src/lemon/skeletons/graph.h
author ladanyi
Mon, 11 Oct 2004 18:02:48 +0000
changeset 942 75fdd0c6866d
parent 921 818510fa3d99
child 946 c94ef40a22ce
permissions -rw-r--r--
Naming and coding style fixes and various other changes.
alpar@906
     1
/* -*- C++ -*-
alpar@921
     2
 * src/lemon/skeletons/graph.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@906
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@906
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_SKELETON_GRAPH_H
alpar@921
    18
#define LEMON_SKELETON_GRAPH_H
alpar@52
    19
alpar@794
    20
///\ingroup skeletons
alpar@242
    21
///\file
alpar@880
    22
///\brief Declaration of Graph.
alpar@242
    23
alpar@921
    24
#include <lemon/invalid.h>
alpar@921
    25
#include <lemon/skeletons/maps.h>
alpar@145
    26
alpar@921
    27
namespace lemon {
alpar@732
    28
  namespace skeleton {
alpar@732
    29
    
alpar@794
    30
    /// \addtogroup skeletons
alpar@794
    31
    /// @{
alpar@163
    32
alpar@732
    33
    /// An empty static graph class.
alpar@732
    34
  
alpar@732
    35
    /// This class provides all the common features of a graph structure,
alpar@732
    36
    /// however completely without implementations and real data structures
alpar@732
    37
    /// behind the interface.
alpar@732
    38
    /// All graph algorithms should compile with this class, but it will not
alpar@732
    39
    /// run properly, of course.
alpar@732
    40
    ///
alpar@732
    41
    /// It can be used for checking the interface compatibility,
alpar@732
    42
    /// or it can serve as a skeleton of a new graph structure.
alpar@732
    43
    /// 
alpar@732
    44
    /// Also, you will find here the full documentation of a certain graph
alpar@732
    45
    /// feature, the documentation of a real graph imlementation
alpar@732
    46
    /// like @ref ListGraph or
alpar@732
    47
    /// @ref SmartGraph will just refer to this structure.
alpar@938
    48
    ///
alpar@938
    49
    /// \todo A pages describing the concept of concept description would
alpar@938
    50
    /// be nice.
alpar@880
    51
    class StaticGraph
alpar@732
    52
    {
alpar@732
    53
    public:
alpar@732
    54
      /// Defalult constructor.
alpar@801
    55
alpar@801
    56
      /// Defalult constructor.
alpar@801
    57
      ///
alpar@880
    58
      StaticGraph() { }
alpar@732
    59
      ///Copy consructor.
alpar@163
    60
alpar@801
    61
//       ///\todo It is not clear, what we expect from a copy constructor.
alpar@801
    62
//       ///E.g. How to assign the nodes/edges to each other? What about maps?
alpar@880
    63
//       StaticGraph(const StaticGraph& g) { }
alpar@732
    64
alpar@774
    65
      /// The base type of node iterators, 
alpar@774
    66
      /// or in other words, the trivial node iterator.
alpar@732
    67
alpar@774
    68
      /// This is the base type of each node iterator,
alpar@774
    69
      /// thus each kind of node iterator converts to this.
alpar@801
    70
      /// More precisely each kind of node iterator should be inherited 
alpar@774
    71
      /// from the trivial node iterator.
alpar@732
    72
      class Node {
alpar@732
    73
      public:
alpar@801
    74
	/// Default constructor
alpar@801
    75
alpar@732
    76
	/// @warning The default constructor sets the iterator
alpar@732
    77
	/// to an undefined value.
alpar@774
    78
	Node() { }
alpar@774
    79
	/// Copy constructor.
alpar@801
    80
alpar@801
    81
	/// Copy constructor.
alpar@801
    82
	///
alpar@774
    83
	Node(const Node&) { }
alpar@801
    84
alpar@732
    85
	/// Invalid constructor \& conversion.
alpar@732
    86
alpar@732
    87
	/// This constructor initializes the iterator to be invalid.
alpar@732
    88
	/// \sa Invalid for more details.
alpar@774
    89
	Node(Invalid) { }
alpar@801
    90
	/// Equality operator
alpar@801
    91
alpar@732
    92
	/// Two iterators are equal if and only if they point to the
alpar@732
    93
	/// same object or both are invalid.
alpar@732
    94
	bool operator==(Node) const { return true; }
alpar@732
    95
alpar@801
    96
	/// Inequality operator
alpar@801
    97
	
alpar@911
    98
	/// \sa operator==(Node n)
alpar@732
    99
	///
alpar@732
   100
	bool operator!=(Node) const { return true; }
alpar@732
   101
alpar@801
   102
 	///Comparison operator.
alpar@801
   103
alpar@801
   104
	///This is a strict ordering between the nodes.
alpar@801
   105
	///
alpar@801
   106
	///This ordering can be different from the order in which NodeIt
alpar@801
   107
	///goes through the nodes.
alpar@801
   108
	///\todo Possibly we don't need it.
alpar@732
   109
	bool operator<(Node) const { return true; }
alpar@732
   110
      };
alpar@732
   111
    
alpar@732
   112
      /// This iterator goes through each node.
alpar@732
   113
alpar@732
   114
      /// This iterator goes through each node.
alpar@732
   115
      /// Its usage is quite simple, for example you can count the number
alpar@774
   116
      /// of nodes in graph \c g of type \c Graph like this:
alpar@732
   117
      /// \code
alpar@774
   118
      /// int count=0;
alpar@801
   119
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
alpar@732
   120
      /// \endcode
alpar@732
   121
      class NodeIt : public Node {
alpar@732
   122
      public:
alpar@801
   123
	/// Default constructor
alpar@801
   124
alpar@732
   125
	/// @warning The default constructor sets the iterator
alpar@732
   126
	/// to an undefined value.
alpar@774
   127
	NodeIt() { }
alpar@774
   128
	/// Copy constructor.
alpar@801
   129
	
alpar@801
   130
	/// Copy constructor.
alpar@801
   131
	///
alpar@774
   132
	NodeIt(const NodeIt&) { }
alpar@732
   133
	/// Invalid constructor \& conversion.
alpar@732
   134
alpar@774
   135
	/// Initialize the iterator to be invalid.
alpar@732
   136
	/// \sa Invalid for more details.
alpar@774
   137
	NodeIt(Invalid) { }
alpar@801
   138
	/// Sets the iterator to the first node.
alpar@801
   139
alpar@774
   140
	/// Sets the iterator to the first node of \c g.
alpar@801
   141
	///
alpar@880
   142
	NodeIt(const StaticGraph& g) { }
alpar@801
   143
	/// Node -> NodeIt conversion.
alpar@801
   144
alpar@774
   145
	/// Sets the iterator to the node of \c g pointed by the trivial 
alpar@801
   146
	/// iterator n.
alpar@801
   147
	/// This feature necessitates that each time we 
alpar@801
   148
	/// iterate the edge-set, the iteration order is the same.
alpar@880
   149
	NodeIt(const StaticGraph& g, const Node& n) { }
alpar@801
   150
	/// Next node.
alpar@801
   151
alpar@774
   152
	/// Assign the iterator to the next node.
alpar@801
   153
	///
alpar@774
   154
	NodeIt& operator++() { return *this; }
alpar@732
   155
      };
alpar@732
   156
    
alpar@732
   157
    
alpar@732
   158
      /// The base type of the edge iterators.
alpar@801
   159
alpar@801
   160
      /// The base type of the edge iterators.
alpar@801
   161
      ///
alpar@732
   162
      class Edge {
alpar@732
   163
      public:
alpar@801
   164
	/// Default constructor
alpar@801
   165
alpar@732
   166
	/// @warning The default constructor sets the iterator
alpar@732
   167
	/// to an undefined value.
alpar@774
   168
	Edge() { }
alpar@774
   169
	/// Copy constructor.
alpar@801
   170
alpar@801
   171
	/// Copy constructor.
alpar@801
   172
	///
alpar@774
   173
	Edge(const Edge&) { }
alpar@774
   174
	/// Initialize the iterator to be invalid.
alpar@801
   175
alpar@801
   176
	/// Initialize the iterator to be invalid.
alpar@801
   177
	///
alpar@774
   178
	Edge(Invalid) { }
alpar@801
   179
	/// Equality operator
alpar@801
   180
alpar@732
   181
	/// Two iterators are equal if and only if they point to the
alpar@732
   182
	/// same object or both are invalid.
alpar@732
   183
	bool operator==(Edge) const { return true; }
alpar@801
   184
	/// Inequality operator
alpar@801
   185
alpar@911
   186
	/// \sa operator==(Node n)
alpar@801
   187
	///
alpar@732
   188
	bool operator!=(Edge) const { return true; }
alpar@801
   189
 	///Comparison operator.
alpar@801
   190
alpar@801
   191
	///This is a strict ordering between the nodes.
alpar@801
   192
	///
alpar@801
   193
	///This ordering can be different from the order in which NodeIt
alpar@801
   194
	///goes through the nodes.
alpar@801
   195
	///\todo Possibly we don't need it.
alpar@801
   196
 	bool operator<(Edge) const { return true; }
alpar@732
   197
      };
alpar@732
   198
    
alpar@732
   199
      /// This iterator goes trough the outgoing edges of a node.
alpar@732
   200
alpar@732
   201
      /// This iterator goes trough the \e outgoing edges of a certain node
alpar@732
   202
      /// of a graph.
alpar@732
   203
      /// Its usage is quite simple, for example you can count the number
alpar@732
   204
      /// of outgoing edges of a node \c n
alpar@774
   205
      /// in graph \c g of type \c Graph as follows.
alpar@732
   206
      /// \code
alpar@774
   207
      /// int count=0;
alpar@801
   208
      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@732
   209
      /// \endcode
alpar@732
   210
    
alpar@732
   211
      class OutEdgeIt : public Edge {
alpar@732
   212
      public:
alpar@801
   213
	/// Default constructor
alpar@801
   214
alpar@732
   215
	/// @warning The default constructor sets the iterator
alpar@732
   216
	/// to an undefined value.
alpar@774
   217
	OutEdgeIt() { }
alpar@774
   218
	/// Copy constructor.
alpar@801
   219
alpar@801
   220
	/// Copy constructor.
alpar@801
   221
	///
alpar@774
   222
	OutEdgeIt(const OutEdgeIt&) { }
alpar@774
   223
	/// Initialize the iterator to be invalid.
alpar@801
   224
alpar@801
   225
	/// Initialize the iterator to be invalid.
alpar@801
   226
	///
alpar@774
   227
	OutEdgeIt(Invalid) { }
alpar@732
   228
	/// This constructor sets the iterator to first outgoing edge.
alpar@732
   229
    
alpar@732
   230
	/// This constructor set the iterator to the first outgoing edge of
alpar@732
   231
	/// node
alpar@732
   232
	///@param n the node
alpar@774
   233
	///@param g the graph
alpar@880
   234
	OutEdgeIt(const StaticGraph& g, const Node& n) { }
alpar@801
   235
	/// Edge -> OutEdgeIt conversion
alpar@801
   236
alpar@774
   237
	/// Sets the iterator to the value of the trivial iterator \c e.
alpar@774
   238
	/// This feature necessitates that each time we 
alpar@774
   239
	/// iterate the edge-set, the iteration order is the same.
alpar@880
   240
	OutEdgeIt(const StaticGraph& g, const Edge& e) { }
alpar@801
   241
	///Next outgoing edge
alpar@801
   242
	
alpar@801
   243
	/// Assign the iterator to the next 
alpar@801
   244
	/// outgoing edge of the corresponding node.
alpar@774
   245
	OutEdgeIt& operator++() { return *this; }
alpar@732
   246
      };
alpar@732
   247
alpar@732
   248
      /// This iterator goes trough the incoming edges of a node.
alpar@732
   249
alpar@732
   250
      /// This iterator goes trough the \e incoming edges of a certain node
alpar@732
   251
      /// of a graph.
alpar@732
   252
      /// Its usage is quite simple, for example you can count the number
alpar@732
   253
      /// of outgoing edges of a node \c n
alpar@774
   254
      /// in graph \c g of type \c Graph as follows.
alpar@732
   255
      /// \code
alpar@774
   256
      /// int count=0;
alpar@801
   257
      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@732
   258
      /// \endcode
alpar@732
   259
alpar@732
   260
      class InEdgeIt : public Edge {
alpar@732
   261
      public:
alpar@801
   262
	/// Default constructor
alpar@801
   263
alpar@732
   264
	/// @warning The default constructor sets the iterator
alpar@732
   265
	/// to an undefined value.
alpar@774
   266
	InEdgeIt() { }
alpar@774
   267
	/// Copy constructor.
alpar@801
   268
alpar@801
   269
	/// Copy constructor.
alpar@801
   270
	///
alpar@774
   271
	InEdgeIt(const InEdgeIt&) { }
alpar@774
   272
	/// Initialize the iterator to be invalid.
alpar@801
   273
alpar@801
   274
	/// Initialize the iterator to be invalid.
alpar@801
   275
	///
alpar@774
   276
	InEdgeIt(Invalid) { }
alpar@801
   277
	/// This constructor sets the iterator to first incoming edge.
alpar@801
   278
    
alpar@801
   279
	/// This constructor set the iterator to the first incoming edge of
alpar@801
   280
	/// node
alpar@801
   281
	///@param n the node
alpar@801
   282
	///@param g the graph
alpar@880
   283
	InEdgeIt(const StaticGraph& g, const Node& n) { }
alpar@801
   284
	/// Edge -> InEdgeIt conversion
alpar@801
   285
alpar@801
   286
	/// Sets the iterator to the value of the trivial iterator \c e.
alpar@801
   287
	/// This feature necessitates that each time we 
alpar@801
   288
	/// iterate the edge-set, the iteration order is the same.
alpar@880
   289
	InEdgeIt(const StaticGraph& g, const Edge& n) { }
alpar@801
   290
	/// Next incoming edge
alpar@801
   291
alpar@774
   292
	/// Assign the iterator to the next inedge of the corresponding node.
alpar@801
   293
	///
alpar@774
   294
	InEdgeIt& operator++() { return *this; }
alpar@732
   295
      };
alpar@732
   296
      /// This iterator goes through each edge.
alpar@732
   297
alpar@732
   298
      /// This iterator goes through each edge of a graph.
alpar@732
   299
      /// Its usage is quite simple, for example you can count the number
alpar@774
   300
      /// of edges in a graph \c g of type \c Graph as follows:
alpar@732
   301
      /// \code
alpar@774
   302
      /// int count=0;
alpar@801
   303
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
alpar@732
   304
      /// \endcode
alpar@732
   305
      class EdgeIt : public Edge {
alpar@732
   306
      public:
alpar@801
   307
	/// Default constructor
alpar@801
   308
alpar@732
   309
	/// @warning The default constructor sets the iterator
alpar@732
   310
	/// to an undefined value.
alpar@774
   311
	EdgeIt() { }
alpar@774
   312
	/// Copy constructor.
alpar@801
   313
alpar@801
   314
	/// Copy constructor.
alpar@801
   315
	///
alpar@774
   316
	EdgeIt(const EdgeIt&) { }
alpar@774
   317
	/// Initialize the iterator to be invalid.
alpar@801
   318
alpar@801
   319
	/// Initialize the iterator to be invalid.
alpar@801
   320
	///
alpar@774
   321
	EdgeIt(Invalid) { }
alpar@801
   322
	/// This constructor sets the iterator to first edge.
alpar@801
   323
    
alpar@801
   324
	/// This constructor set the iterator to the first edge of
alpar@801
   325
	/// node
alpar@801
   326
	///@param g the graph
alpar@880
   327
	EdgeIt(const StaticGraph& g) { }
alpar@801
   328
	/// Edge -> EdgeIt conversion
alpar@801
   329
alpar@801
   330
	/// Sets the iterator to the value of the trivial iterator \c e.
alpar@801
   331
	/// This feature necessitates that each time we 
alpar@801
   332
	/// iterate the edge-set, the iteration order is the same.
alpar@880
   333
	EdgeIt(const StaticGraph&, const Edge&) { } 
alpar@801
   334
    	///Next edge
alpar@801
   335
	
alpar@801
   336
	/// Assign the iterator to the next 
alpar@801
   337
	/// edge of the corresponding node.
alpar@774
   338
	EdgeIt& operator++() { return *this; }
alpar@732
   339
      };
alpar@732
   340
alpar@732
   341
      /// First node of the graph.
alpar@732
   342
alpar@732
   343
      /// \retval i the first node.
alpar@732
   344
      /// \return the first node.
alpar@732
   345
      ///
alpar@774
   346
      NodeIt& first(NodeIt& i) const { return i; }
alpar@732
   347
alpar@732
   348
      /// The first incoming edge.
alpar@801
   349
alpar@801
   350
      /// The first incoming edge.
alpar@801
   351
      ///
alpar@774
   352
      InEdgeIt& first(InEdgeIt &i, Node) const { return i; }
alpar@732
   353
      /// The first outgoing edge.
alpar@801
   354
alpar@801
   355
      /// The first outgoing edge.
alpar@801
   356
      ///
alpar@774
   357
      OutEdgeIt& first(OutEdgeIt& i, Node) const { return i; }
alpar@732
   358
      /// The first edge of the Graph.
alpar@801
   359
alpar@801
   360
      /// The first edge of the Graph.
alpar@801
   361
      ///
alpar@774
   362
      EdgeIt& first(EdgeIt& i) const { return i; }
alpar@732
   363
alpar@801
   364
      ///Gives back the head node of an edge.
alpar@732
   365
alpar@732
   366
      ///Gives back the head node of an edge.
alpar@801
   367
      ///
alpar@732
   368
      Node head(Edge) const { return INVALID; }
alpar@732
   369
      ///Gives back the tail node of an edge.
alpar@801
   370
alpar@801
   371
      ///Gives back the tail node of an edge.
alpar@801
   372
      ///
alpar@732
   373
      Node tail(Edge) const { return INVALID; }
alpar@163
   374
  
alpar@732
   375
      ///Gives back the \e id of a node.
alpar@182
   376
alpar@732
   377
      ///\warning Not all graph structures provide this feature.
alpar@732
   378
      ///
alpar@801
   379
      ///\todo Should each graph provide \c id?
alpar@774
   380
      int id(const Node&) const { return 0; }
alpar@732
   381
      ///Gives back the \e id of an edge.
alpar@182
   382
alpar@732
   383
      ///\warning Not all graph structures provide this feature.
alpar@182
   384
      ///
alpar@801
   385
      ///\todo Should each graph provide \c id?
alpar@774
   386
      int id(const Edge&) const { return 0; }
alpar@182
   387
alpar@911
   388
      ///\e
alpar@801
   389
      
alpar@880
   390
      ///\todo Should it be in the concept?
alpar@801
   391
      ///
alpar@774
   392
      int nodeNum() const { return 0; }
alpar@911
   393
      ///\e
alpar@880
   394
alpar@880
   395
      ///\todo Should it be in the concept?
alpar@801
   396
      ///
alpar@774
   397
      int edgeNum() const { return 0; }
alpar@732
   398
alpar@732
   399
alpar@732
   400
      ///Reference map of the nodes to type \c T.
alpar@732
   401
alpar@880
   402
      /// \ingroup skeletons
alpar@732
   403
      ///Reference map of the nodes to type \c T.
alpar@880
   404
      /// \sa Reference
alpar@732
   405
      /// \warning Making maps that can handle bool type (NodeMap<bool>)
alpar@801
   406
      /// needs some extra attention!
alpar@880
   407
      template<class T> class NodeMap : public ReferenceMap< Node, T >
alpar@732
   408
      {
alpar@732
   409
      public:
alpar@732
   410
alpar@911
   411
	///\e
alpar@880
   412
	NodeMap(const StaticGraph&) { }
alpar@911
   413
	///\e
alpar@880
   414
	NodeMap(const StaticGraph&, T) { }
alpar@732
   415
alpar@732
   416
	///Copy constructor
alpar@774
   417
	template<typename TT> NodeMap(const NodeMap<TT>&) { }
alpar@732
   418
	///Assignment operator
alpar@774
   419
	template<typename TT> NodeMap& operator=(const NodeMap<TT>&)
alpar@774
   420
	{ return *this; }
alpar@732
   421
      };
alpar@732
   422
alpar@732
   423
      ///Reference map of the edges to type \c T.
alpar@732
   424
alpar@880
   425
      /// \ingroup skeletons
alpar@732
   426
      ///Reference map of the edges to type \c T.
alpar@880
   427
      /// \sa Reference
alpar@732
   428
      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
alpar@801
   429
      /// needs some extra attention!
alpar@732
   430
      template<class T> class EdgeMap
alpar@732
   431
	: public ReferenceMap<Edge,T>
alpar@732
   432
      {
alpar@732
   433
      public:
alpar@732
   434
alpar@911
   435
	///\e
alpar@880
   436
	EdgeMap(const StaticGraph&) { }
alpar@911
   437
	///\e
alpar@880
   438
	EdgeMap(const StaticGraph&, T) { }
alpar@147
   439
    
alpar@732
   440
	///Copy constructor
alpar@774
   441
	template<typename TT> EdgeMap(const EdgeMap<TT>&) { }
alpar@732
   442
	///Assignment operator
alpar@774
   443
	template<typename TT> EdgeMap &operator=(const EdgeMap<TT>&)
alpar@774
   444
	{ return *this; }
alpar@732
   445
      };
alpar@163
   446
    };
alpar@163
   447
alpar@938
   448
    struct DummyType {
alpar@938
   449
      int value;
alpar@938
   450
      DummyType() {}
alpar@938
   451
      DummyType(int p) : value(p) {}
alpar@938
   452
      DummyType& operator=(int p) { value = p; return *this;}
alpar@938
   453
    };
alpar@938
   454
    
alpar@938
   455
    ///\brief Checks whether \c G meets the
alpar@938
   456
    ///\ref lemon::skeleton::StaticGraph "StaticGraph" concept
alpar@938
   457
    template<class Graph> void checkCompileStaticGraph(Graph &G) 
alpar@938
   458
    {
alpar@938
   459
      typedef typename Graph::Node Node;
alpar@938
   460
      typedef typename Graph::NodeIt NodeIt;
alpar@938
   461
      typedef typename Graph::Edge Edge;
alpar@938
   462
      typedef typename Graph::EdgeIt EdgeIt;
alpar@938
   463
      typedef typename Graph::InEdgeIt InEdgeIt;
alpar@938
   464
      typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@938
   465
  
alpar@938
   466
      {
alpar@938
   467
	Node i; Node j(i); Node k(INVALID);
alpar@938
   468
	i=j;
alpar@938
   469
	bool b; b=true;
alpar@938
   470
	b=(i==INVALID); b=(i!=INVALID);
alpar@938
   471
	b=(i==j); b=(i!=j); b=(i<j);
alpar@938
   472
      }
alpar@938
   473
      {
alpar@938
   474
	NodeIt i; NodeIt j(i); NodeIt k(INVALID); NodeIt l(G);
alpar@938
   475
	i=j;
alpar@938
   476
	j=G.first(i);
alpar@938
   477
	j=++i;
alpar@938
   478
	bool b; b=true;
alpar@938
   479
	b=(i==INVALID); b=(i!=INVALID);
alpar@938
   480
	Node n(i);
alpar@938
   481
	n=i;
alpar@938
   482
	b=(i==j); b=(i!=j); b=(i<j);
alpar@938
   483
	//Node ->NodeIt conversion
alpar@938
   484
	NodeIt ni(G,n);
alpar@938
   485
      }
alpar@938
   486
      {
alpar@938
   487
	Edge i; Edge j(i); Edge k(INVALID);
alpar@938
   488
	i=j;
alpar@938
   489
	bool b; b=true;
alpar@938
   490
	b=(i==INVALID); b=(i!=INVALID);
alpar@938
   491
	b=(i==j); b=(i!=j); b=(i<j);
alpar@938
   492
      }
alpar@938
   493
      {
alpar@938
   494
	EdgeIt i; EdgeIt j(i); EdgeIt k(INVALID); EdgeIt l(G);
alpar@938
   495
	i=j;
alpar@938
   496
	j=G.first(i);
alpar@938
   497
	j=++i;
alpar@938
   498
	bool b; b=true;
alpar@938
   499
	b=(i==INVALID); b=(i!=INVALID);
alpar@938
   500
	Edge e(i);
alpar@938
   501
	e=i;
alpar@938
   502
	b=(i==j); b=(i!=j); b=(i<j);
alpar@938
   503
	//Edge ->EdgeIt conversion
alpar@938
   504
	EdgeIt ei(G,e);
alpar@938
   505
      }
alpar@938
   506
      {
alpar@938
   507
	Node n;
alpar@938
   508
	InEdgeIt i; InEdgeIt j(i); InEdgeIt k(INVALID); InEdgeIt l(G,n);
alpar@938
   509
	i=j;
alpar@938
   510
	j=G.first(i,n);
alpar@938
   511
	j=++i;
alpar@938
   512
	bool b; b=true;
alpar@938
   513
	b=(i==INVALID); b=(i!=INVALID);
alpar@938
   514
	Edge e(i);
alpar@938
   515
	e=i;
alpar@938
   516
	b=(i==j); b=(i!=j); b=(i<j);
alpar@938
   517
	//Edge ->InEdgeIt conversion
alpar@938
   518
	InEdgeIt ei(G,e);
alpar@938
   519
      }
alpar@938
   520
      {
alpar@938
   521
	Node n;
alpar@938
   522
	OutEdgeIt i; OutEdgeIt j(i); OutEdgeIt k(INVALID); OutEdgeIt l(G,n);
alpar@938
   523
	i=j;
alpar@938
   524
	j=G.first(i,n);
alpar@938
   525
	j=++i;
alpar@938
   526
	bool b; b=true;
alpar@938
   527
	b=(i==INVALID); b=(i!=INVALID);
alpar@938
   528
	Edge e(i);
alpar@938
   529
	e=i;
alpar@938
   530
	b=(i==j); b=(i!=j); b=(i<j);
alpar@938
   531
	//Edge ->OutEdgeIt conversion
alpar@938
   532
	OutEdgeIt ei(G,e);
alpar@938
   533
      }
alpar@938
   534
      {
alpar@938
   535
	Node n,m;
alpar@938
   536
	n=m=INVALID;
alpar@938
   537
	Edge e;
alpar@938
   538
	e=INVALID;
alpar@938
   539
	n=G.tail(e);
alpar@938
   540
	n=G.head(e);
alpar@938
   541
      }
alpar@938
   542
      // id tests
alpar@938
   543
      { Node n; int i=G.id(n); i=i; }
alpar@938
   544
      { Edge e; int i=G.id(e); i=i; }
alpar@938
   545
      //NodeMap tests
alpar@938
   546
      {
alpar@938
   547
	Node k;
alpar@938
   548
	typename Graph::template NodeMap<int> m(G);
alpar@938
   549
	//Const map
alpar@938
   550
	typename Graph::template NodeMap<int> const &cm = m;
alpar@938
   551
	//Inicialize with default value
alpar@938
   552
	typename Graph::template NodeMap<int> mdef(G,12);
alpar@938
   553
	//Copy
alpar@938
   554
	typename Graph::template NodeMap<int> mm(cm);
alpar@938
   555
	//Copy from another type
alpar@938
   556
	typename Graph::template NodeMap<double> dm(cm);
alpar@938
   557
	//Copy to more complex type
alpar@938
   558
	typename Graph::template NodeMap<DummyType> em(cm);
alpar@938
   559
	int v;
alpar@938
   560
	v=m[k]; m[k]=v; m.set(k,v);
alpar@938
   561
	v=cm[k];
alpar@938
   562
    
alpar@938
   563
	m=cm;  
alpar@938
   564
	dm=cm; //Copy from another type  
alpar@938
   565
	em=cm; //Copy to more complex type
alpar@938
   566
	{
alpar@938
   567
	  //Check the typedef's
alpar@938
   568
	  typename Graph::template NodeMap<int>::ValueType val;
alpar@938
   569
	  val=1;
alpar@938
   570
	  typename Graph::template NodeMap<int>::KeyType key;
alpar@938
   571
	  key = typename Graph::NodeIt(G);
alpar@938
   572
	}
alpar@938
   573
      }  
alpar@938
   574
      { //bool NodeMap
alpar@938
   575
	Node k;
alpar@938
   576
	typename Graph::template NodeMap<bool> m(G);
alpar@938
   577
	typename Graph::template NodeMap<bool> const &cm = m;  //Const map
alpar@938
   578
	//Inicialize with default value
alpar@938
   579
	typename Graph::template NodeMap<bool> mdef(G,12);
alpar@938
   580
	typename Graph::template NodeMap<bool> mm(cm);   //Copy
alpar@938
   581
	typename Graph::template NodeMap<int> dm(cm); //Copy from another type
alpar@938
   582
	bool v;
alpar@938
   583
	v=m[k]; m[k]=v; m.set(k,v);
alpar@938
   584
	v=cm[k];
alpar@938
   585
    
alpar@938
   586
	m=cm;  
alpar@938
   587
	dm=cm; //Copy from another type
alpar@938
   588
	m=dm; //Copy to another type
alpar@186
   589
alpar@938
   590
	{
alpar@938
   591
	  //Check the typedef's
alpar@938
   592
	  typename Graph::template NodeMap<bool>::ValueType val;
alpar@938
   593
	  val=true;
alpar@938
   594
	  typename Graph::template NodeMap<bool>::KeyType key;
alpar@938
   595
	  key= typename Graph::NodeIt(G);
alpar@938
   596
	}
alpar@938
   597
      }
alpar@938
   598
      //EdgeMap tests
alpar@938
   599
      {
alpar@938
   600
	Edge k;
alpar@938
   601
	typename Graph::template EdgeMap<int> m(G);
alpar@938
   602
	typename Graph::template EdgeMap<int> const &cm = m;  //Const map
alpar@938
   603
	//Inicialize with default value
alpar@938
   604
	typename Graph::template EdgeMap<int> mdef(G,12);
alpar@938
   605
	typename Graph::template EdgeMap<int> mm(cm);   //Copy
alpar@938
   606
	typename Graph::template EdgeMap<double> dm(cm);//Copy from another type
alpar@938
   607
	int v;
alpar@938
   608
	v=m[k]; m[k]=v; m.set(k,v);
alpar@938
   609
	v=cm[k];
alpar@938
   610
    
alpar@938
   611
	m=cm;  
alpar@938
   612
	dm=cm; //Copy from another type
alpar@938
   613
	{
alpar@938
   614
	  //Check the typedef's
alpar@938
   615
	  typename Graph::template EdgeMap<int>::ValueType val;
alpar@938
   616
	  val=1;
alpar@938
   617
	  typename Graph::template EdgeMap<int>::KeyType key;
alpar@938
   618
	  key= typename Graph::EdgeIt(G);
alpar@938
   619
	}
alpar@938
   620
      }  
alpar@938
   621
      { //bool EdgeMap
alpar@938
   622
	Edge k;
alpar@938
   623
	typename Graph::template EdgeMap<bool> m(G);
alpar@938
   624
	typename Graph::template EdgeMap<bool> const &cm = m;  //Const map
alpar@938
   625
	//Inicialize with default value
alpar@938
   626
	typename Graph::template EdgeMap<bool> mdef(G,12);
alpar@938
   627
	typename Graph::template EdgeMap<bool> mm(cm);   //Copy
alpar@938
   628
	typename Graph::template EdgeMap<int> dm(cm); //Copy from another type
alpar@938
   629
	bool v;
alpar@938
   630
	v=m[k]; m[k]=v; m.set(k,v);
alpar@938
   631
	v=cm[k];
alpar@938
   632
    
alpar@938
   633
	m=cm;  
alpar@938
   634
	dm=cm; //Copy from another type
alpar@938
   635
	m=dm; //Copy to another type
alpar@938
   636
	{
alpar@938
   637
	  //Check the typedef's
alpar@938
   638
	  typename Graph::template EdgeMap<bool>::ValueType val;
alpar@938
   639
	  val=true;
alpar@938
   640
	  typename Graph::template EdgeMap<bool>::KeyType key;
alpar@938
   641
	  key= typename Graph::EdgeIt(G);
alpar@938
   642
	}
alpar@938
   643
      }
alpar@938
   644
    }
alpar@938
   645
    
alpar@801
   646
    /// An empty non-static graph class.
alpar@938
   647
    
alpar@880
   648
    /// This class provides everything that \ref StaticGraph
alpar@732
   649
    /// with additional functionality which enables to build a
alpar@732
   650
    /// graph from scratch.
alpar@880
   651
    class ExtendableGraph : public StaticGraph
alpar@732
   652
    {
alpar@163
   653
    public:
alpar@732
   654
      /// Defalult constructor.
alpar@801
   655
alpar@801
   656
      /// Defalult constructor.
alpar@801
   657
      ///
alpar@880
   658
      ExtendableGraph() { }
alpar@732
   659
      ///Add a new node to the graph.
alpar@732
   660
alpar@732
   661
      /// \return the new node.
alpar@732
   662
      ///
alpar@774
   663
      Node addNode() { return INVALID; }
alpar@732
   664
      ///Add a new edge to the graph.
alpar@732
   665
alpar@880
   666
      ///Add a new edge to the graph with tail node \c t
alpar@880
   667
      ///and head node \c h.
alpar@732
   668
      ///\return the new edge.
alpar@880
   669
      Edge addEdge(Node h, Node t) { return INVALID; }
alpar@732
   670
    
alpar@732
   671
      /// Resets the graph.
alpar@732
   672
alpar@732
   673
      /// This function deletes all edges and nodes of the graph.
alpar@732
   674
      /// It also frees the memory allocated to store them.
alpar@880
   675
      /// \todo It might belong to \ref ErasableGraph.
alpar@774
   676
      void clear() { }
alpar@163
   677
    };
alpar@163
   678
alpar@938
   679
    
alpar@938
   680
    ///\brief Checks whether \c G meets the
alpar@938
   681
    ///\ref lemon::skeleton::ExtendableGraph "ExtendableGraph" concept
alpar@938
   682
    template<class Graph> void checkCompileExtendableGraph(Graph &G) 
alpar@938
   683
    {
alpar@938
   684
      checkCompileStaticGraph(G);
alpar@938
   685
alpar@938
   686
      typedef typename Graph::Node Node;
alpar@938
   687
      typedef typename Graph::NodeIt NodeIt;
alpar@938
   688
      typedef typename Graph::Edge Edge;
alpar@938
   689
      typedef typename Graph::EdgeIt EdgeIt;
alpar@938
   690
      typedef typename Graph::InEdgeIt InEdgeIt;
alpar@938
   691
      typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@938
   692
  
alpar@938
   693
      Node n,m;
alpar@938
   694
      n=G.addNode();
alpar@938
   695
      m=G.addNode();
alpar@938
   696
      Edge e;
alpar@938
   697
      e=G.addEdge(n,m); 
alpar@938
   698
  
alpar@938
   699
      //  G.clear();
alpar@938
   700
    }
alpar@938
   701
alpar@938
   702
alpar@826
   703
    /// An empty erasable graph class.
alpar@52
   704
  
alpar@880
   705
    /// This class is an extension of \ref ExtendableGraph. It also makes it
alpar@732
   706
    /// possible to erase edges or nodes.
alpar@880
   707
    class ErasableGraph : public ExtendableGraph
alpar@163
   708
    {
alpar@163
   709
    public:
alpar@801
   710
      /// Defalult constructor.
alpar@801
   711
alpar@801
   712
      /// Defalult constructor.
alpar@801
   713
      ///
alpar@880
   714
      ErasableGraph() { }
alpar@732
   715
      /// Deletes a node.
alpar@801
   716
alpar@801
   717
      /// Deletes node \c n node.
alpar@801
   718
      ///
alpar@774
   719
      void erase(Node n) { }
alpar@732
   720
      /// Deletes an edge.
alpar@801
   721
alpar@801
   722
      /// Deletes edge \c e edge.
alpar@801
   723
      ///
alpar@774
   724
      void erase(Edge e) { }
alpar@163
   725
    };
alpar@938
   726
    
alpar@938
   727
    template<class Graph> void checkCompileGraphEraseEdge(Graph &G) 
alpar@938
   728
    {
alpar@938
   729
      typename Graph::Edge e;
alpar@938
   730
      G.erase(e);
alpar@938
   731
    }
alpar@163
   732
alpar@938
   733
    template<class Graph> void checkCompileGraphEraseNode(Graph &G) 
alpar@938
   734
    {
alpar@938
   735
      typename Graph::Node n;
alpar@938
   736
      G.erase(n);
alpar@938
   737
    }
alpar@938
   738
alpar@938
   739
    ///\brief Checks whether \c G meets the
alpar@938
   740
    ///\ref lemon::skeleton::EresableGraph "EresableGraph" concept
alpar@938
   741
    template<class Graph> void checkCompileErasableGraph(Graph &G) 
alpar@938
   742
    {
alpar@938
   743
      checkCompileExtendableGraph(G);
alpar@938
   744
      checkCompileGraphEraseNode(G);
alpar@938
   745
      checkCompileGraphEraseEdge(G);
alpar@938
   746
    }
alpar@938
   747
alpar@938
   748
    ///Checks whether a graph has findEdge() member function.
alpar@938
   749
    
alpar@938
   750
    ///\todo findEdge() might be a global function.
alpar@938
   751
    ///
alpar@938
   752
    template<class Graph> void checkCompileGraphFindEdge(Graph &G) 
alpar@938
   753
    {
alpar@938
   754
      typedef typename Graph::NodeIt Node;
alpar@938
   755
      typedef typename Graph::NodeIt NodeIt;
alpar@938
   756
alpar@938
   757
      G.findEdge(NodeIt(G),++NodeIt(G),G.findEdge(NodeIt(G),++NodeIt(G)));
alpar@938
   758
      G.findEdge(Node(),Node(),G.findEdge(Node(),Node()));  
alpar@938
   759
    }
alpar@938
   760
 
alpar@732
   761
    // @}
alpar@801
   762
  } //namespace skeleton  
alpar@921
   763
} //namespace lemon
alpar@52
   764
alpar@145
   765
alpar@145
   766
alpar@921
   767
#endif // LEMON_SKELETON_GRAPH_H