lemon/bezier.h
author deba
Mon, 14 Nov 2005 18:55:19 +0000
changeset 1794 79397d64f742
parent 1471 11a13908b510
child 1875 98698b69a902
permissions -rw-r--r--
String->Double
alpar@1073
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/bezier.h - Part of LEMON, a generic C++ optimization library
alpar@1073
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@1073
     6
 *
alpar@1073
     7
 * Permission to use, modify and distribute this software is granted
alpar@1073
     8
 * provided that this copyright notice appears in all copies. For
alpar@1073
     9
 * precise terms see the accompanying LICENSE file.
alpar@1073
    10
 *
alpar@1073
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@1073
    12
 * express or implied, and with no claim as to its suitability for any
alpar@1073
    13
 * purpose.
alpar@1073
    14
 *
alpar@1073
    15
 */
alpar@1073
    16
alpar@1073
    17
#ifndef LEMON_BEZIER_H
alpar@1073
    18
#define LEMON_BEZIER_H
alpar@1073
    19
alpar@1073
    20
///\ingroup misc
alpar@1073
    21
///\file
alpar@1073
    22
///\brief Classes to compute with Bezier curves.
alpar@1073
    23
///
alpar@1084
    24
///Up to now this file is used internally by \ref graph_to_eps.h
alpar@1073
    25
///
alpar@1073
    26
///\author Alpar Juttner
alpar@1073
    27
alpar@1073
    28
#include<lemon/xy.h>
alpar@1073
    29
alpar@1073
    30
namespace lemon {
alpar@1073
    31
alpar@1073
    32
class BezierBase {
alpar@1073
    33
public:
alpar@1073
    34
  typedef xy<double> xy;
alpar@1073
    35
protected:
alpar@1073
    36
  static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;}
alpar@1073
    37
};
alpar@1073
    38
alpar@1073
    39
class Bezier1 : public BezierBase
alpar@1073
    40
{
alpar@1073
    41
public:
alpar@1073
    42
  xy p1,p2;
alpar@1073
    43
alpar@1073
    44
  Bezier1() {}
alpar@1073
    45
  Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {}
alpar@1073
    46
  
alpar@1073
    47
  xy operator()(double t) const
alpar@1073
    48
  {
alpar@1073
    49
    //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
alpar@1073
    50
    return conv(p1,p2,t);
alpar@1073
    51
  }
alpar@1073
    52
  Bezier1 before(double t) const
alpar@1073
    53
  {
alpar@1073
    54
    return Bezier1(p1,conv(p1,p2,t));
alpar@1073
    55
  }
alpar@1073
    56
  
alpar@1073
    57
  Bezier1 after(double t) const
alpar@1073
    58
  {
alpar@1073
    59
    return Bezier1(conv(p1,p2,t),p2);
alpar@1073
    60
  }
alpar@1084
    61
alpar@1548
    62
  Bezier1 revert() const { return Bezier1(p2,p1);}
alpar@1548
    63
  Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
alpar@1548
    64
  xy grad() const { return p2-p1; }
alpar@1548
    65
  xy norm() const { return rot90(p2-p1); }
alpar@1548
    66
  xy grad(double) const { return grad(); }
alpar@1548
    67
  xy norm(double t) const { return rot90(grad(t)); }
alpar@1073
    68
};
alpar@1073
    69
alpar@1073
    70
class Bezier2 : public BezierBase
alpar@1073
    71
{
alpar@1073
    72
public:
alpar@1073
    73
  xy p1,p2,p3;
alpar@1073
    74
alpar@1073
    75
  Bezier2() {}
alpar@1073
    76
  Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {}
alpar@1073
    77
  Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
alpar@1073
    78
  xy operator()(double t) const
alpar@1073
    79
  {
alpar@1073
    80
    //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
alpar@1073
    81
    return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
alpar@1073
    82
  }
alpar@1073
    83
  Bezier2 before(double t) const
alpar@1073
    84
  {
alpar@1073
    85
    xy q(conv(p1,p2,t));
alpar@1073
    86
    xy r(conv(p2,p3,t));
alpar@1073
    87
    return Bezier2(p1,q,conv(q,r,t));
alpar@1073
    88
  }
alpar@1073
    89
  
alpar@1073
    90
  Bezier2 after(double t) const
alpar@1073
    91
  {
alpar@1073
    92
    xy q(conv(p1,p2,t));
alpar@1073
    93
    xy r(conv(p2,p3,t));
alpar@1073
    94
    return Bezier2(conv(q,r,t),r,p3);
alpar@1073
    95
  }
alpar@1548
    96
  Bezier2 revert() const { return Bezier2(p3,p2,p1);}
alpar@1548
    97
  Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
alpar@1548
    98
  Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
alpar@1548
    99
  Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
alpar@1548
   100
  xy grad(double t) const { return grad()(t); }
alpar@1548
   101
  xy norm(double t) const { return rot90(grad(t)); }
alpar@1073
   102
};
alpar@1073
   103
alpar@1073
   104
class Bezier3 : public BezierBase
alpar@1073
   105
{
alpar@1073
   106
public:
alpar@1073
   107
  xy p1,p2,p3,p4;
alpar@1073
   108
alpar@1073
   109
  Bezier3() {}
alpar@1073
   110
  Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
alpar@1073
   111
  Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), 
alpar@1073
   112
			      p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
alpar@1073
   113
  Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
alpar@1073
   114
			      p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
alpar@1073
   115
  
alpar@1073
   116
  xy operator()(double t) const 
alpar@1073
   117
    {
alpar@1073
   118
      //    return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
alpar@1073
   119
      return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
alpar@1073
   120
	(3*t*t*(1-t))*p3+(t*t*t)*p4;
alpar@1073
   121
    }
alpar@1073
   122
  Bezier3 before(double t) const
alpar@1073
   123
    {
alpar@1073
   124
      xy p(conv(p1,p2,t));
alpar@1073
   125
      xy q(conv(p2,p3,t));
alpar@1073
   126
      xy r(conv(p3,p4,t));
alpar@1073
   127
      xy a(conv(p,q,t));
alpar@1073
   128
      xy b(conv(q,r,t));
alpar@1073
   129
      xy c(conv(a,b,t));
alpar@1073
   130
      return Bezier3(p1,p,a,c);
alpar@1073
   131
    }
alpar@1073
   132
  
alpar@1073
   133
  Bezier3 after(double t) const
alpar@1073
   134
    {
alpar@1073
   135
      xy p(conv(p1,p2,t));
alpar@1073
   136
      xy q(conv(p2,p3,t));
alpar@1073
   137
      xy r(conv(p3,p4,t));
alpar@1073
   138
      xy a(conv(p,q,t));
alpar@1073
   139
      xy b(conv(q,r,t));
alpar@1073
   140
      xy c(conv(a,b,t));
alpar@1073
   141
      return Bezier3(c,b,r,p4);
alpar@1073
   142
    }
alpar@1548
   143
  Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
alpar@1548
   144
  Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
alpar@1548
   145
  Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
alpar@1548
   146
  Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
alpar@1548
   147
				  3.0*rot90(p3-p2),
alpar@1548
   148
				  3.0*rot90(p4-p3)); }
alpar@1548
   149
  xy grad(double t) const { return grad()(t); }
alpar@1548
   150
  xy norm(double t) const { return rot90(grad(t)); }
alpar@1548
   151
alpar@1548
   152
  template<class R,class F,class S,class D>
alpar@1548
   153
  R recSplit(F &_f,const S &_s,D _d) const 
alpar@1548
   154
  {
alpar@1548
   155
    const xy a=(p1+p2)/2;
alpar@1548
   156
    const xy b=(p2+p3)/2;
alpar@1548
   157
    const xy c=(p3+p4)/2;
alpar@1548
   158
    const xy d=(a+b)/2;
alpar@1548
   159
    const xy e=(b+c)/2;
alpar@1548
   160
    const xy f=(d+e)/2;
alpar@1548
   161
    R f1=_f(Bezier3(p1,a,d,e),_d);
alpar@1548
   162
    R f2=_f(Bezier3(e,d,c,p4),_d);
alpar@1548
   163
    return _s(f1,f2);
alpar@1548
   164
  }
alpar@1548
   165
  
alpar@1073
   166
};
alpar@1073
   167
alpar@1073
   168
} //END OF NAMESPACE LEMON
alpar@1073
   169
alpar@1073
   170
#endif // LEMON_BEZIER_H