src/hugo/dijkstra.h
author alpar
Wed, 21 Jul 2004 07:03:20 +0000
changeset 718 75d36edc6bc4
parent 694 2d87cefb35b2
child 734 329832ac02b7
permissions -rw-r--r--
Ready to run the first test series.
alpar@255
     1
// -*- C++ -*-
alpar@255
     2
#ifndef HUGO_DIJKSTRA_H
alpar@255
     3
#define HUGO_DIJKSTRA_H
alpar@255
     4
klao@491
     5
///\ingroup galgs
alpar@255
     6
///\file
alpar@255
     7
///\brief Dijkstra algorithm.
alpar@255
     8
ladanyi@542
     9
#include <hugo/bin_heap.h>
ladanyi@542
    10
#include <hugo/invalid.h>
alpar@255
    11
alpar@255
    12
namespace hugo {
jacint@385
    13
alpar@430
    14
/// \addtogroup galgs
alpar@430
    15
/// @{
alpar@430
    16
alpar@255
    17
  ///%Dijkstra algorithm class.
alpar@255
    18
alpar@255
    19
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
    20
  ///The edge lengths are passed to the algorithm using a
alpar@255
    21
  ///\ref ReadMapSkeleton "readable map",
alpar@255
    22
  ///so it is easy to change it to any kind of length.
alpar@255
    23
  ///
alpar@255
    24
  ///The type of the length is determined by the \c ValueType of the length map.
alpar@255
    25
  ///
alpar@255
    26
  ///It is also possible to change the underlying priority heap.
alpar@255
    27
  ///
alpar@584
    28
  ///\param GR The graph type the algorithm runs on.
alpar@584
    29
  ///\param LM This read-only
jacint@385
    30
  ///EdgeMap
jacint@385
    31
  ///determines the
jacint@385
    32
  ///lengths of the edges. It is read once for each edge, so the map
jacint@385
    33
  ///may involve in relatively time consuming process to compute the edge
jacint@385
    34
  ///length if it is necessary. The default map type is
jacint@385
    35
  ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
jacint@385
    36
  ///\param Heap The heap type used by the %Dijkstra
jacint@385
    37
  ///algorithm. The default
jacint@385
    38
  ///is using \ref BinHeap "binary heap".
alpar@456
    39
  ///
alpar@689
    40
  ///\author Jacint Szabo and Alpar Juttner
alpar@693
    41
  ///\todo We need a typedef-names should be standardized. (-:
alpar@584
    42
alpar@255
    43
#ifdef DOXYGEN
alpar@584
    44
  template <typename GR,
alpar@584
    45
	    typename LM,
alpar@255
    46
	    typename Heap>
alpar@255
    47
#else
alpar@584
    48
  template <typename GR,
alpar@584
    49
	    typename LM=typename GR::template EdgeMap<int>,
alpar@532
    50
	    template <class,class,class,class> class Heap = BinHeap >
alpar@255
    51
#endif
alpar@255
    52
  class Dijkstra{
alpar@255
    53
  public:
alpar@584
    54
    ///The type of the underlying graph.
alpar@584
    55
    typedef GR Graph;
alpar@255
    56
    typedef typename Graph::Node Node;
alpar@255
    57
    typedef typename Graph::NodeIt NodeIt;
alpar@255
    58
    typedef typename Graph::Edge Edge;
alpar@255
    59
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
    60
    
alpar@584
    61
    ///The type of the length of the edges.
alpar@584
    62
    typedef typename LM::ValueType ValueType;
alpar@693
    63
    ///The type of the map that stores the edge lengths.
alpar@584
    64
    typedef LM LengthMap;
alpar@693
    65
    ///\brief The type of the map that stores the last
alpar@584
    66
    ///edges of the shortest paths.
marci@433
    67
    typedef typename Graph::template NodeMap<Edge> PredMap;
alpar@693
    68
    ///\brief The type of the map that stores the last but one
alpar@584
    69
    ///nodes of the shortest paths.
marci@433
    70
    typedef typename Graph::template NodeMap<Node> PredNodeMap;
alpar@693
    71
    ///The type of the map that stores the dists of the nodes.
marci@433
    72
    typedef typename Graph::template NodeMap<ValueType> DistMap;
alpar@255
    73
alpar@255
    74
  private:
alpar@688
    75
    const Graph *G;
alpar@688
    76
    const LM *length;
alpar@688
    77
    //    bool local_length;
alpar@688
    78
    PredMap *predecessor;
alpar@688
    79
    bool local_predecessor;
alpar@688
    80
    PredNodeMap *pred_node;
alpar@688
    81
    bool local_pred_node;
alpar@688
    82
    DistMap *distance;
alpar@688
    83
    bool local_distance;
alpar@688
    84
alpar@688
    85
    ///Initialize maps
alpar@688
    86
    
alpar@694
    87
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
    88
    ///\todo Better memory allocation (instead of new).
alpar@688
    89
    void init_maps() 
alpar@688
    90
    {
alpar@688
    91
//       if(!length) {
alpar@688
    92
// 	local_length = true;
alpar@688
    93
// 	length = new LM(G);
alpar@688
    94
//       }
alpar@688
    95
      if(!predecessor) {
alpar@688
    96
	local_predecessor = true;
alpar@688
    97
	predecessor = new PredMap(*G);
alpar@688
    98
      }
alpar@688
    99
      if(!pred_node) {
alpar@688
   100
	local_pred_node = true;
alpar@688
   101
	pred_node = new PredNodeMap(*G);
alpar@688
   102
      }
alpar@688
   103
      if(!distance) {
alpar@688
   104
	local_distance = true;
alpar@688
   105
	distance = new DistMap(*G);
alpar@688
   106
      }
alpar@688
   107
    }
alpar@255
   108
    
alpar@255
   109
  public :
alpar@255
   110
    
alpar@584
   111
    Dijkstra(const Graph& _G, const LM& _length) :
alpar@688
   112
      G(&_G), length(&_length),
alpar@707
   113
      predecessor(NULL), local_predecessor(false),
alpar@707
   114
      pred_node(NULL), local_pred_node(false),
alpar@707
   115
      distance(NULL), local_distance(false)
alpar@688
   116
    { }
alpar@688
   117
    
alpar@688
   118
    ~Dijkstra() 
alpar@688
   119
    {
alpar@688
   120
      //      if(local_length) delete length;
alpar@688
   121
      if(local_predecessor) delete predecessor;
alpar@688
   122
      if(local_pred_node) delete pred_node;
alpar@688
   123
      if(local_distance) delete distance;
alpar@688
   124
    }
alpar@688
   125
alpar@688
   126
    ///Sets the graph the algorithm will run on.
alpar@688
   127
alpar@688
   128
    ///Sets the graph the algorithm will run on.
alpar@688
   129
    ///\return <tt> (*this) </tt>
alpar@688
   130
    Dijkstra &setGraph(const Graph &_G) 
alpar@688
   131
    {
alpar@688
   132
      G = &_G;
alpar@688
   133
      return *this;
alpar@688
   134
    }
alpar@688
   135
    ///Sets the length map.
alpar@688
   136
alpar@688
   137
    ///Sets the length map.
alpar@688
   138
    ///\return <tt> (*this) </tt>
alpar@688
   139
    Dijkstra &setLengthMap(const LM &m) 
alpar@688
   140
    {
alpar@688
   141
//       if(local_length) {
alpar@688
   142
// 	delete length;
alpar@688
   143
// 	local_length=false;
alpar@688
   144
//       }
alpar@688
   145
      length = &m;
alpar@688
   146
      return *this;
alpar@688
   147
    }
alpar@688
   148
alpar@688
   149
    ///Sets the map storing the predecessor edges.
alpar@688
   150
alpar@688
   151
    ///Sets the map storing the predecessor edges.
alpar@688
   152
    ///If you don't use this function before calling \ref run(),
alpar@688
   153
    ///it will allocate one. The destuctor deallocates this
alpar@688
   154
    ///automatically allocated map, of course.
alpar@688
   155
    ///\return <tt> (*this) </tt>
alpar@688
   156
    Dijkstra &setPredMap(PredMap &m) 
alpar@688
   157
    {
alpar@688
   158
      if(local_predecessor) {
alpar@688
   159
	delete predecessor;
alpar@688
   160
	local_predecessor=false;
alpar@688
   161
      }
alpar@688
   162
      predecessor = &m;
alpar@688
   163
      return *this;
alpar@688
   164
    }
alpar@688
   165
alpar@688
   166
    ///Sets the map storing the predecessor nodes.
alpar@688
   167
alpar@688
   168
    ///Sets the map storing the predecessor nodes.
alpar@688
   169
    ///If you don't use this function before calling \ref run(),
alpar@688
   170
    ///it will allocate one. The destuctor deallocates this
alpar@688
   171
    ///automatically allocated map, of course.
alpar@688
   172
    ///\return <tt> (*this) </tt>
alpar@688
   173
    Dijkstra &setPredNodeMap(PredNodeMap &m) 
alpar@688
   174
    {
alpar@688
   175
      if(local_pred_node) {
alpar@688
   176
	delete pred_node;
alpar@688
   177
	local_pred_node=false;
alpar@688
   178
      }
alpar@688
   179
      pred_node = &m;
alpar@688
   180
      return *this;
alpar@688
   181
    }
alpar@688
   182
alpar@688
   183
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   184
alpar@688
   185
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   186
    ///If you don't use this function before calling \ref run(),
alpar@688
   187
    ///it will allocate one. The destuctor deallocates this
alpar@688
   188
    ///automatically allocated map, of course.
alpar@688
   189
    ///\return <tt> (*this) </tt>
alpar@688
   190
    Dijkstra &setDistMap(DistMap &m) 
alpar@688
   191
    {
alpar@688
   192
      if(local_distance) {
alpar@688
   193
	delete distance;
alpar@688
   194
	local_distance=false;
alpar@688
   195
      }
alpar@688
   196
      distance = &m;
alpar@688
   197
      return *this;
alpar@688
   198
    }
alpar@255
   199
    
alpar@694
   200
  ///Runs %Dijkstra algorithm from node \c s.
alpar@694
   201
alpar@694
   202
  ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@694
   203
  ///in order to
alpar@694
   204
  ///compute the
alpar@694
   205
  ///shortest path to each node. The algorithm computes
alpar@694
   206
  ///- The shortest path tree.
alpar@694
   207
  ///- The distance of each node from the root.
alpar@694
   208
    
alpar@694
   209
    void run(Node s) {
alpar@694
   210
      
alpar@694
   211
      init_maps();
alpar@694
   212
      
alpar@694
   213
      for ( NodeIt u(*G) ; G->valid(u) ; G->next(u) ) {
alpar@694
   214
	predecessor->set(u,INVALID);
alpar@694
   215
	pred_node->set(u,INVALID);
alpar@694
   216
      }
alpar@694
   217
      
alpar@694
   218
      typename GR::template NodeMap<int> heap_map(*G,-1);
alpar@694
   219
      
alpar@694
   220
      typedef Heap<Node, ValueType, typename GR::template NodeMap<int>,
alpar@694
   221
      std::less<ValueType> > 
alpar@694
   222
      HeapType;
alpar@694
   223
      
alpar@694
   224
      HeapType heap(heap_map);
alpar@694
   225
      
alpar@694
   226
      heap.push(s,0); 
alpar@694
   227
      
alpar@694
   228
      while ( !heap.empty() ) {
alpar@694
   229
	
alpar@694
   230
	Node v=heap.top(); 
alpar@694
   231
	ValueType oldvalue=heap[v];
alpar@694
   232
	heap.pop();
alpar@694
   233
	distance->set(v, oldvalue);
alpar@694
   234
	
alpar@694
   235
	
alpar@694
   236
	for(OutEdgeIt e(*G,v); G->valid(e); G->next(e)) {
alpar@694
   237
	  Node w=G->bNode(e); 
alpar@694
   238
	  
alpar@694
   239
	  switch(heap.state(w)) {
alpar@694
   240
	  case HeapType::PRE_HEAP:
alpar@694
   241
	    heap.push(w,oldvalue+(*length)[e]); 
alpar@694
   242
	    predecessor->set(w,e);
alpar@694
   243
	    pred_node->set(w,v);
alpar@694
   244
	    break;
alpar@694
   245
	  case HeapType::IN_HEAP:
alpar@694
   246
	    if ( oldvalue+(*length)[e] < heap[w] ) {
alpar@694
   247
	      heap.decrease(w, oldvalue+(*length)[e]); 
alpar@694
   248
	      predecessor->set(w,e);
alpar@694
   249
	      pred_node->set(w,v);
alpar@694
   250
	    }
alpar@694
   251
	    break;
alpar@694
   252
	  case HeapType::POST_HEAP:
alpar@694
   253
	    break;
alpar@694
   254
	  }
alpar@694
   255
	}
alpar@694
   256
      }
alpar@694
   257
    }
alpar@255
   258
    
jacint@385
   259
    ///The distance of a node from the root.
alpar@255
   260
jacint@385
   261
    ///Returns the distance of a node from the root.
alpar@255
   262
    ///\pre \ref run() must be called before using this function.
jacint@385
   263
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   264
    ///of this funcion is undefined.
alpar@688
   265
    ValueType dist(Node v) const { return (*distance)[v]; }
jacint@373
   266
alpar@584
   267
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   268
alpar@584
   269
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
jacint@385
   270
    ///i.e. it returns the last edge from a shortest path from the root to \c
alpar@688
   271
    ///v. It is \ref INVALID
alpar@688
   272
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   273
    ///shortest path tree used here is equal to the shortest path tree used in
jacint@385
   274
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
jacint@385
   275
    ///this function.
alpar@688
   276
    Edge pred(Node v) const { return (*predecessor)[v]; }
jacint@373
   277
alpar@584
   278
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   279
alpar@584
   280
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   281
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   282
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   283
    ///\c v=s. The shortest path tree used here is equal to the shortest path
jacint@385
   284
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
jacint@385
   285
    ///using this function.
alpar@688
   286
    Node predNode(Node v) const { return (*pred_node)[v]; }
alpar@255
   287
    
alpar@255
   288
    ///Returns a reference to the NodeMap of distances.
alpar@255
   289
jacint@385
   290
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   291
    ///be called before using this function.
alpar@688
   292
    const DistMap &distMap() const { return *distance;}
jacint@385
   293
 
alpar@255
   294
    ///Returns a reference to the shortest path tree map.
alpar@255
   295
alpar@255
   296
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   297
    ///shortest path tree.
alpar@255
   298
    ///\pre \ref run() must be called before using this function.
alpar@688
   299
    const PredMap &predMap() const { return *predecessor;}
jacint@385
   300
 
jacint@385
   301
    ///Returns a reference to the map of nodes of shortest paths.
alpar@255
   302
alpar@255
   303
    ///Returns a reference to the NodeMap of the last but one nodes of the
jacint@385
   304
    ///shortest path tree.
alpar@255
   305
    ///\pre \ref run() must be called before using this function.
alpar@688
   306
    const PredNodeMap &predNodeMap() const { return *pred_node;}
alpar@255
   307
jacint@385
   308
    ///Checks if a node is reachable from the root.
alpar@255
   309
jacint@385
   310
    ///Returns \c true if \c v is reachable from the root.
jacint@385
   311
    ///\warning the root node is reported to be unreached!
alpar@255
   312
    ///\todo Is this what we want?
alpar@255
   313
    ///\pre \ref run() must be called before using this function.
jacint@385
   314
    ///
alpar@688
   315
    bool reached(Node v) { return G->valid((*predecessor)[v]); }
alpar@255
   316
    
alpar@255
   317
  };
alpar@255
   318
  
alpar@255
   319
alpar@255
   320
  // **********************************************************************
alpar@255
   321
  //  IMPLEMENTATIONS
alpar@255
   322
  // **********************************************************************
alpar@255
   323
alpar@430
   324
/// @}
alpar@255
   325
  
alpar@255
   326
} //END OF NAMESPACE HUGO
alpar@255
   327
alpar@255
   328
#endif
alpar@255
   329
alpar@255
   330