map->set(n, true); }
marci@992
   404
marci@992
   405
    /// The value of \c e is set to be true in the edge-map which stores 
marci@992
   406
    /// hide information. If \c e was hidden previuosly, then it is shown 
marci@992
   407
    /// again
marci@992
   408
    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
marci@992
   409
marci@992
   410
    /// Returns true if \c n is hidden.
marci@992
   411
    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
marci@992
   412
marci@992
   413
    /// Returns true if \c n is hidden.
marci@992
   414
    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
marci@992
   415
marci@992
   416
    /// \warning This is a linear time operation and works only if s
marci@992
   417
    /// \c Graph::NodeIt is defined.
marci@992
   418
    /// \todo assign tags.
marci@992
   419
    int nodeNum() const { 
marci@992
   420
      int i=0;
marci@992
   421
      Node n;
marci@992
   422
      for (first(n); n!=INVALID; next(n)) ++i;
marci@992
   423
      return i; 
marci@992
   424
    }
marci@992
   425
marci@992
   426
    /// \warning This is a linear time operation and works only if 
marci@992
   427
    /// \c Graph::EdgeIt is defined.
marci@992
   428
    /// \todo assign tags.
marci@992
   429
    int edgeNum() const { 
marci@992
   430
      int i=0;
marci@992
   431
      Edge e;
marci@992
   432
      for (first(e); e!=INVALID; next(e)) ++i;
marci@992
   433
      return i; 
marci@992
   434
    }
marci@992
   435
  };
marci@775
   436
alpar@1401
   437
  /*! \brief A graph adaptor for hiding nodes and edges from a graph.
marci@1242
   438
    
alpar@1401
   439
  \warning Graph adaptors are in even more experimental state than the other
marci@930
   440
  parts of the lib. Use them at you own risk.
marci@930
   441
  
alpar@1401
   442
  SubGraphAdaptor shows the graph with filtered node-set and 
marci@930
   443
  edge-set. 
marci@1242
   444
  Let \f$G=(V, A)\f$ be a directed graph 
marci@1242
   445
  and suppose that the graph instance \c g of type ListGraph implements 
marci@1242
   446
  \f$G\f$. 
marci@1242
   447
  Let moreover \f$b_V\f$ and 
marci@1242
   448
  \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
alpar@1401
   449
  SubGraphAdaptor<...>::NodeIt iterates 
marci@1242
   450
  on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
alpar@1401
   451
  SubGraphAdaptor<...>::EdgeIt iterates 
marci@1242
   452
  on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
alpar@1401
   453
  SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates 
marci@1242
   454
  only on edges leaving and entering a specific node which have true value.
marci@1242
   455
marci@1242
   456
  We have to note that this does not mean that an 
marci@930
   457
  induced subgraph is obtained, the node-iterator cares only the filter 
marci@930
   458
  on the node-set, and the edge-iterators care only the filter on the 
marci@1242
   459
  edge-set. 
marci@930
   460
  \code
marci@1242
   461
  typedef ListGraph Graph;
marci@930
   462
  Graph g;
marci@930
   463
  typedef Graph::Node Node;
marci@930
   464
  typedef Graph::Edge Edge;
marci@930
   465
  Node u=g.addNode(); //node of id 0
marci@930
   466
  Node v=g.addNode(); //node of id 1
marci@930
   467
  Node e=g.addEdge(u, v); //edge of id 0
marci@930
   468
  Node f=g.addEdge(v, u); //edge of id 1
marci@930
   469
  Graph::NodeMap<bool> nm(g, true);
marci@930
   470
  nm.set(u, false);
marci@930
   471
  Graph::EdgeMap<bool> em(g, true);
marci@930
   472
  em.set(e, false);
alpar@1401
   473
  typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
marci@930
   474
  SubGW gw(g, nm, em);
marci@930
   475
  for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
marci@930
   476
  std::cout << ":-)" << std::endl;
marci@930
   477
  for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
marci@930
   478
  \endcode
marci@930
   479
  The output of the above code is the following.
marci@930
   480
  \code
marci@930
   481
  1
marci@930
   482
  :-)
marci@930
   483
  1
marci@930
   484
  \endcode
marci@930
   485
  Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
marci@930
   486
  \c Graph::Node that is why \c g.id(n) can be applied.
marci@930
   487
alpar@1401
   488
  For other examples see also the documentation of NodeSubGraphAdaptor and 
alpar@1401
   489
  EdgeSubGraphAdaptor.
marci@930
   490
marci@930
   491
  \author Marton Makai
marci@930
   492
  */
marci@992
   493
  template<typename _Graph, typename NodeFilterMap, 
deba@1681
   494
	   typename EdgeFilterMap, bool checked = true>
alpar@1401
   495
  class SubGraphAdaptor : 
marci@992
   496
    public IterableGraphExtender<
deba@1681
   497
    SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
marci@650
   498
  public:
marci@992
   499
    typedef _Graph Graph;
marci@992
   500
    typedef IterableGraphExtender<
alpar@1401
   501
      SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
marci@556
   502
  protected:
alpar@1401
   503
    SubGraphAdaptor() { }
marci@992
   504
  public:
alpar@1401
   505
    SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
marci@992
   506
		    EdgeFilterMap& _edge_filter_map) { 
marci@992
   507
      setGraph(_graph);
marci@992
   508
      setNodeFilterMap(_node_filter_map);
marci@992
   509
      setEdgeFilterMap(_edge_filter_map);
marci@992
   510
    }
marci@992
   511
  };
marci@556
   512
marci@556
   513
marci@569
   514
alpar@1401
   515
  /*! \brief An adaptor for hiding nodes from a graph.
marci@933
   516
alpar@1401
   517
  \warning Graph adaptors are in even more experimental state than the other
marci@933
   518
  parts of the lib. Use them at you own risk.
marci@933
   519
  
alpar@1401
   520
  An adaptor for hiding nodes from a graph.
alpar@1401
   521
  This adaptor specializes SubGraphAdaptor in the way that only the node-set 
marci@933
   522
  can be filtered. Note that this does not mean of considering induced 
marci@933
   523
  subgraph, the edge-iterators consider the original edge-set.
marci@933
   524
  \author Marton Makai
marci@933
   525
  */
deba@1681
   526
  template<typename Graph, typename NodeFilterMap, bool checked = true>
alpar@1401
   527
  class NodeSubGraphAdaptor : 
alpar@1401
   528
    public SubGraphAdaptor<Graph, NodeFilterMap, 
deba@1681
   529
			   ConstMap<typename Graph::Edge,bool>, checked> {
marci@933
   530
  public:
alpar@1401
   531
    typedef SubGraphAdaptor<Graph, NodeFilterMap, 
marci@933
   532
			    ConstMap<typename Graph::Edge,bool> > Parent;
marci@933
   533
  protected:
marci@933
   534
    ConstMap<typename Graph::Edge, bool> const_true_map;
marci@933
   535
  public:
alpar@1401
   536
    NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
marci@933
   537
      Parent(), const_true_map(true) { 
marci@933
   538
      Parent::setGraph(_graph);
marci@933
   539
      Parent::setNodeFilterMap(_node_filter_map);
marci@933
   540
      Parent::setEdgeFilterMap(const_true_map);
marci@933
   541
    }
marci@933
   542
  };
marci@933
   543
marci@933
   544
alpar@1401
   545
  /*! \brief An adaptor for hiding edges from a graph.
marci@932
   546
alpar@1401
   547
  \warning Graph adaptors are in even more experimental state than the other
marci@932
   548
  parts of the lib. Use them at you own risk.
marci@932
   549
  
alpar@1401
   550
  An adaptor for hiding edges from a graph.
alpar@1401
   551
  This adaptor specializes SubGraphAdaptor in the way that only the edge-set 
alpar@1401
   552
  can be filtered. The usefulness of this adaptor is demonstrated in the 
marci@933
   553
  problem of searching a maximum number of edge-disjoint shortest paths 
marci@933
   554
  between 
marci@933
   555
  two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
marci@933
   556
  non-negative edge-lengths. Note that 
marci@933
   557
  the comprehension of the presented solution 
marci@1252
   558
  need's some elementary knowledge from combinatorial optimization. 
marci@933
   559
marci@933
   560
  If a single shortest path is to be 
marci@1252
   561
  searched between \c s and \c t, then this can be done easily by 
marci@1252
   562
  applying the Dijkstra algorithm. What happens, if a maximum number of 
marci@933
   563
  edge-disjoint shortest paths is to be computed. It can be proved that an 
marci@933
   564
  edge can be in a shortest path if and only if it is tight with respect to 
marci@933
   565
  the potential function computed by Dijkstra. Moreover, any path containing 
marci@933
   566
  only such edges is a shortest one. Thus we have to compute a maximum number 
marci@933
   567
  of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
marci@933
   568
  all the tight edges. The computation will be demonstrated on the following 
alpar@1536
   569
  graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
marci@1425
   570
  The full source code is available in \ref sub_graph_adaptor_demo.cc. 
marci@1425
   571
  If you are interested in more demo programs, you can use 
marci@1425
   572
  \ref dim_to_dot.cc to generate .dot files from dimacs files. 
athos@1576
   573
  The .dot file of the following figure was generated by  
marci@1425
   574
  the demo program \ref dim_to_dot.cc.
marci@1425
   575
marci@933
   576
  \dot
marci@933
   577
  digraph lemon_dot_example {
marci@933
   578
  node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
marci@933
   579
  n0 [ label="0 (s)" ];
marci@933
   580
  n1 [ label="1" ];
marci@933
   581
  n2 [ label="2" ];
marci@933
   582
  n3 [ label="3" ];
marci@933
   583
  n4 [ label="4" ];
marci@933
   584
  n5 [ label="5" ];
marci@933
   585
  n6 [ label="6 (t)" ];
marci@933
   586
  edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
marci@933
   587
  n5 ->  n6 [ label="9, length:4" ];
marci@933
   588
  n4 ->  n6 [ label="8, length:2" ];
marci@933
   589
  n3 ->  n5 [ label="7, length:1" ];
marci@933
   590
  n2 ->  n5 [ label="6, length:3" ];
marci@933
   591
  n2 ->  n6 [ label="5, length:5" ];
marci@933
   592
  n2 ->  n4 [ label="4, length:2" ];
marci@933
   593
  n1 ->  n4 [ label="3, length:3" ];
marci@933
   594
  n0 ->  n3 [ label="2, length:1" ];
marci@933
   595
  n0 ->  n2 [ label="1, length:2" ];
marci@933
   596
  n0 ->  n1 [ label="0, length:3" ];
marci@933
   597
  }
marci@933
   598
  \enddot
marci@933
   599
marci@933
   600
  \code
marci@933
   601
  Graph g;
marci@933
   602
  Node s, t;
marci@933
   603
  LengthMap length(g);
marci@933
   604
marci@933
   605
  readDimacs(std::cin, g, length, s, t);
marci@933
   606
alpar@986
   607
  cout << "edges with lengths (of form id, source--length->target): " << endl;
marci@933
   608
  for(EdgeIt e(g); e!=INVALID; ++e) 
alpar@986
   609
    cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
alpar@986
   610
         << length[e] << "->" << g.id(g.target(e)) << endl;
marci@933
   611
marci@933
   612
  cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
marci@933
   613
  \endcode
marci@933
   614
  Next, the potential function is computed with Dijkstra.
marci@933
   615
  \code
marci@933
   616
  typedef Dijkstra<Graph, LengthMap> Dijkstra;
marci@933
   617
  Dijkstra dijkstra(g, length);
marci@933
   618
  dijkstra.run(s);
marci@933
   619
  \endcode
marci@933
   620
  Next, we consrtruct a map which filters the edge-set to the tight edges.
marci@933
   621
  \code
marci@933
   622
  typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
marci@933
   623
    TightEdgeFilter;
marci@933
   624
  TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
marci@933
   625
  
alpar@1401
   626
  typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
marci@933
   627
  SubGW gw(g, tight_edge_filter);
marci@933
   628
  \endcode
marci@933
   629
  Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
marci@933
   630
  with a max flow algorithm Preflow.
marci@933
   631
  \code
marci@933
   632
  ConstMap<Edge, int> const_1_map(1);
marci@933
   633
  Graph::EdgeMap<int> flow(g, 0);
marci@933
   634
marci@933
   635
  Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
marci@933
   636
    preflow(gw, s, t, const_1_map, flow);
marci@933
   637
  preflow.run();
marci@933
   638
  \endcode
marci@933
   639
  Last, the output is:
marci@933
   640
  \code  
marci@933
   641
  cout << "maximum number of edge-disjoint shortest path: " 
marci@933
   642
       << preflow.flowValue() << endl;
marci@933
   643
  cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
marci@933
   644
       << endl;
marci@933
   645
  for(EdgeIt e(g); e!=INVALID; ++e) 
marci@933
   646
    if (flow[e])
alpar@986
   647
      cout << " " << g.id(g.source(e)) << "--" 
alpar@986
   648
	   << length[e] << "->" << g.id(g.target(e)) << endl;
marci@933
   649
  \endcode
marci@933
   650
  The program has the following (expected :-)) output:
marci@933
   651
  \code
alpar@986
   652
  edges with lengths (of form id, source--length->target):
marci@933
   653
   9, 5--4->6
marci@933
   654
   8, 4--2->6
marci@933
   655
   7, 3--1->5
marci@933
   656
   6, 2--3->5
marci@933
   657
   5, 2--5->6
marci@933
   658
   4, 2--2->4
marci@933
   659
   3, 1--3->4
marci@933
   660
   2, 0--1->3
marci@933
   661
   1, 0--2->2
marci@933
   662
   0, 0--3->1
marci@933
   663
  s: 0 t: 6
marci@933
   664
  maximum number of edge-disjoint shortest path: 2
marci@933
   665
  edges of the maximum number of edge-disjoint shortest s-t paths:
marci@933
   666
   9, 5--4->6
marci@933
   667
   8, 4--2->6
marci@933
   668
   7, 3--1->5
marci@933
   669
   4, 2--2->4
marci@933
   670
   2, 0--1->3
marci@933
   671
   1, 0--2->2
marci@933
   672
  \endcode
marci@933
   673
marci@932
   674
  \author Marton Makai
marci@932
   675
  */
marci@932
   676
  template<typename Graph, typename EdgeFilterMap>
alpar@1401
   677
  class EdgeSubGraphAdaptor : 
alpar@1401
   678
    public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
deba@1681
   679
			   EdgeFilterMap, false> {
marci@932
   680
  public:
alpar@1401
   681
    typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
deba@1685
   682
			    EdgeFilterMap, false> Parent;
marci@932
   683
  protected:
marci@932
   684
    ConstMap<typename Graph::Node, bool> const_true_map;
marci@932
   685
  public:
alpar@1401
   686
    EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
marci@932
   687
      Parent(), const_true_map(true) { 
marci@932
   688
      Parent::setGraph(_graph);
marci@932
   689
      Parent::setNodeFilterMap(const_true_map);
marci@932
   690
      Parent::setEdgeFilterMap(_edge_filter_map);
marci@932
   691
    }
marci@932
   692
  };
marci@932
   693
marci@1383
   694
  template <typename _Graph>
alpar@1401
   695
  class UndirGraphAdaptorBase : 
alpar@1401
   696
    public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
marci@1383
   697
  public:
marci@1383
   698
    typedef _Graph Graph;
alpar@1401
   699
    typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
marci@1383
   700
  protected:
alpar@1401
   701
    UndirGraphAdaptorBase() : Parent() { }
marci@1383
   702
  public:
marci@1383
   703
    typedef typename Parent::UndirEdge UndirEdge;
marci@1383
   704
    typedef typename Parent::Edge Edge;
marci@1383
   705
    
marci@1383
   706
    /// \bug Why cant an edge say that it is forward or not??? 
marci@1383
   707
    /// By this, a pointer to the graph have to be stored
marci@1383
   708
    /// The implementation
marci@1383
   709
    template <typename T>
marci@1383
   710
    class EdgeMap {
marci@1383
   711
    protected:
alpar@1401
   712
      const UndirGraphAdaptorBase<_Graph>* g;
marci@1383
   713
      template <typename TT> friend class EdgeMap;
marci@1383
   714
      typename _Graph::template EdgeMap<T> forward_map, backward_map; 
marci@1383
   715
    public:
marci@1383
   716
      typedef T Value;
marci@1383
   717
      typedef Edge Key;
marci@1383
   718
      
alpar@1401
   719
      EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), 
marci@1383
   720
	forward_map(*(g->graph)), backward_map(*(g->graph)) { }
marci@569
   721
alpar@1401
   722
      EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), 
marci@1383
   723
	forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
marci@1383
   724
      
marci@1383
   725
      void set(Edge e, T a) { 
deba@1627
   726
	if (g->direction(e)) 
marci@1383
   727
	  forward_map.set(e, a); 
marci@1383
   728
	else 
marci@1383
   729
	  backward_map.set(e, a); 
marci@1383
   730
      }
marci@556
   731
marci@1383
   732
      T operator[](Edge e) const { 
deba@1627
   733
	if (g->direction(e)) 
marci@1383
   734
	  return forward_map[e]; 
marci@1383
   735
	else 
marci@1383
   736
	  return backward_map[e]; 
marci@556
   737
      }
marci@556
   738
    };
marci@1383
   739
        
marci@1383
   740
    template <typename T>
marci@1383
   741
    class UndirEdgeMap {
marci@1383
   742
      template <typename TT> friend class UndirEdgeMap;
marci@1383
   743
      typename _Graph::template EdgeMap<T> map; 
marci@1383
   744
    public:
marci@1383
   745
      typedef T Value;
marci@1383
   746
      typedef UndirEdge Key;
marci@1383
   747
      
alpar@1401
   748
      UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : 
marci@1383
   749
	map(*(g.graph)) { }
marci@556
   750
alpar@1401
   751
      UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : 
marci@1383
   752
	map(*(g.graph), a) { }
marci@1383
   753
      
marci@1383
   754
      void set(UndirEdge e, T a) { 
marci@1383
   755
	map.set(e, a); 
marci@1383
   756
      }
marci@556
   757
marci@1383
   758
      T operator[](UndirEdge e) const { 
marci@1383
   759
	return map[e]; 
marci@1383
   760
      }
marci@1383
   761
    };
marci@1383
   762
      
marci@1383
   763
  };
marci@1383
   764
alpar@1401
   765
  /// \brief An undirected graph is made from a directed graph by an adaptor
marci@1383
   766
  ///
marci@1383
   767
  /// Undocumented, untested!!!
marci@1383
   768
  /// If somebody knows nice demo application, let's polulate it.
marci@1383
   769
  /// 
marci@1383
   770
  /// \author Marton Makai
marci@1383
   771
  template<typename _Graph>
alpar@1401
   772
  class UndirGraphAdaptor : 
marci@1383
   773
    public IterableUndirGraphExtender<
alpar@1401
   774
    UndirGraphAdaptorBase<_Graph> > {
marci@1383
   775
  public:
marci@1383
   776
    typedef _Graph Graph;
marci@1383
   777
    typedef IterableUndirGraphExtender<
alpar@1401
   778
      UndirGraphAdaptorBase<_Graph> > Parent;
marci@1383
   779
  protected:
alpar@1401
   780
    UndirGraphAdaptor() { }
marci@1383
   781
  public:
alpar@1401
   782
    UndirGraphAdaptor(_Graph& _graph) { 
marci@1383
   783
      setGraph(_graph);
marci@556
   784
    }
marci@556
   785
  };
marci@556
   786
marci@992
   787
  
marci@992
   788
  template <typename _Graph, 
marci@992
   789
	    typename ForwardFilterMap, typename BackwardFilterMap>
alpar@1401
   790
  class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@992
   791
  public:
marci@992
   792
    typedef _Graph Graph;
alpar@1401
   793
    typedef GraphAdaptorBase<_Graph> Parent;
marci@992
   794
  protected:
marci@992
   795
    ForwardFilterMap* forward_filter;
marci@992
   796
    BackwardFilterMap* backward_filter;
alpar@1401
   797
    SubBidirGraphAdaptorBase() : Parent(), 
marci@992
   798
				 forward_filter(0), backward_filter(0) { }
marci@992
   799
marci@992
   800
    void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
marci@992
   801
      forward_filter=&_forward_filter;
marci@992
   802
    }
marci@992
   803
    void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
marci@992
   804
      backward_filter=&_backward_filter;
marci@992
   805
    }
marci@992
   806
marci@992
   807
  public:
alpar@1401
   808
//     SubGraphAdaptorBase(Graph& _graph, 
marci@992
   809
// 			NodeFilterMap& _node_filter_map, 
marci@992
   810
// 			EdgeFilterMap& _edge_filter_map) : 
marci@992
   811
//       Parent(&_graph), 
marci@992
   812
//       node_filter_map(&node_filter_map), 
marci@992
   813
//       edge_filter_map(&edge_filter_map) { }
marci@992
   814
marci@992
   815
    typedef typename Parent::Node Node;
marci@992
   816
    typedef typename _Graph::Edge GraphEdge;
marci@992
   817
    template <typename T> class EdgeMap;
alpar@1401
   818
    /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from 
marci@992
   819
    /// _Graph::Edge. It contains an extra bool flag which is true 
marci@992
   820
    /// if and only if the 
marci@992
   821
    /// edge is the backward version of the original edge.
marci@992
   822
    class Edge : public _Graph::Edge {
alpar@1401
   823
      friend class SubBidirGraphAdaptorBase<
marci@992
   824
	Graph, ForwardFilterMap, BackwardFilterMap>;
marci@992
   825
      template<typename T> friend class EdgeMap;
marci@992
   826
    protected:
marci@992
   827
      bool backward; //true, iff backward
marci@992
   828
    public:
marci@992
   829
      Edge() { }
marci@992
   830
      /// \todo =false is needed, or causes problems?
marci@992
   831
      /// If \c _backward is false, then we get an edge corresponding to the 
marci@992
   832
      /// original one, otherwise its oppositely directed pair is obtained.
marci@992
   833
      Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
marci@992
   834
	_Graph::Edge(e), backward(_backward) { }
marci@992
   835
      Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
marci@992
   836
      bool operator==(const Edge& v) const { 
marci@992
   837
	return (this->backward==v.backward && 
marci@992
   838
		static_cast<typename _Graph::Edge>(*this)==
marci@992
   839
		static_cast<typename _Graph::Edge>(v));
marci@992
   840
      } 
marci@992
   841
      bool operator!=(const Edge& v) const { 
marci@992
   842
	return (this->backward!=v.backward || 
marci@992
   843
		static_cast<typename _Graph::Edge>(*this)!=
marci@992
   844
		static_cast<typename _Graph::Edge>(v));
marci@992
   845
      }
marci@992
   846
    };
marci@992
   847
marci@992
   848
    void first(Node& i) const { 
marci@992
   849
      Parent::first(i); 
marci@992
   850
    }
marci@992
   851
marci@992
   852
    void first(Edge& i) const { 
marci@992
   853
      Parent::first(i); 
marci@992
   854
      i.backward=false;
marci@992
   855
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   856
	     !(*forward_filter)[i]) Parent::next(i);
marci@992
   857
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   858
	Parent::first(i); 
marci@992
   859
	i.backward=true;
marci@992
   860
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   861
	       !(*backward_filter)[i]) Parent::next(i);
marci@992
   862
      }
marci@992
   863
    }
marci@992
   864
marci@992
   865
    void firstIn(Edge& i, const Node& n) const { 
marci@992
   866
      Parent::firstIn(i, n); 
marci@992
   867
      i.backward=false;
marci@992
   868
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@1269
   869
	     !(*forward_filter)[i]) Parent::nextIn(i);
marci@992
   870
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   871
	Parent::firstOut(i, n); 
marci@992
   872
	i.backward=true;
marci@992
   873
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   874
	       !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   875
      }
marci@992
   876
    }
marci@992
   877
marci@992
   878
    void firstOut(Edge& i, const Node& n) const { 
marci@992
   879
      Parent::firstOut(i, n); 
marci@992
   880
      i.backward=false;
marci@992
   881
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   882
	     !(*forward_filter)[i]) Parent::nextOut(i);
marci@992
   883
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   884
	Parent::firstIn(i, n); 
marci@992
   885
	i.backward=true;
marci@992
   886
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   887
	       !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   888
      }
marci@992
   889
    }
marci@992
   890
marci@992
   891
    void next(Node& i) const { 
marci@992
   892
      Parent::next(i); 
marci@992
   893
    }
marci@992
   894
marci@992
   895
    void next(Edge& i) const { 
marci@992
   896
      if (!(i.backward)) {
marci@992
   897
	Parent::next(i);
marci@992
   898
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   899
	       !(*forward_filter)[i]) Parent::next(i);
marci@992
   900
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   901
	  Parent::first(i); 
marci@992
   902
	  i.backward=true;
marci@992
   903
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   904
		 !(*backward_filter)[i]) Parent::next(i);
marci@992
   905
	}
marci@992
   906
      } else {
marci@992
   907
	Parent::next(i);
marci@992
   908
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   909
	       !(*backward_filter)[i]) Parent::next(i);
marci@992
   910
      }
marci@992
   911
    }
marci@992
   912
marci@992
   913
    void nextIn(Edge& i) const { 
marci@992
   914
      if (!(i.backward)) {
marci@992
   915
	Node n=Parent::target(i);
marci@992
   916
	Parent::nextIn(i);
marci@992
   917
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   918
	       !(*forward_filter)[i]) Parent::nextIn(i);
marci@992
   919
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   920
	  Parent::firstOut(i, n); 
marci@992
   921
	  i.backward=true;
marci@992
   922
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   923
		 !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   924
	}
marci@992
   925
      } else {
marci@992
   926
	Parent::nextOut(i);
marci@992
   927
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   928
	       !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   929
      }
marci@992
   930
    }
marci@992
   931
marci@992
   932
    void nextOut(Edge& i) const { 
marci@992
   933
      if (!(i.backward)) {
marci@992
   934
	Node n=Parent::source(i);
marci@992
   935
	Parent::nextOut(i);
marci@992
   936
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   937
	       !(*forward_filter)[i]) Parent::nextOut(i);
marci@992
   938
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   939
	  Parent::firstIn(i, n); 
marci@992
   940
	  i.backward=true;
marci@992
   941
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   942
		 !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   943
	}
marci@992
   944
      } else {
marci@992
   945
	Parent::nextIn(i);
marci@992
   946
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   947
	       !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   948
      }
marci@992
   949
    }
marci@992
   950
marci@992
   951
    Node source(Edge e) const { 
marci@992
   952
      return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
marci@992
   953
    Node target(Edge e) const { 
marci@992
   954
      return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
marci@992
   955
marci@992
   956
    /// Gives back the opposite edge.
marci@992
   957
    Edge opposite(const Edge& e) const { 
marci@992
   958
      Edge f=e;
marci@992
   959
      f.backward=!f.backward;
marci@992
   960
      return f;
marci@992
   961
    }
marci@992
   962
marci@992
   963
    /// \warning This is a linear time operation and works only if 
marci@992
   964
    /// \c Graph::EdgeIt is defined.
marci@992
   965
    /// \todo hmm
marci@992
   966
    int edgeNum() const { 
marci@992
   967
      int i=0;
marci@992
   968
      Edge e;
marci@992
   969
      for (first(e); e!=INVALID; next(e)) ++i;
marci@992
   970
      return i; 
marci@992
   971
    }
marci@992
   972
marci@992
   973
    bool forward(const Edge& e) const { return !e.backward; }
marci@992
   974
    bool backward(const Edge& e) const { return e.backward; }
marci@992
   975
marci@992
   976
    template <typename T>
alpar@1401
   977
    /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
marci@992
   978
    /// _Graph::EdgeMap one for the forward edges and 
marci@992
   979
    /// one for the backward edges.
marci@992
   980
    class EdgeMap {
marci@992
   981
      template <typename TT> friend class EdgeMap;
marci@992
   982
      typename _Graph::template EdgeMap<T> forward_map, backward_map; 
marci@992
   983
    public:
marci@992
   984
      typedef T Value;
marci@992
   985
      typedef Edge Key;
marci@992
   986
alpar@1401
   987
      EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
marci@992
   988
	      ForwardFilterMap, BackwardFilterMap>& g) : 
marci@992
   989
	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
marci@992
   990
alpar@1401
   991
      EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
marci@992
   992
	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
marci@992
   993
	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
marci@992
   994
      
marci@992
   995
      void set(Edge e, T a) { 
marci@992
   996
	if (!e.backward) 
marci@992
   997
	  forward_map.set(e, a); 
marci@992
   998
	else 
marci@992
   999
	  backward_map.set(e, a); 
marci@992
  1000
      }
marci@992
  1001
marci@992
  1002
//       typename _Graph::template EdgeMap<T>::ConstReference 
marci@992
  1003
//       operator[](Edge e) const { 
marci@992
  1004
// 	if (!e.backward) 
marci@992
  1005
// 	  return forward_map[e]; 
marci@992
  1006
// 	else 
marci@992
  1007
// 	  return backward_map[e]; 
marci@992
  1008
//       }
marci@992
  1009
marci@992
  1010
//      typename _Graph::template EdgeMap<T>::Reference 
marci@1016
  1011
      T operator[](Edge e) const { 
marci@992
  1012
	if (!e.backward) 
marci@992
  1013
	  return forward_map[e]; 
marci@992
  1014
	else 
marci@992
  1015
	  return backward_map[e]; 
marci@992
  1016
      }
marci@992
  1017
marci@992
  1018
      void update() { 
marci@992
  1019
	forward_map.update(); 
marci@992
  1020
	backward_map.update();
marci@992
  1021
      }
marci@992
  1022
    };
marci@992
  1023
marci@992
  1024
  };
marci@569
  1025
marci@650
  1026
alpar@1401
  1027
  ///\brief An adaptor for composing a subgraph of a 
marci@792
  1028
  /// bidirected graph made from a directed one. 
marci@612
  1029
  ///
alpar@1401
  1030
  /// An adaptor for composing a subgraph of a 
alpar@911
  1031
  /// bidirected graph made from a directed one. 
alpar@911
  1032
  ///
alpar@1401
  1033
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
  1034
  ///parts of the lib. Use them at you own risk.
alpar@879
  1035
  ///
marci@923
  1036
  /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
marci@923
  1037
  /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
marci@923
  1038
  /// reversing its orientation. We are given moreover two bool valued 
marci@923
  1039
  /// maps on the edge-set, 
marci@923
  1040
  /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
alpar@1401
  1041
  /// SubBidirGraphAdaptor implements the graph structure with node-set 
marci@923
  1042
  /// \f$V\f$ and edge-set 
marci@923
  1043
  /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
marci@792
  1044
  /// The purpose of writing + instead of union is because parallel 
marci@923
  1045
  /// edges can arise. (Similarly, antiparallel edges also can arise).
marci@792
  1046
  /// In other words, a subgraph of the bidirected graph obtained, which 
marci@792
  1047
  /// is given by orienting the edges of the original graph in both directions.
marci@923
  1048
  /// As the oppositely directed edges are logically different, 
marci@923
  1049
  /// the maps are able to attach different values for them. 
marci@923
  1050
  ///
alpar@1401
  1051
  /// An example for such a construction is \c RevGraphAdaptor where the 
marci@792
  1052
  /// forward_filter is everywhere false and the backward_filter is 
marci@792
  1053
  /// everywhere true. We note that for sake of efficiency, 
alpar@1401
  1054
  /// \c RevGraphAdaptor is implemented in a different way. 
alpar@1401
  1055
  /// But BidirGraphAdaptor is obtained from 
alpar@1401
  1056
  /// SubBidirGraphAdaptor by considering everywhere true 
marci@910
  1057
  /// valued maps both for forward_filter and backward_filter. 
marci@1252
  1058
  ///
alpar@1401
  1059
  /// The most important application of SubBidirGraphAdaptor 
alpar@1401
  1060
  /// is ResGraphAdaptor, which stands for the residual graph in directed 
marci@792
  1061
  /// flow and circulation problems. 
alpar@1401
  1062
  /// As adaptors usually, the SubBidirGraphAdaptor implements the 
marci@792
  1063
  /// above mentioned graph structure without its physical storage, 
marci@923
  1064
  /// that is the whole stuff is stored in constant memory. 
marci@992
  1065
  template<typename _Graph, 
marci@650
  1066
	   typename ForwardFilterMap, typename BackwardFilterMap>
alpar@1401
  1067
  class SubBidirGraphAdaptor : 
marci@992
  1068
    public IterableGraphExtender<
alpar@1401
  1069
    SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
marci@650
  1070
  public:
marci@992
  1071
    typedef _Graph Graph;
marci@992
  1072
    typedef IterableGraphExtender<
alpar@1401
  1073
      SubBidirGraphAdaptorBase<
marci@992
  1074
      _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
marci@569
  1075
  protected:
alpar@1401
  1076
    SubBidirGraphAdaptor() { }
marci@992
  1077
  public:
alpar@1401
  1078
    SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, 
marci@992
  1079
			 BackwardFilterMap& _backward_filter) { 
marci@992
  1080
      setGraph(_graph);
marci@992
  1081
      setForwardFilterMap(_forward_filter);
marci@992
  1082
      setBackwardFilterMap(_backward_filter);
marci@992
  1083
    }
marci@992
  1084
  };
marci@650
  1085
marci@569
  1086
marci@650
  1087
alpar@1401
  1088
  ///\brief An adaptor for composing bidirected graph from a directed one. 
marci@650
  1089
  ///
alpar@1401
  1090
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
  1091
  ///parts of the lib. Use them at you own risk.
alpar@879
  1092
  ///
alpar@1401
  1093
  /// An adaptor for composing bidirected graph from a directed one. 
marci@650
  1094
  /// A bidirected graph is composed over the directed one without physical 
marci@650
  1095
  /// storage. As the oppositely directed edges are logically different ones 
marci@650
  1096
  /// the maps are able to attach different values for them.
marci@650
  1097
  template<typename Graph>
alpar@1401
  1098
  class BidirGraphAdaptor : 
alpar@1401
  1099
    public SubBidirGraphAdaptor<
marci@650
  1100
    Graph, 
marci@650
  1101
    ConstMap<typename Graph::Edge, bool>, 
marci@650
  1102
    ConstMap<typename Graph::Edge, bool> > {
marci@650
  1103
  public:
alpar@1401
  1104
    typedef  SubBidirGraphAdaptor<
marci@650
  1105
      Graph, 
marci@650
  1106
      ConstMap<typename Graph::Edge, bool>, 
marci@650
  1107
      ConstMap<typename Graph::Edge, bool> > Parent; 
marci@650
  1108
  protected:
marci@650
  1109
    ConstMap<typename Graph::Edge, bool> cm;
marci@650
  1110
alpar@1401
  1111
    BidirGraphAdaptor() : Parent(), cm(true) { 
marci@655
  1112
      Parent::setForwardFilterMap(cm);
marci@655
  1113
      Parent::setBackwardFilterMap(cm);
marci@655
  1114
    }
marci@650
  1115
  public:
alpar@1401
  1116
    BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { 
marci@650
  1117
      Parent::setGraph(_graph);
marci@650
  1118
      Parent::setForwardFilterMap(cm);
marci@650
  1119
      Parent::setBackwardFilterMap(cm);
marci@650
  1120
    }
marci@738
  1121
marci@738
  1122
    int edgeNum() const { 
marci@738
  1123
      return 2*this->graph->edgeNum();
marci@738
  1124
    }
alpar@1401
  1125
    //    KEEP_MAPS(Parent, BidirGraphAdaptor);
marci@650
  1126
  };
marci@650
  1127
marci@650
  1128
marci@650
  1129
  template<typename Graph, typename Number,
marci@650
  1130
	   typename CapacityMap, typename FlowMap>
marci@658
  1131
  class ResForwardFilter {
marci@658
  1132
    //    const Graph* graph;
marci@650
  1133
    const CapacityMap* capacity;
marci@650
  1134
    const FlowMap* flow;
marci@650
  1135
  public:
marci@658
  1136
    ResForwardFilter(/*const Graph& _graph, */
marci@658
  1137
		     const CapacityMap& _capacity, const FlowMap& _flow) :
marci@658
  1138
      /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
marci@658
  1139
    ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
marci@656
  1140
    void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
marci@656
  1141
    void setFlow(const FlowMap& _flow) { flow=&_flow; }
marci@650
  1142
    bool operator[](const typename Graph::Edge& e) const {
marci@738
  1143
      return (Number((*flow)[e]) < Number((*capacity)[e]));
marci@650
  1144
    }
marci@650
  1145
  };
marci@650
  1146
marci@650
  1147
  template<typename Graph, typename Number,
marci@650
  1148
	   typename CapacityMap, typename FlowMap>
marci@658
  1149
  class ResBackwardFilter {
marci@650
  1150
    const CapacityMap* capacity;
marci@650
  1151
    const FlowMap* flow;
marci@650
  1152
  public:
marci@658
  1153
    ResBackwardFilter(/*const Graph& _graph,*/ 
marci@658
  1154
		      const CapacityMap& _capacity, const FlowMap& _flow) :
marci@658
  1155
      /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
marci@658
  1156
    ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
marci@656
  1157
    void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
marci@656
  1158
    void setFlow(const FlowMap& _flow) { flow=&_flow; }
marci@650
  1159
    bool operator[](const typename Graph::Edge& e) const {
marci@738
  1160
      return (Number(0) < Number((*flow)[e]));
marci@650
  1161
    }
marci@650
  1162
  };
marci@650
  1163
marci@653
  1164
  
alpar@1401
  1165
  /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
marci@650
  1166
alpar@1401
  1167
  An adaptor for composing the residual graph for directed flow and circulation problems. 
marci@1242
  1168
  Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
marci@1242
  1169
  number type. Let moreover 
marci@1242
  1170
  \f$f,c:A\to F\f$, be functions on the edge-set. 
alpar@1401
  1171
  In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow 
marci@1242
  1172
  and \f$c\f$ for a capacity function.   
marci@1242
  1173
  Suppose that a graph instange \c g of type 
marci@1242
  1174
  \c ListGraph implements \f$G\f$.
marci@1242
  1175
  \code
marci@1242
  1176
  ListGraph g;
marci@1242
  1177
  \endcode
alpar@1401
  1178
  Then RevGraphAdaptor implements the graph structure with node-set 
marci@1242
  1179
  \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
marci@1242
  1180
  \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
marci@1242
  1181
  \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
marci@1242
  1182
  i.e. the so called residual graph. 
marci@1242
  1183
  When we take the union \f$A_{forward}\cup A_{backward}\f$, 
marci@1242
  1184
  multilicities are counted, i.e. if an edge is in both 
alpar@1401
  1185
  \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it 
marci@1242
  1186
  appears twice. 
marci@1242
  1187
  The following code shows how 
marci@1242
  1188
  such an instance can be constructed.
marci@1242
  1189
  \code
marci@1242
  1190
  typedef ListGraph Graph;
marci@1242
  1191
  Graph::EdgeMap<int> f(g);
marci@1242
  1192
  Graph::EdgeMap<int> c(g);
alpar@1401
  1193
  ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
marci@1242
  1194
  \endcode
marci@1242
  1195
  \author Marton Makai
marci@1242
  1196
  */
marci@650
  1197
  template<typename Graph, typename Number, 
marci@650
  1198
	   typename CapacityMap, typename FlowMap>
alpar@1401
  1199
  class ResGraphAdaptor : 
alpar@1401
  1200
    public SubBidirGraphAdaptor< 
marci@650
  1201
    Graph, 
marci@658
  1202
    ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
marci@658
  1203
    ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
marci@650
  1204
  public:
alpar@1401
  1205
    typedef SubBidirGraphAdaptor< 
marci@650
  1206
      Graph, 
marci@658
  1207
      ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
marci@658
  1208
      ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
marci@650
  1209
  protected:
marci@650
  1210
    const CapacityMap* capacity;
marci@650
  1211
    FlowMap* flow;
marci@658
  1212
    ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
marci@658
  1213
    ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
alpar@1401
  1214
    ResGraphAdaptor() : Parent(), 
marci@658
  1215
 			capacity(0), flow(0) { }
marci@658
  1216
    void setCapacityMap(const CapacityMap& _capacity) {
marci@658
  1217
      capacity=&_capacity;
marci@658
  1218
      forward_filter.setCapacity(_capacity);
marci@658
  1219
      backward_filter.setCapacity(_capacity);
marci@658
  1220
    }
marci@658
  1221
    void setFlowMap(FlowMap& _flow) {
marci@658
  1222
      flow=&_flow;
marci@658
  1223
      forward_filter.setFlow(_flow);
marci@658
  1224
      backward_filter.setFlow(_flow);
marci@658
  1225
    }
marci@650
  1226
  public:
alpar@1401
  1227
    ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, 
marci@650
  1228
		       FlowMap& _flow) : 
marci@650
  1229
      Parent(), capacity(&_capacity), flow(&_flow), 
marci@658
  1230
      forward_filter(/*_graph,*/ _capacity, _flow), 
marci@658
  1231
      backward_filter(/*_graph,*/ _capacity, _flow) {
marci@650
  1232
      Parent::setGraph(_graph);
marci@650
  1233
      Parent::setForwardFilterMap(forward_filter);
marci@650
  1234
      Parent::setBackwardFilterMap(backward_filter);
marci@650
  1235
    }
marci@650
  1236
marci@660
  1237
    typedef typename Parent::Edge Edge;
marci@660
  1238
marci@660
  1239
    void augment(const Edge& e, Number a) const {
marci@650
  1240
      if (Parent::forward(e))  
marci@650
  1241
	flow->set(e, (*flow)[e]+a);
marci@650
  1242
      else  
marci@650
  1243
	flow->set(e, (*flow)[e]-a);
marci@650
  1244
    }
marci@650
  1245
marci@660
  1246
    /// \brief Residual capacity map.
marci@660
  1247
    ///
marci@910
  1248
    /// In generic residual graphs the residual capacity can be obtained 
marci@910
  1249
    /// as a map. 
marci@660
  1250
    class ResCap {
marci@660
  1251
    protected:
alpar@1401
  1252
      const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
marci@660
  1253
    public:
alpar@987
  1254
      typedef Number Value;
alpar@987
  1255
      typedef Edge Key;
alpar@1401
  1256
      ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& 
marci@888
  1257
	     _res_graph) : res_graph(&_res_graph) { }
marci@660
  1258
      Number operator[](const Edge& e) const { 
marci@660
  1259
	if (res_graph->forward(e)) 
marci@660
  1260
	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
marci@660
  1261
	else 
marci@660
  1262
	  return (*(res_graph->flow))[e]; 
marci@660
  1263
      }
marci@660
  1264
    };
marci@660
  1265
alpar@1401
  1266
    //    KEEP_MAPS(Parent, ResGraphAdaptor);
marci@650
  1267
  };
marci@650
  1268
marci@650
  1269
marci@998
  1270
marci@998
  1271
  template <typename _Graph, typename FirstOutEdgesMap>
alpar@1401
  1272
  class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@998
  1273
  public:
marci@998
  1274
    typedef _Graph Graph;
alpar@1401
  1275
    typedef GraphAdaptorBase<_Graph> Parent;
marci@998
  1276
  protected:
marci@998
  1277
    FirstOutEdgesMap* first_out_edges;
alpar@1401
  1278
    ErasingFirstGraphAdaptorBase() : Parent(), 
marci@998
  1279
				     first_out_edges(0) { }
marci@998
  1280
marci@998
  1281
    void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
marci@998
  1282
      first_out_edges=&_first_out_edges;
marci@998
  1283
    }
marci@998
  1284
marci@998
  1285
  public:
marci@998
  1286
marci@998
  1287
    typedef typename Parent::Node Node;
marci@998
  1288
    typedef typename Parent::Edge Edge;
marci@998
  1289
marci@998
  1290
    void firstOut(Edge& i, const Node& n) const { 
marci@998
  1291
      i=(*first_out_edges)[n];
marci@998
  1292
    }
marci@998
  1293
marci@998
  1294
    void erase(const Edge& e) const {
marci@998
  1295
      Node n=source(e);
marci@998
  1296
      Edge f=e;
marci@998
  1297
      Parent::nextOut(f);
marci@998
  1298
      first_out_edges->set(n, f);
marci@998
  1299
    }    
marci@998
  1300
  };
marci@998
  1301
marci@998
  1302
marci@612
  1303
  /// For blocking flows.
marci@556
  1304
alpar@1401
  1305
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
  1306
  ///parts of the lib. Use them at you own risk.
alpar@879
  1307
  ///
alpar@1401
  1308
  /// This graph adaptor is used for on-the-fly 
marci@792
  1309
  /// Dinits blocking flow computations.
marci@612
  1310
  /// For each node, an out-edge is stored which is used when the 
marci@612
  1311
  /// \code 
marci@612
  1312
  /// OutEdgeIt& first(OutEdgeIt&, const Node&)
marci@612
  1313
  /// \endcode
marci@612
  1314
  /// is called. 
marci@556
  1315
  ///
marci@792
  1316
  /// \author Marton Makai
marci@998
  1317
  template <typename _Graph, typename FirstOutEdgesMap>
alpar@1401
  1318
  class ErasingFirstGraphAdaptor : 
marci@998
  1319
    public IterableGraphExtender<
alpar@1401
  1320
    ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
marci@650
  1321
  public:
marci@998
  1322
    typedef _Graph Graph;
marci@998
  1323
    typedef IterableGraphExtender<
alpar@1401
  1324
      ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
alpar@1401
  1325
    ErasingFirstGraphAdaptor(Graph& _graph, 
marci@998
  1326
			     FirstOutEdgesMap& _first_out_edges) { 
marci@998
  1327
      setGraph(_graph);
marci@998
  1328
      setFirstOutEdgesMap(_first_out_edges);
marci@998
  1329
    } 
marci@1019
  1330
marci@998
  1331
  };
marci@556
  1332
deba@1472
  1333
  template <typename _Graph>
deba@1472
  1334
  class NewEdgeSetAdaptorBase {
deba@1472
  1335
  public:
deba@1472
  1336
deba@1472
  1337
    typedef _Graph Graph;
deba@1472
  1338
    typedef typename Graph::Node Node;
deba@1472
  1339
    typedef typename Graph::NodeIt NodeIt;
deba@1472
  1340
deba@1472
  1341
  protected:
deba@1472
  1342
deba@1472
  1343
    struct NodeT {
deba@1472
  1344
      int first_out, first_in;
deba@1472
  1345
      NodeT() : first_out(-1), first_in(-1) {}
deba@1472
  1346
    };
deba@1472
  1347
    
deba@1472
  1348
    class NodesImpl : protected Graph::template NodeMap<NodeT> {
deba@1472
  1349
deba@1472
  1350
      typedef typename Graph::template NodeMap<NodeT> Parent;
deba@1472
  1351
      typedef NewEdgeSetAdaptorBase<Graph> Adaptor;
deba@1472
  1352
deba@1472
  1353
      Adaptor& adaptor;
deba@1472
  1354
deba@1472
  1355
    public:
deba@1472
  1356
deba@1472
  1357
      NodesImpl(Adaptor& _adaptor, const Graph& _graph) 
deba@1472
  1358
	: Parent(_graph), adaptor(_adaptor) {}
deba@1472
  1359
deba@1472
  1360
      virtual ~NodesImpl() {}
deba@1472
  1361
deba@1472
  1362
      virtual void build() {
deba@1472
  1363
	Parent::build();
deba@1472
  1364
      }
deba@1472
  1365
deba@1472
  1366
      virtual void clear() {
deba@1472
  1367
	adaptor._clear();
deba@1472
  1368
	Parent::clear();
deba@1472
  1369
      }
deba@1472
  1370
      
deba@1472
  1371
      virtual void add(const Node& node) {
deba@1472
  1372
	Parent::add(node);
deba@1472
  1373
	adaptor._add(node);
deba@1472
  1374
      }
deba@1472
  1375
      
deba@1472
  1376
      virtual void erase(const Node& node) {
deba@1472
  1377
	adaptor._erase(node);
deba@1472
  1378
	Parent::erase(node);
deba@1472
  1379
      }
deba@1472
  1380
deba@1472
  1381
      NodeT& operator[](const Node& node) {
deba@1472
  1382
	return Parent::operator[](node);
deba@1472
  1383
      }
deba@1472
  1384
deba@1472
  1385
      const NodeT& operator[](const Node& node) const {
deba@1472
  1386
	return Parent::operator[](node);
deba@1472
  1387
      }
deba@1472
  1388
      
deba@1472
  1389
    };
deba@1472
  1390
deba@1472
  1391
    NodesImpl* nodes;
deba@1472
  1392
deba@1472
  1393
    struct EdgeT {
deba@1472
  1394
      Node source, target;
deba@1472
  1395
      int next_out, next_in;
deba@1472
  1396
      int prev_out, prev_in;
deba@1472
  1397
      EdgeT() : prev_out(-1), prev_in(-1) {}
deba@1472
  1398
    };
deba@1472
  1399
deba@1472
  1400
    std::vector<EdgeT> edges;
deba@1472
  1401
deba@1472
  1402
    int first_edge;
deba@1472
  1403
    int first_free_edge;
deba@1472
  1404
deba@1472
  1405
    virtual void _clear() = 0;
deba@1472
  1406
    virtual void _add(const Node& node) = 0;
deba@1472
  1407
    virtual void _erase(const Node& node) = 0;
deba@1472
  1408
    
deba@1472
  1409
    const Graph* graph;
deba@1472
  1410
deba@1472
  1411
    void initalize(const Graph& _graph, NodesImpl& _nodes) {
deba@1472
  1412
      graph = &_graph;
deba@1472
  1413
      nodes = &_nodes;
deba@1472
  1414
    }
deba@1472
  1415
    
deba@1472
  1416
  public:
deba@1472
  1417
deba@1472
  1418
    class Edge {
deba@1472
  1419
      friend class NewEdgeSetAdaptorBase<Graph>;
deba@1472
  1420
    protected:
deba@1472
  1421
      Edge(int _id) : id(_id) {}
deba@1472
  1422
      int id;
deba@1472
  1423
    public:
deba@1472
  1424
      Edge() {}
deba@1472
  1425
      Edge(Invalid) : id(-1) {}
deba@1472
  1426
      bool operator==(const Edge& edge) const { return id == edge.id; }
deba@1472
  1427
      bool operator!=(const Edge& edge) const { return id != edge.id; }
deba@1472
  1428
      bool operator<(const Edge& edge) const { return id < edge.id; }
deba@1472
  1429
    };
deba@1472
  1430
deba@1472
  1431
    NewEdgeSetAdaptorBase() : first_edge(-1), first_free_edge(-1) {} 
deba@1472
  1432
    virtual ~NewEdgeSetAdaptorBase() {}
deba@1472
  1433
deba@1472
  1434
    Edge addEdge(const Node& source, const Node& target) {
deba@1472
  1435
      int n;
deba@1472
  1436
      if (first_free_edge == -1) {
deba@1472
  1437
	n = edges.size();
deba@1472
  1438
	edges.push_back(EdgeT());
deba@1472
  1439
      } else {
deba@1472
  1440
	n = first_free_edge;
deba@1472
  1441
	first_free_edge = edges[first_free_edge].next_in;
deba@1472
  1442
      }
deba@1472
  1443
      edges[n].next_in = (*nodes)[target].first_in;
deba@1472
  1444
      (*nodes)[target].first_in = n;
deba@1472
  1445
      edges[n].next_out = (*nodes)[source].first_out;
deba@1472
  1446
      (*nodes)[source].first_out = n;
deba@1472
  1447
      edges[n].source = source;
deba@1472
  1448
      edges[n].target = target;
deba@1472
  1449
      return Edge(n);
deba@1472
  1450
    }
deba@1472
  1451
deba@1472
  1452
    void erase(const Edge& edge) {
deba@1472
  1453
      int n = edge.id;
deba@1472
  1454
      if (edges[n].prev_in != -1) {
deba@1472
  1455
	edges[edges[n].prev_in].next_in = edges[n].next_in;
deba@1472
  1456
      } else {
deba@1472
  1457
	(*nodes)[edges[n].target].first_in = edges[n].next_in;
deba@1472
  1458
      }
deba@1472
  1459
      if (edges[n].next_in != -1) {
deba@1472
  1460
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
deba@1472
  1461
      }
deba@1472
  1462
deba@1472
  1463
      if (edges[n].prev_out != -1) {
deba@1472
  1464
	edges[edges[n].prev_out].next_out = edges[n].next_out;
deba@1472
  1465
      } else {
deba@1472
  1466
	(*nodes)[edges[n].source].first_out = edges[n].next_out;
deba@1472
  1467
      }
deba@1472
  1468
      if (edges[n].next_out != -1) {
deba@1472
  1469
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
deba@1472
  1470
      }
deba@1472
  1471
           
deba@1472
  1472
    }
deba@1472
  1473
deba@1472
  1474
    void first(Node& node) const {
deba@1472
  1475
      graph->first(node);
deba@1472
  1476
    }
deba@1472
  1477
deba@1472
  1478
    void next(Node& node) const {
deba@1472
  1479
      graph->next(node);
deba@1472
  1480
    }
deba@1472
  1481
deba@1472
  1482
    void first(Edge& edge) const {
deba@1472
  1483
      Node node;
deba@1472
  1484
      for (first(node); node != INVALID && (*nodes)[node].first_in == -1; 
deba@1472
  1485
	   next(node));
deba@1472
  1486
      edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
deba@1472
  1487
    }
deba@1472
  1488
deba@1472
  1489
    void next(Edge& edge) const {
deba@1472
  1490
      if (edges[edge.id].next_in != -1) {
deba@1472
  1491
	edge.id = edges[edge.id].next_in;
deba@1472
  1492
      } else {
deba@1472
  1493
	Node node = edges[edge.id].target;
deba@1472
  1494
	for (next(node); node != INVALID && (*nodes)[node].first_in == -1; 
deba@1472
  1495
	     next(node));
deba@1472
  1496
	edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
deba@1472
  1497
      }      
deba@1472
  1498
    }
deba@1472
  1499
deba@1472
  1500
    void firstOut(Edge& edge, const Node& node) const {
deba@1472
  1501
      edge.id = (*nodes)[node].first_out;    
deba@1472
  1502
    }
deba@1472
  1503
    
deba@1472
  1504
    void nextOut(Edge& edge) const {
deba@1472
  1505
      edge.id = edges[edge.id].next_out;        
deba@1472
  1506
    }
deba@1472
  1507
deba@1472
  1508
    void firstIn(Edge& edge, const Node& node) const {
deba@1472
  1509
      edge.id = (*nodes)[node].first_in;          
deba@1472
  1510
    }
deba@1472
  1511
deba@1472
  1512
    void nextIn(Edge& edge) const {
deba@1472
  1513
      edge.id = edges[edge.id].next_in;    
deba@1472
  1514
    }
deba@1472
  1515
deba@1472
  1516
    int id(const Node& node) const { return graph->id(node); }
deba@1472
  1517
    int id(const Edge& edge) const { return edge.id; }
deba@1472
  1518
deba@1472
  1519
    Node fromId(int id, Node) const { return graph->fromId(id, Node()); }
deba@1472
  1520
    Edge fromId(int id, Edge) const { return Edge(id); }
deba@1472
  1521
deba@1472
  1522
    int maxId(Node) const { return graph->maxId(Node()); };
deba@1472
  1523
    int maxId(Edge) const { return edges.size() - 1; }
deba@1472
  1524
deba@1472
  1525
    Node source(const Edge& edge) const { return edges[edge.id].source;}
deba@1472
  1526
    Node target(const Edge& edge) const { return edges[edge.id].target;}
deba@1472
  1527
deba@1472
  1528
  };
deba@1472
  1529
deba@1538
  1530
deba@1538
  1531
  /// \brief Graph adaptor using a node set of another graph and an
deba@1538
  1532
  /// own edge set.
deba@1538
  1533
  ///
deba@1538
  1534
  /// This structure can be used to establish another graph over a node set
deba@1538
  1535
  /// of an existing one. The node iterator will go through the nodes of the
deba@1538
  1536
  /// original graph.
deba@1538
  1537
  ///
deba@1538
  1538
  /// \param _Graph The type of the graph which shares its node set with 
alpar@1631
  1539
  /// this class. Its interface must conform to the \ref concept::StaticGraph
deba@1538
  1540
  /// "StaticGraph" concept.
deba@1538
  1541
  ///
deba@1538
  1542
  /// In the edge extension and removing it conforms to the 
alpar@1631
  1543
  /// \ref concept::ExtendableGraph "ExtendableGraph" concept.
deba@1472
  1544
  template <typename _Graph>
deba@1472
  1545
  class NewEdgeSetAdaptor :
deba@1472
  1546
    public ErasableGraphExtender<
deba@1472
  1547
    ClearableGraphExtender<
deba@1472
  1548
    ExtendableGraphExtender<
deba@1669
  1549
    MappableGraphExtender<
deba@1472
  1550
    IterableGraphExtender<
deba@1472
  1551
    AlterableGraphExtender<
deba@1472
  1552
    NewEdgeSetAdaptorBase<_Graph> > > > > > > {
deba@1472
  1553
deba@1472
  1554
  public:
deba@1472
  1555
deba@1472
  1556
    typedef ErasableGraphExtender<
deba@1472
  1557
      ClearableGraphExtender<
deba@1472
  1558
      ExtendableGraphExtender<
deba@1669
  1559
      MappableGraphExtender<
deba@1472
  1560
      IterableGraphExtender<
deba@1472
  1561
      AlterableGraphExtender<
deba@1472
  1562
      NewEdgeSetAdaptorBase<_Graph> > > > > > > Parent;
deba@1472
  1563
    
deba@1472
  1564
deba@1472
  1565
    typedef typename Parent::Node Node;
deba@1472
  1566
    typedef typename Parent::Edge Edge;
deba@1472
  1567
deba@1472
  1568
  private:
deba@1472
  1569
deba@1472
  1570
    virtual void _clear() {
deba@1472
  1571
      Parent::edges.clear();
deba@1472
  1572
      Parent::first_edge = -1;
deba@1472
  1573
      Parent::first_free_edge = -1;
deba@1472
  1574
      Parent::getNotifier(Edge()).clear();
deba@1472
  1575
      Parent::getNotifier(Node()).clear();
deba@1472
  1576
    }
deba@1472
  1577
deba@1472
  1578
    virtual void _add(const Node& node) {
deba@1472
  1579
      Parent::getNotifier(Node()).add(node);
deba@1472
  1580
    }
deba@1472
  1581
deba@1472
  1582
    virtual void _erase(const Node& node) {
deba@1472
  1583
      Edge edge;
deba@1472
  1584
      Parent::firstOut(edge, node);
deba@1472
  1585
      while (edge != INVALID) {
deba@1472
  1586
	Parent::erase(edge);
deba@1472
  1587
	Parent::firstOut(edge, node);
deba@1472
  1588
      }
deba@1472
  1589
deba@1472
  1590
      Parent::firstIn(edge, node);
deba@1472
  1591
      while (edge != INVALID) {
deba@1472
  1592
	Parent::erase(edge);
deba@1472
  1593
	Parent::firstIn(edge, node);
deba@1472
  1594
      }
deba@1472
  1595
      
deba@1472
  1596
      Parent::getNotifier(Node()).erase(node);
deba@1472
  1597
    }
deba@1472
  1598
deba@1472
  1599
deba@1472
  1600
    typedef typename Parent::NodesImpl NodesImpl;
deba@1472
  1601
deba@1472
  1602
    NodesImpl nodes;
deba@1472
  1603
    
deba@1472
  1604
  public:
deba@1472
  1605
deba@1538
  1606
    /// \brief Constructor of the adaptor.
deba@1538
  1607
    /// 
deba@1538
  1608
    /// Constructor of the adaptor.
deba@1472
  1609
    NewEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
deba@1472
  1610
      Parent::initalize(_graph, nodes);
deba@1472
  1611
    }
deba@1472
  1612
deba@1472
  1613
    void clear() {
deba@1538
  1614
      Parent::getNotifier(Edge()).clear();      
deba@1538
  1615
deba@1472
  1616
      Parent::edges.clear();
deba@1472
  1617
      Parent::first_edge = -1;
deba@1472
  1618
      Parent::first_free_edge = -1;
deba@1538
  1619
    }
deba@1538
  1620
    
deba@1538
  1621
  };
deba@1472
  1622
deba@1538
  1623
  /// \brief Graph adaptor using a node set of another graph and an
deba@1538
  1624
  /// own undir edge set.
deba@1538
  1625
  ///
deba@1538
  1626
  /// This structure can be used to establish another undirected graph over 
deba@1538
  1627
  /// a node set of an existing one. The node iterator will go through the 
deba@1538
  1628
  /// nodes of the original graph.
deba@1538
  1629
  ///
deba@1538
  1630
  /// \param _Graph The type of the graph which shares its node set with 
alpar@1631
  1631
  /// this class. Its interface must conform to the \ref concept::StaticGraph
deba@1538
  1632
  /// "StaticGraph" concept.
deba@1538
  1633
  ///
deba@1538
  1634
  /// In the edge extension and removing it conforms to the 
alpar@1631
  1635
  /// \ref concept::ExtendableGraph "ExtendableGraph" concept.
deba@1538
  1636
  template <typename _Graph>
deba@1538
  1637
  class NewUndirEdgeSetAdaptor :
deba@1538
  1638
    public ErasableUndirGraphExtender<
deba@1538
  1639
    ClearableUndirGraphExtender<
deba@1538
  1640
    ExtendableUndirGraphExtender<
deba@1538
  1641
    MappableUndirGraphExtender<
deba@1538
  1642
    IterableUndirGraphExtender<
deba@1538
  1643
    AlterableUndirGraphExtender<
deba@1538
  1644
    UndirGraphExtender<
deba@1538
  1645
    NewEdgeSetAdaptorBase<_Graph> > > > > > > > {
deba@1538
  1646
deba@1538
  1647
  public:
deba@1538
  1648
deba@1538
  1649
    typedef ErasableUndirGraphExtender<
deba@1538
  1650
      ClearableUndirGraphExtender<
deba@1538
  1651
      ExtendableUndirGraphExtender<
deba@1538
  1652
      MappableUndirGraphExtender<
deba@1538
  1653
      IterableUndirGraphExtender<
deba@1538
  1654
      AlterableUndirGraphExtender<
deba@1538
  1655
      UndirGraphExtender<
deba@1538
  1656
      NewEdgeSetAdaptorBase<_Graph> > > > > > > > Parent;
deba@1538
  1657
    
deba@1538
  1658
deba@1538
  1659
    typedef typename Parent::Node Node;
deba@1538
  1660
    typedef typename Parent::Edge Edge;
deba@1538
  1661
    typedef typename Parent::UndirEdge UndirEdge;
deba@1538
  1662
deba@1538
  1663
  private:
deba@1538
  1664
deba@1538
  1665
    virtual void _clear() {
deba@1538
  1666
      Parent::edges.clear();
deba@1538
  1667
      Parent::first_edge = -1;
deba@1538
  1668
      Parent::first_free_edge = -1;
deba@1538
  1669
      Parent::getNotifier(Edge()).clear();
deba@1538
  1670
      Parent::getNotifier(Node()).clear();
deba@1538
  1671
    }
deba@1538
  1672
deba@1538
  1673
    virtual void _add(const Node& node) {
deba@1538
  1674
      Parent::getNotifier(Node()).add(node);
deba@1538
  1675
    }
deba@1538
  1676
deba@1538
  1677
    virtual void _erase(const Node& node) {
deba@1538
  1678
      Edge edge;
deba@1538
  1679
      Parent::firstOut(edge, node);
deba@1538
  1680
      while (edge != INVALID) {
deba@1538
  1681
	Parent::erase(edge);
deba@1538
  1682
	Parent::firstOut(edge, node);
deba@1538
  1683
      }
deba@1538
  1684
deba@1538
  1685
      Parent::firstIn(edge, node);
deba@1538
  1686
      while (edge != INVALID) {
deba@1538
  1687
	Parent::erase(edge);
deba@1538
  1688
	Parent::firstIn(edge, node);
deba@1538
  1689
      }
deba@1538
  1690
      
deba@1538
  1691
      Parent::getNotifier(Node()).erase(node);
deba@1538
  1692
    }
deba@1538
  1693
deba@1538
  1694
    typedef typename Parent::NodesImpl NodesImpl;
deba@1538
  1695
deba@1538
  1696
    NodesImpl nodes;
deba@1538
  1697
    
deba@1538
  1698
  public:
deba@1538
  1699
deba@1538
  1700
deba@1538
  1701
    /// \brief Constructor of the adaptor.
deba@1538
  1702
    /// 
deba@1538
  1703
    /// Constructor of the adaptor.
deba@1538
  1704
    NewUndirEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
deba@1538
  1705
      Parent::initalize(_graph, nodes);
deba@1538
  1706
    }
deba@1538
  1707
deba@1538
  1708
    void clear() {
deba@1472
  1709
      Parent::getNotifier(Edge()).clear();      
deba@1538
  1710
      Parent::getNotifier(UndirEdge()).clear();      
deba@1538
  1711
deba@1538
  1712
      Parent::edges.clear();
deba@1538
  1713
      Parent::first_edge = -1;
deba@1538
  1714
      Parent::first_free_edge = -1;
deba@1472
  1715
    }
deba@1472
  1716
    
deba@1472
  1717
  };
deba@1472
  1718
marci@556
  1719
  ///@}
marci@556
  1720
alpar@921
  1721
} //namespace lemon
marci@556
  1722
alpar@1401
  1723
#endif //LEMON_GRAPH_ADAPTOR_H
marci@556
  1724