src/lemon/maps.h
author alpar
Tue, 11 Jan 2005 09:04:08 +0000
changeset 1069 7b81a36809c6
parent 1041 9d503ce002db
child 1070 6aa1520a0f2f
permissions -rw-r--r--
- Minor correction in time_measure.h
- A bit more meaningful test in time_measure_test.cc
alpar@906
     1
/* -*- C++ -*-
alpar@921
     2
 * src/lemon/maps.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@906
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@906
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_MAPS_H
alpar@921
    18
#define LEMON_MAPS_H
klao@286
    19
alpar@1041
    20
#include<math.h>
alpar@1041
    21
klao@286
    22
///\file
alpar@1041
    23
///\ingroup maps
klao@286
    24
///\brief Miscellaneous property maps
klao@286
    25
///
klao@959
    26
///\todo This file has the same name as the concept file in concept/,
klao@286
    27
/// and this is not easily detectable in docs...
klao@286
    28
klao@286
    29
#include <map>
klao@286
    30
alpar@921
    31
namespace lemon {
klao@286
    32
alpar@1041
    33
  /// \addtogroup maps
alpar@1041
    34
  /// @{
alpar@1041
    35
alpar@720
    36
  /// Base class of maps.
alpar@720
    37
alpar@805
    38
  /// Base class of maps.
alpar@805
    39
  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
alpar@720
    40
  template<typename K, typename T>
alpar@720
    41
  class MapBase
alpar@720
    42
  {
alpar@720
    43
  public:
alpar@911
    44
    ///\e
alpar@987
    45
    typedef K Key;
alpar@911
    46
    ///\e
alpar@987
    47
    typedef T Value;
alpar@720
    48
  };
alpar@720
    49
alpar@805
    50
  /// Null map. (a.k.a. DoNothingMap)
klao@286
    51
klao@286
    52
  /// If you have to provide a map only for its type definitions,
alpar@805
    53
  /// or if you have to provide a writable map, but
alpar@805
    54
  /// data written to it will sent to <tt>/dev/null</tt>...
klao@286
    55
  template<typename K, typename T>
alpar@720
    56
  class NullMap : public MapBase<K,T>
klao@286
    57
  {
klao@286
    58
  public:
klao@286
    59
alpar@805
    60
    /// Gives back a default constructed element.
klao@286
    61
    T operator[](const K&) const { return T(); }
alpar@805
    62
    /// Absorbs the value.
klao@286
    63
    void set(const K&, const T&) {}
klao@286
    64
  };
klao@286
    65
klao@286
    66
klao@286
    67
  /// Constant map.
klao@286
    68
alpar@805
    69
  /// This is a readable map which assigns a specified value to each key.
alpar@805
    70
  /// In other aspects it is equivalent to the \ref NullMap.
alpar@805
    71
  /// \todo set could be used to set the value.
klao@286
    72
  template<typename K, typename T>
alpar@720
    73
  class ConstMap : public MapBase<K,T>
klao@286
    74
  {
klao@286
    75
    T v;
klao@286
    76
  public:
klao@286
    77
alpar@805
    78
    /// Default constructor
alpar@805
    79
alpar@805
    80
    /// The value of the map will be uninitialized. 
alpar@805
    81
    /// (More exactly it will be default constructed.)
klao@286
    82
    ConstMap() {}
alpar@911
    83
    ///\e
alpar@805
    84
alpar@805
    85
    /// \param _v The initial value of the map.
alpar@911
    86
    ///
klao@286
    87
    ConstMap(const T &_v) : v(_v) {}
klao@286
    88
klao@286
    89
    T operator[](const K&) const { return v; }
klao@286
    90
    void set(const K&, const T&) {}
klao@286
    91
klao@286
    92
    template<typename T1>
klao@286
    93
    struct rebind {
klao@286
    94
      typedef ConstMap<K,T1> other;
klao@286
    95
    };
klao@286
    96
klao@286
    97
    template<typename T1>
klao@286
    98
    ConstMap(const ConstMap<K,T1> &, const T &_v) : v(_v) {}
klao@286
    99
  };
klao@286
   100
marci@890
   101
  //to document later
marci@890
   102
  template<typename T, T v>
marci@890
   103
  struct Const { };
marci@890
   104
  //to document later
marci@890
   105
  template<typename K, typename V, V v>
marci@890
   106
  class ConstMap<K, Const<V, v> > : public MapBase<K, V>
marci@890
   107
  {
marci@890
   108
  public:
marci@890
   109
    ConstMap() { }
marci@890
   110
    V operator[](const K&) const { return v; }
marci@890
   111
    void set(const K&, const V&) { }
marci@890
   112
  };
klao@286
   113
klao@286
   114
  /// \c std::map wrapper
klao@286
   115
klao@286
   116
  /// This is essentially a wrapper for \c std::map. With addition that
alpar@987
   117
  /// you can specify a default value different from \c Value() .
klao@286
   118
  ///
klao@286
   119
  /// \todo Provide allocator parameter...
alpar@987
   120
  template <typename K, typename T, typename Compare = std::less<K> >
alpar@987
   121
  class StdMap : public std::map<K,T,Compare> {
alpar@987
   122
    typedef std::map<K,T,Compare> parent;
klao@286
   123
    T v;
klao@286
   124
    typedef typename parent::value_type PairType;
klao@286
   125
klao@286
   126
  public:
alpar@987
   127
    typedef K Key;
alpar@987
   128
    typedef T Value;
alpar@987
   129
    typedef T& Reference;
alpar@987
   130
    typedef const T& ConstReference;
klao@286
   131
klao@286
   132
klao@345
   133
    StdMap() : v() {}
klao@286
   134
    /// Constructor with specified default value
klao@286
   135
    StdMap(const T& _v) : v(_v) {}
klao@286
   136
klao@286
   137
    /// \brief Constructs the map from an appropriate std::map.
klao@286
   138
    ///
klao@286
   139
    /// \warning Inefficient: copies the content of \c m !
klao@286
   140
    StdMap(const parent &m) : parent(m) {}
klao@286
   141
    /// \brief Constructs the map from an appropriate std::map, and explicitly
klao@286
   142
    /// specifies a default value.
klao@286
   143
    ///
klao@286
   144
    /// \warning Inefficient: copies the content of \c m !
klao@286
   145
    StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
klao@286
   146
    
klao@286
   147
    template<typename T1, typename Comp1>
marci@389
   148
    StdMap(const StdMap<Key,T1,Comp1> &m, const T &_v) { 
marci@389
   149
      //FIXME; 
marci@389
   150
    }
klao@286
   151
alpar@987
   152
    Reference operator[](const Key &k) {
klao@346
   153
      return insert(PairType(k,v)).first -> second;
klao@286
   154
    }
alpar@987
   155
    ConstReference operator[](const Key &k) const {
marci@389
   156
      typename parent::iterator i = lower_bound(k);
beckerjc@391
   157
      if (i == parent::end() || parent::key_comp()(k, (*i).first))
klao@286
   158
	return v;
klao@286
   159
      return (*i).second;
klao@286
   160
    }
klao@345
   161
    void set(const Key &k, const T &t) {
klao@346
   162
      parent::operator[](k) = t;
klao@345
   163
    }
klao@286
   164
klao@286
   165
    /// Changes the default value of the map.
klao@286
   166
    /// \return Returns the previous default value.
klao@286
   167
    ///
alpar@805
   168
    /// \warning The value of some keys (which has already been queried, but
klao@286
   169
    /// the value has been unchanged from the default) may change!
klao@286
   170
    T setDefault(const T &_v) { T old=v; v=_v; return old; }
klao@286
   171
klao@286
   172
    template<typename T1>
klao@286
   173
    struct rebind {
klao@286
   174
      typedef StdMap<Key,T1,Compare> other;
klao@286
   175
    };
klao@286
   176
  };
alpar@1041
   177
alpar@1041
   178
alpar@1041
   179
  ///Sum of two maps
alpar@1041
   180
alpar@1041
   181
  ///This \ref concept::ReadMap "read only map" returns the sum of the two
alpar@1041
   182
  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
alpar@1041
   183
  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
alpar@1041
   184
alpar@1041
   185
  template<class M1,class M2> 
alpar@1041
   186
  class AddMap
alpar@1041
   187
  {
alpar@1041
   188
    const M1 &m1;
alpar@1041
   189
    const M2 &m2;
alpar@1041
   190
  public:
alpar@1041
   191
    typedef typename M1::Key Key;
alpar@1041
   192
    typedef typename M1::Value Value;
alpar@1041
   193
alpar@1041
   194
    ///Constructor
alpar@1041
   195
alpar@1041
   196
    ///\e
alpar@1041
   197
    ///
alpar@1041
   198
    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
alpar@1044
   199
    Value operator[](Key k) const {return m1[k]+m2[k];}
alpar@1041
   200
  };
alpar@1041
   201
  
alpar@1041
   202
  ///Returns an \ref AddMap class
alpar@1041
   203
alpar@1041
   204
  ///This function just returns an \ref AddMap class.
alpar@1041
   205
  ///\todo How to call these type of functions?
alpar@1041
   206
  ///
alpar@1041
   207
  ///\relates AddMap
alpar@1041
   208
  ///\todo Wrong scope in Doxygen when \c \\relates is used
alpar@1041
   209
  template<class M1,class M2> 
alpar@1041
   210
  inline AddMap<M1,M2> addMap(const M1 &m1,const M2 &m2) 
alpar@1041
   211
  {
alpar@1041
   212
    return AddMap<M1,M2>(m1,m2);
alpar@1041
   213
  }
alpar@1041
   214
alpar@1041
   215
  ///Difference of two maps
alpar@1041
   216
alpar@1041
   217
  ///This \ref concept::ReadMap "read only map" returns the difference
alpar@1041
   218
  ///of the values returned by the two
alpar@1041
   219
  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
alpar@1041
   220
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
alpar@1041
   221
alpar@1041
   222
  template<class M1,class M2> 
alpar@1041
   223
  class SubMap
alpar@1041
   224
  {
alpar@1041
   225
    const M1 &m1;
alpar@1041
   226
    const M2 &m2;
alpar@1041
   227
  public:
alpar@1041
   228
    typedef typename M1::Key Key;
alpar@1041
   229
    typedef typename M1::Value Value;
alpar@1041
   230
alpar@1041
   231
    ///Constructor
alpar@1041
   232
alpar@1041
   233
    ///\e
alpar@1041
   234
    ///
alpar@1041
   235
    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
alpar@1044
   236
    Value operator[](Key k) const {return m1[k]-m2[k];}
alpar@1041
   237
  };
alpar@1041
   238
  
alpar@1041
   239
  ///Returns a \ref SubMap class
alpar@1041
   240
alpar@1041
   241
  ///This function just returns a \ref SubMap class.
alpar@1041
   242
  ///
alpar@1041
   243
  ///\relates SubMap
alpar@1041
   244
  template<class M1,class M2> 
alpar@1041
   245
  inline SubMap<M1,M2> subMap(const M1 &m1,const M2 &m2) 
alpar@1041
   246
  {
alpar@1041
   247
    return SubMap<M1,M2>(m1,m2);
alpar@1041
   248
  }
alpar@1041
   249
alpar@1041
   250
  ///Product of two maps
alpar@1041
   251
alpar@1041
   252
  ///This \ref concept::ReadMap "read only map" returns the product of the
alpar@1041
   253
  ///values returned by the two
alpar@1041
   254
  ///given
alpar@1041
   255
  ///maps. Its \c Key and \c Value will be inherited from \c M1.
alpar@1041
   256
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
alpar@1041
   257
alpar@1041
   258
  template<class M1,class M2> 
alpar@1041
   259
  class MulMap
alpar@1041
   260
  {
alpar@1041
   261
    const M1 &m1;
alpar@1041
   262
    const M2 &m2;
alpar@1041
   263
  public:
alpar@1041
   264
    typedef typename M1::Key Key;
alpar@1041
   265
    typedef typename M1::Value Value;
alpar@1041
   266
alpar@1041
   267
    ///Constructor
alpar@1041
   268
alpar@1041
   269
    ///\e
alpar@1041
   270
    ///
alpar@1041
   271
    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
alpar@1044
   272
    Value operator[](Key k) const {return m1[k]*m2[k];}
alpar@1041
   273
  };
alpar@1041
   274
  
alpar@1041
   275
  ///Returns a \ref MulMap class
alpar@1041
   276
alpar@1041
   277
  ///This function just returns a \ref MulMap class.
alpar@1041
   278
  ///\relates MulMap
alpar@1041
   279
  template<class M1,class M2> 
alpar@1041
   280
  inline MulMap<M1,M2> mulMap(const M1 &m1,const M2 &m2) 
alpar@1041
   281
  {
alpar@1041
   282
    return MulMap<M1,M2>(m1,m2);
alpar@1041
   283
  }
alpar@1041
   284
 
alpar@1041
   285
  ///Quotient of two maps
alpar@1041
   286
alpar@1041
   287
  ///This \ref concept::ReadMap "read only map" returns the quotient of the
alpar@1041
   288
  ///values returned by the two
alpar@1041
   289
  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
alpar@1041
   290
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
alpar@1041
   291
alpar@1041
   292
  template<class M1,class M2> 
alpar@1041
   293
  class DivMap
alpar@1041
   294
  {
alpar@1041
   295
    const M1 &m1;
alpar@1041
   296
    const M2 &m2;
alpar@1041
   297
  public:
alpar@1041
   298
    typedef typename M1::Key Key;
alpar@1041
   299
    typedef typename M1::Value Value;
alpar@1041
   300
alpar@1041
   301
    ///Constructor
alpar@1041
   302
alpar@1041
   303
    ///\e
alpar@1041
   304
    ///
alpar@1041
   305
    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
alpar@1044
   306
    Value operator[](Key k) const {return m1[k]/m2[k];}
alpar@1041
   307
  };
alpar@1041
   308
  
alpar@1041
   309
  ///Returns a \ref DivMap class
alpar@1041
   310
alpar@1041
   311
  ///This function just returns a \ref DivMap class.
alpar@1041
   312
  ///\relates DivMap
alpar@1041
   313
  template<class M1,class M2> 
alpar@1041
   314
  inline DivMap<M1,M2> divMap(const M1 &m1,const M2 &m2) 
alpar@1041
   315
  {
alpar@1041
   316
    return DivMap<M1,M2>(m1,m2);
alpar@1041
   317
  }
alpar@1041
   318
  
alpar@1041
   319
  ///Composition of two maps
alpar@1041
   320
alpar@1041
   321
  ///This \ref concept::ReadMap "read only map" returns the composition of
alpar@1041
   322
  ///two
alpar@1041
   323
  ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
alpar@1041
   324
  ///of \c M2,
alpar@1041
   325
  ///then for
alpar@1041
   326
  ///\code
alpar@1041
   327
  ///  ComposeMap<M1,M2> cm(m1,m2);
alpar@1041
   328
  ///\endcode
alpar@1044
   329
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
alpar@1041
   330
  ///
alpar@1041
   331
  ///Its \c Key is inherited from \c M2 and its \c Value is from
alpar@1041
   332
  ///\c M1.
alpar@1041
   333
  ///The \c M2::Value must be convertible to \c M1::Key.
alpar@1041
   334
  ///\todo Check the requirements.
alpar@1041
   335
alpar@1041
   336
  template<class M1,class M2> 
alpar@1041
   337
  class ComposeMap
alpar@1041
   338
  {
alpar@1041
   339
    const M1 &m1;
alpar@1041
   340
    const M2 &m2;
alpar@1041
   341
  public:
alpar@1041
   342
    typedef typename M2::Key Key;
alpar@1041
   343
    typedef typename M1::Value Value;
alpar@1041
   344
alpar@1041
   345
    ///Constructor
alpar@1041
   346
alpar@1041
   347
    ///\e
alpar@1041
   348
    ///
alpar@1041
   349
    ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
alpar@1044
   350
    Value operator[](Key k) const {return m1[m2[k]];}
alpar@1041
   351
  };
alpar@1041
   352
  
alpar@1041
   353
  ///Returns a \ref ComposeMap class
alpar@1041
   354
alpar@1041
   355
  ///This function just returns a \ref ComposeMap class.
alpar@1041
   356
  ///\relates ComposeMap
alpar@1041
   357
  template<class M1,class M2> 
alpar@1041
   358
  inline ComposeMap<M1,M2> composeMap(const M1 &m1,const M2 &m2) 
alpar@1041
   359
  {
alpar@1041
   360
    return ComposeMap<M1,M2>(m1,m2);
alpar@1041
   361
  }
alpar@1041
   362
alpar@1041
   363
  ///Negative value of a map
alpar@1041
   364
alpar@1041
   365
  ///This \ref concept::ReadMap "read only map" returns the negative
alpar@1041
   366
  ///value of the
alpar@1041
   367
  ///value returned by the
alpar@1041
   368
  ///given map. Its \c Key and \c Value will be inherited from \c M.
alpar@1041
   369
  ///The unary \c - operator must be defined for \c Value, of course.
alpar@1041
   370
alpar@1041
   371
  template<class M> 
alpar@1041
   372
  class NegMap
alpar@1041
   373
  {
alpar@1041
   374
    const M &m;
alpar@1041
   375
  public:
alpar@1041
   376
    typedef typename M::Key Key;
alpar@1041
   377
    typedef typename M::Value Value;
alpar@1041
   378
alpar@1041
   379
    ///Constructor
alpar@1041
   380
alpar@1041
   381
    ///\e
alpar@1041
   382
    ///
alpar@1041
   383
    NegMap(const M &_m) : m(_m) {};
alpar@1044
   384
    Value operator[](Key k) const {return -m[k];}
alpar@1041
   385
  };
alpar@1041
   386
  
alpar@1041
   387
  ///Returns a \ref NegMap class
alpar@1041
   388
alpar@1041
   389
  ///This function just returns a \ref NegMap class.
alpar@1041
   390
  ///\relates NegMap
alpar@1041
   391
  template<class M> 
alpar@1041
   392
  inline NegMap<M> negMap(const M &m) 
alpar@1041
   393
  {
alpar@1041
   394
    return NegMap<M>(m);
alpar@1041
   395
  }
alpar@1041
   396
alpar@1041
   397
alpar@1041
   398
  ///Absolute value of a map
alpar@1041
   399
alpar@1041
   400
  ///This \ref concept::ReadMap "read only map" returns the absolute value
alpar@1041
   401
  ///of the
alpar@1041
   402
  ///value returned by the
alpar@1044
   403
  ///given map. Its \c Key and \c Value will be inherited
alpar@1044
   404
  ///from <tt>M</tt>. <tt>Value</tt>
alpar@1044
   405
  ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
alpar@1044
   406
  ///operator must be defined for it, of course.
alpar@1044
   407
  ///
alpar@1044
   408
  ///\bug We need a unified way to handle the situation below:
alpar@1044
   409
  ///\code
alpar@1044
   410
  ///  struct _UnConvertible {};
alpar@1044
   411
  ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
alpar@1044
   412
  ///  template<> inline int t_abs<>(int n) {return abs(n);}
alpar@1044
   413
  ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
alpar@1044
   414
  ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
alpar@1044
   415
  ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
alpar@1044
   416
  ///  template<> inline double t_abs<>(double n) {return fabs(n);}
alpar@1044
   417
  ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
alpar@1044
   418
  ///\endcode
alpar@1044
   419
  
alpar@1041
   420
alpar@1041
   421
  template<class M> 
alpar@1041
   422
  class AbsMap
alpar@1041
   423
  {
alpar@1041
   424
    const M &m;
alpar@1041
   425
  public:
alpar@1041
   426
    typedef typename M::Key Key;
alpar@1041
   427
    typedef typename M::Value Value;
alpar@1041
   428
alpar@1041
   429
    ///Constructor
alpar@1041
   430
alpar@1041
   431
    ///\e
alpar@1041
   432
    ///
alpar@1041
   433
    AbsMap(const M &_m) : m(_m) {};
alpar@1044
   434
    Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;}
alpar@1041
   435
  };
alpar@1041
   436
  
alpar@1041
   437
  ///Returns a \ref AbsMap class
alpar@1041
   438
alpar@1041
   439
  ///This function just returns a \ref AbsMap class.
alpar@1041
   440
  ///\relates AbsMap
alpar@1041
   441
  template<class M> 
alpar@1041
   442
  inline AbsMap<M> absMap(const M &m) 
alpar@1041
   443
  {
alpar@1041
   444
    return AbsMap<M>(m);
alpar@1041
   445
  }
alpar@1041
   446
alpar@1041
   447
  /// @}
klao@286
   448
  
klao@286
   449
}
alpar@1041
   450
alpar@1041
   451
alpar@921
   452
#endif // LEMON_MAPS_H