src/lemon/dijkstra.h
author ladanyi
Mon, 11 Oct 2004 18:02:48 +0000
changeset 942 75fdd0c6866d
parent 911 89a4fbb99cad
child 959 c80ef5912903
permissions -rw-r--r--
Naming and coding style fixes and various other changes.
alpar@906
     1
/* -*- C++ -*-
alpar@921
     2
 * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@906
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@906
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_DIJKSTRA_H
alpar@921
    18
#define LEMON_DIJKSTRA_H
alpar@255
    19
alpar@758
    20
///\ingroup flowalgs
alpar@255
    21
///\file
alpar@255
    22
///\brief Dijkstra algorithm.
alpar@255
    23
alpar@921
    24
#include <lemon/bin_heap.h>
alpar@921
    25
#include <lemon/invalid.h>
alpar@255
    26
alpar@921
    27
namespace lemon {
jacint@385
    28
alpar@758
    29
/// \addtogroup flowalgs
alpar@430
    30
/// @{
alpar@430
    31
alpar@255
    32
  ///%Dijkstra algorithm class.
alpar@255
    33
alpar@255
    34
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
    35
  ///The edge lengths are passed to the algorithm using a
alpar@880
    36
  ///\ref skeleton::ReadMap "ReadMap",
alpar@255
    37
  ///so it is easy to change it to any kind of length.
alpar@255
    38
  ///
alpar@880
    39
  ///The type of the length is determined by the
alpar@880
    40
  ///\ref skeleton::ReadMap::ValueType "ValueType" of the length map.
alpar@255
    41
  ///
alpar@255
    42
  ///It is also possible to change the underlying priority heap.
alpar@255
    43
  ///
alpar@584
    44
  ///\param GR The graph type the algorithm runs on.
alpar@584
    45
  ///\param LM This read-only
jacint@385
    46
  ///EdgeMap
jacint@385
    47
  ///determines the
jacint@385
    48
  ///lengths of the edges. It is read once for each edge, so the map
jacint@385
    49
  ///may involve in relatively time consuming process to compute the edge
jacint@385
    50
  ///length if it is necessary. The default map type is
alpar@880
    51
  ///\ref skeleton::StaticGraph::EdgeMap "Graph::EdgeMap<int>"
jacint@385
    52
  ///\param Heap The heap type used by the %Dijkstra
jacint@385
    53
  ///algorithm. The default
jacint@385
    54
  ///is using \ref BinHeap "binary heap".
alpar@456
    55
  ///
alpar@689
    56
  ///\author Jacint Szabo and Alpar Juttner
alpar@693
    57
  ///\todo We need a typedef-names should be standardized. (-:
alpar@734
    58
  ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap
alpar@734
    59
  ///should not be fixed. (Problematic to solve).
alpar@584
    60
alpar@255
    61
#ifdef DOXYGEN
alpar@584
    62
  template <typename GR,
alpar@584
    63
	    typename LM,
alpar@255
    64
	    typename Heap>
alpar@255
    65
#else
alpar@584
    66
  template <typename GR,
alpar@584
    67
	    typename LM=typename GR::template EdgeMap<int>,
alpar@532
    68
	    template <class,class,class,class> class Heap = BinHeap >
alpar@255
    69
#endif
alpar@255
    70
  class Dijkstra{
alpar@255
    71
  public:
alpar@584
    72
    ///The type of the underlying graph.
alpar@584
    73
    typedef GR Graph;
alpar@911
    74
    ///\e
alpar@255
    75
    typedef typename Graph::Node Node;
alpar@911
    76
    ///\e
alpar@255
    77
    typedef typename Graph::NodeIt NodeIt;
alpar@911
    78
    ///\e
alpar@255
    79
    typedef typename Graph::Edge Edge;
alpar@911
    80
    ///\e
alpar@255
    81
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
    82
    
alpar@584
    83
    ///The type of the length of the edges.
alpar@584
    84
    typedef typename LM::ValueType ValueType;
alpar@693
    85
    ///The type of the map that stores the edge lengths.
alpar@584
    86
    typedef LM LengthMap;
alpar@693
    87
    ///\brief The type of the map that stores the last
alpar@584
    88
    ///edges of the shortest paths.
marci@433
    89
    typedef typename Graph::template NodeMap<Edge> PredMap;
alpar@693
    90
    ///\brief The type of the map that stores the last but one
alpar@584
    91
    ///nodes of the shortest paths.
marci@433
    92
    typedef typename Graph::template NodeMap<Node> PredNodeMap;
alpar@693
    93
    ///The type of the map that stores the dists of the nodes.
marci@433
    94
    typedef typename Graph::template NodeMap<ValueType> DistMap;
alpar@255
    95
alpar@255
    96
  private:
alpar@802
    97
    /// Pointer to the underlying graph.
alpar@688
    98
    const Graph *G;
alpar@802
    99
    /// Pointer to the length map
alpar@688
   100
    const LM *length;
alpar@802
   101
    ///Pointer to the map of predecessors edges.
alpar@688
   102
    PredMap *predecessor;
alpar@802
   103
    ///Indicates if \ref predecessor is locally allocated (\c true) or not.
alpar@688
   104
    bool local_predecessor;
alpar@802
   105
    ///Pointer to the map of predecessors nodes.
alpar@688
   106
    PredNodeMap *pred_node;
alpar@802
   107
    ///Indicates if \ref pred_node is locally allocated (\c true) or not.
alpar@688
   108
    bool local_pred_node;
alpar@802
   109
    ///Pointer to the map of distances.
alpar@688
   110
    DistMap *distance;
alpar@802
   111
    ///Indicates if \ref distance is locally allocated (\c true) or not.
alpar@688
   112
    bool local_distance;
alpar@688
   113
alpar@802
   114
    ///The source node of the last execution.
alpar@774
   115
    Node source;
alpar@774
   116
alpar@785
   117
    ///Initializes the maps.
alpar@688
   118
    
alpar@694
   119
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
   120
    ///\todo Better memory allocation (instead of new).
alpar@688
   121
    void init_maps() 
alpar@688
   122
    {
alpar@688
   123
      if(!predecessor) {
alpar@688
   124
	local_predecessor = true;
alpar@688
   125
	predecessor = new PredMap(*G);
alpar@688
   126
      }
alpar@688
   127
      if(!pred_node) {
alpar@688
   128
	local_pred_node = true;
alpar@688
   129
	pred_node = new PredNodeMap(*G);
alpar@688
   130
      }
alpar@688
   131
      if(!distance) {
alpar@688
   132
	local_distance = true;
alpar@688
   133
	distance = new DistMap(*G);
alpar@688
   134
      }
alpar@688
   135
    }
alpar@255
   136
    
alpar@255
   137
  public :
alpar@802
   138
    ///Constructor.
alpar@255
   139
    
alpar@802
   140
    ///\param _G the graph the algorithm will run on.
alpar@802
   141
    ///\param _length the length map used by the algorithm.
alpar@584
   142
    Dijkstra(const Graph& _G, const LM& _length) :
alpar@688
   143
      G(&_G), length(&_length),
alpar@707
   144
      predecessor(NULL), local_predecessor(false),
alpar@707
   145
      pred_node(NULL), local_pred_node(false),
alpar@707
   146
      distance(NULL), local_distance(false)
alpar@688
   147
    { }
alpar@688
   148
    
alpar@802
   149
    ///Destructor.
alpar@688
   150
    ~Dijkstra() 
alpar@688
   151
    {
alpar@688
   152
      if(local_predecessor) delete predecessor;
alpar@688
   153
      if(local_pred_node) delete pred_node;
alpar@688
   154
      if(local_distance) delete distance;
alpar@688
   155
    }
alpar@688
   156
alpar@688
   157
    ///Sets the length map.
alpar@688
   158
alpar@688
   159
    ///Sets the length map.
alpar@688
   160
    ///\return <tt> (*this) </tt>
alpar@688
   161
    Dijkstra &setLengthMap(const LM &m) 
alpar@688
   162
    {
alpar@688
   163
      length = &m;
alpar@688
   164
      return *this;
alpar@688
   165
    }
alpar@688
   166
alpar@688
   167
    ///Sets the map storing the predecessor edges.
alpar@688
   168
alpar@688
   169
    ///Sets the map storing the predecessor edges.
alpar@688
   170
    ///If you don't use this function before calling \ref run(),
alpar@688
   171
    ///it will allocate one. The destuctor deallocates this
alpar@688
   172
    ///automatically allocated map, of course.
alpar@688
   173
    ///\return <tt> (*this) </tt>
alpar@688
   174
    Dijkstra &setPredMap(PredMap &m) 
alpar@688
   175
    {
alpar@688
   176
      if(local_predecessor) {
alpar@688
   177
	delete predecessor;
alpar@688
   178
	local_predecessor=false;
alpar@688
   179
      }
alpar@688
   180
      predecessor = &m;
alpar@688
   181
      return *this;
alpar@688
   182
    }
alpar@688
   183
alpar@688
   184
    ///Sets the map storing the predecessor nodes.
alpar@688
   185
alpar@688
   186
    ///Sets the map storing the predecessor nodes.
alpar@688
   187
    ///If you don't use this function before calling \ref run(),
alpar@688
   188
    ///it will allocate one. The destuctor deallocates this
alpar@688
   189
    ///automatically allocated map, of course.
alpar@688
   190
    ///\return <tt> (*this) </tt>
alpar@688
   191
    Dijkstra &setPredNodeMap(PredNodeMap &m) 
alpar@688
   192
    {
alpar@688
   193
      if(local_pred_node) {
alpar@688
   194
	delete pred_node;
alpar@688
   195
	local_pred_node=false;
alpar@688
   196
      }
alpar@688
   197
      pred_node = &m;
alpar@688
   198
      return *this;
alpar@688
   199
    }
alpar@688
   200
alpar@688
   201
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   202
alpar@688
   203
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   204
    ///If you don't use this function before calling \ref run(),
alpar@688
   205
    ///it will allocate one. The destuctor deallocates this
alpar@688
   206
    ///automatically allocated map, of course.
alpar@688
   207
    ///\return <tt> (*this) </tt>
alpar@688
   208
    Dijkstra &setDistMap(DistMap &m) 
alpar@688
   209
    {
alpar@688
   210
      if(local_distance) {
alpar@688
   211
	delete distance;
alpar@688
   212
	local_distance=false;
alpar@688
   213
      }
alpar@688
   214
      distance = &m;
alpar@688
   215
      return *this;
alpar@688
   216
    }
alpar@255
   217
    
alpar@694
   218
  ///Runs %Dijkstra algorithm from node \c s.
alpar@694
   219
alpar@694
   220
  ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@694
   221
  ///in order to
alpar@694
   222
  ///compute the
alpar@694
   223
  ///shortest path to each node. The algorithm computes
alpar@694
   224
  ///- The shortest path tree.
alpar@694
   225
  ///- The distance of each node from the root.
alpar@694
   226
    
alpar@694
   227
    void run(Node s) {
alpar@694
   228
      
alpar@694
   229
      init_maps();
alpar@694
   230
      
alpar@774
   231
      source = s;
alpar@774
   232
      
alpar@774
   233
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@694
   234
	predecessor->set(u,INVALID);
alpar@694
   235
	pred_node->set(u,INVALID);
alpar@694
   236
      }
alpar@694
   237
      
alpar@694
   238
      typename GR::template NodeMap<int> heap_map(*G,-1);
alpar@694
   239
      
alpar@694
   240
      typedef Heap<Node, ValueType, typename GR::template NodeMap<int>,
alpar@694
   241
      std::less<ValueType> > 
alpar@694
   242
      HeapType;
alpar@694
   243
      
alpar@694
   244
      HeapType heap(heap_map);
alpar@694
   245
      
alpar@694
   246
      heap.push(s,0); 
alpar@694
   247
      
alpar@694
   248
      while ( !heap.empty() ) {
alpar@694
   249
	
alpar@694
   250
	Node v=heap.top(); 
alpar@694
   251
	ValueType oldvalue=heap[v];
alpar@694
   252
	heap.pop();
alpar@694
   253
	distance->set(v, oldvalue);
alpar@694
   254
	
alpar@694
   255
	
alpar@774
   256
	for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
alpar@774
   257
	  Node w=G->head(e); 
alpar@694
   258
	  switch(heap.state(w)) {
alpar@694
   259
	  case HeapType::PRE_HEAP:
alpar@694
   260
	    heap.push(w,oldvalue+(*length)[e]); 
alpar@694
   261
	    predecessor->set(w,e);
alpar@694
   262
	    pred_node->set(w,v);
alpar@694
   263
	    break;
alpar@694
   264
	  case HeapType::IN_HEAP:
alpar@694
   265
	    if ( oldvalue+(*length)[e] < heap[w] ) {
alpar@694
   266
	      heap.decrease(w, oldvalue+(*length)[e]); 
alpar@694
   267
	      predecessor->set(w,e);
alpar@694
   268
	      pred_node->set(w,v);
alpar@694
   269
	    }
alpar@694
   270
	    break;
alpar@694
   271
	  case HeapType::POST_HEAP:
alpar@694
   272
	    break;
alpar@694
   273
	  }
alpar@694
   274
	}
alpar@694
   275
      }
alpar@694
   276
    }
alpar@255
   277
    
jacint@385
   278
    ///The distance of a node from the root.
alpar@255
   279
jacint@385
   280
    ///Returns the distance of a node from the root.
alpar@255
   281
    ///\pre \ref run() must be called before using this function.
jacint@385
   282
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   283
    ///of this funcion is undefined.
alpar@688
   284
    ValueType dist(Node v) const { return (*distance)[v]; }
jacint@373
   285
alpar@584
   286
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   287
alpar@584
   288
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
alpar@785
   289
    ///i.e. it returns the last edge of a shortest path from the root to \c
alpar@688
   290
    ///v. It is \ref INVALID
alpar@688
   291
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   292
    ///shortest path tree used here is equal to the shortest path tree used in
jacint@385
   293
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
jacint@385
   294
    ///this function.
alpar@780
   295
    ///\todo predEdge could be a better name.
alpar@688
   296
    Edge pred(Node v) const { return (*predecessor)[v]; }
jacint@373
   297
alpar@584
   298
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   299
alpar@584
   300
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   301
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   302
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   303
    ///\c v=s. The shortest path tree used here is equal to the shortest path
jacint@385
   304
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
jacint@385
   305
    ///using this function.
alpar@688
   306
    Node predNode(Node v) const { return (*pred_node)[v]; }
alpar@255
   307
    
alpar@255
   308
    ///Returns a reference to the NodeMap of distances.
alpar@255
   309
jacint@385
   310
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   311
    ///be called before using this function.
alpar@688
   312
    const DistMap &distMap() const { return *distance;}
jacint@385
   313
 
alpar@255
   314
    ///Returns a reference to the shortest path tree map.
alpar@255
   315
alpar@255
   316
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   317
    ///shortest path tree.
alpar@255
   318
    ///\pre \ref run() must be called before using this function.
alpar@688
   319
    const PredMap &predMap() const { return *predecessor;}
jacint@385
   320
 
jacint@385
   321
    ///Returns a reference to the map of nodes of shortest paths.
alpar@255
   322
alpar@255
   323
    ///Returns a reference to the NodeMap of the last but one nodes of the
jacint@385
   324
    ///shortest path tree.
alpar@255
   325
    ///\pre \ref run() must be called before using this function.
alpar@688
   326
    const PredNodeMap &predNodeMap() const { return *pred_node;}
alpar@255
   327
jacint@385
   328
    ///Checks if a node is reachable from the root.
alpar@255
   329
jacint@385
   330
    ///Returns \c true if \c v is reachable from the root.
alpar@802
   331
    ///\note The root node is reported to be reached!
alpar@255
   332
    ///\pre \ref run() must be called before using this function.
jacint@385
   333
    ///
alpar@780
   334
    bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
alpar@255
   335
    
alpar@255
   336
  };
alpar@255
   337
  
alpar@430
   338
/// @}
alpar@255
   339
  
alpar@921
   340
} //END OF NAMESPACE LEMON
alpar@255
   341
alpar@255
   342
#endif
alpar@255
   343
alpar@255
   344