deba@1724
|
1 |
/* -*- C++ -*-
|
deba@1724
|
2 |
* lemon/linear_heap.h - Part of LEMON, a generic C++ optimization library
|
deba@1724
|
3 |
*
|
deba@1724
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@1724
|
5 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@1724
|
6 |
*
|
deba@1724
|
7 |
* Permission to use, modify and distribute this software is granted
|
deba@1724
|
8 |
* provided that this copyright notice appears in all copies. For
|
deba@1724
|
9 |
* precise terms see the accompanying LICENSE file.
|
deba@1724
|
10 |
*
|
deba@1724
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@1724
|
12 |
* express or implied, and with no claim as to its suitability for any
|
deba@1724
|
13 |
* purpose.
|
deba@1724
|
14 |
*
|
deba@1724
|
15 |
*/
|
deba@1724
|
16 |
|
deba@1724
|
17 |
#ifndef LEMON_LINEAR_HEAP_H
|
deba@1724
|
18 |
#define LEMON_LINEAR_HEAP_H
|
deba@1724
|
19 |
|
deba@1724
|
20 |
///\ingroup auxdat
|
deba@1724
|
21 |
///\file
|
deba@1724
|
22 |
///\brief Binary Heap implementation.
|
deba@1724
|
23 |
|
deba@1724
|
24 |
#include <vector>
|
deba@1724
|
25 |
#include <utility>
|
deba@1724
|
26 |
#include <functional>
|
deba@1724
|
27 |
|
deba@1724
|
28 |
namespace lemon {
|
deba@1724
|
29 |
|
deba@1834
|
30 |
/// \ingroup auxdat
|
deba@1724
|
31 |
|
deba@1724
|
32 |
/// \brief A Linear Heap implementation.
|
deba@1724
|
33 |
///
|
deba@1724
|
34 |
/// This class implements the \e linear \e heap data structure. A \e heap
|
deba@1724
|
35 |
/// is a data structure for storing items with specified values called \e
|
deba@1724
|
36 |
/// priorities in such a way that finding the item with minimum priority is
|
deba@1724
|
37 |
/// efficient. The linear heap is very simple implementation, it can store
|
deba@1724
|
38 |
/// only integer priorities and it stores for each priority in the [0..C]
|
deba@1724
|
39 |
/// range a list of items. So it should be used only when the priorities
|
deba@1724
|
40 |
/// are small. It is not intended to use as dijkstra heap.
|
deba@1724
|
41 |
///
|
deba@1724
|
42 |
/// \param _Item Type of the items to be stored.
|
deba@1724
|
43 |
/// \param _ItemIntMap A read and writable Item int map, used internally
|
deba@1724
|
44 |
/// to handle the cross references.
|
deba@1724
|
45 |
/// \param minimize If the given parameter is true then the heap gives back
|
deba@1724
|
46 |
/// the lowest priority.
|
deba@1724
|
47 |
template <typename _Item, typename _ItemIntMap, bool minimize = true >
|
deba@1724
|
48 |
class LinearHeap {
|
deba@1724
|
49 |
|
deba@1724
|
50 |
public:
|
deba@1724
|
51 |
typedef _Item Item;
|
deba@1724
|
52 |
typedef int Prio;
|
deba@1724
|
53 |
typedef std::pair<Item, Prio> Pair;
|
deba@1724
|
54 |
typedef _ItemIntMap ItemIntMap;
|
deba@1724
|
55 |
|
deba@1724
|
56 |
/// \brief Type to represent the items states.
|
deba@1724
|
57 |
///
|
deba@1724
|
58 |
/// Each Item element have a state associated to it. It may be "in heap",
|
deba@1724
|
59 |
/// "pre heap" or "post heap". The latter two are indifferent from the
|
deba@1724
|
60 |
/// heap's point of view, but may be useful to the user.
|
deba@1724
|
61 |
///
|
deba@1724
|
62 |
/// The ItemIntMap \e should be initialized in such way that it maps
|
deba@1724
|
63 |
/// PRE_HEAP (-1) to any element to be put in the heap...
|
deba@1724
|
64 |
enum state_enum {
|
deba@1724
|
65 |
IN_HEAP = 0,
|
deba@1724
|
66 |
PRE_HEAP = -1,
|
deba@1724
|
67 |
POST_HEAP = -2
|
deba@1724
|
68 |
};
|
deba@1724
|
69 |
|
deba@1724
|
70 |
public:
|
deba@1724
|
71 |
/// \brief The constructor.
|
deba@1724
|
72 |
///
|
deba@1724
|
73 |
/// The constructor.
|
deba@1724
|
74 |
/// \param _index should be given to the constructor, since it is used
|
deba@1724
|
75 |
/// internally to handle the cross references. The value of the map
|
deba@1724
|
76 |
/// should be PRE_HEAP (-1) for each element.
|
deba@1724
|
77 |
explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
|
deba@1724
|
78 |
|
deba@1724
|
79 |
/// The number of items stored in the heap.
|
deba@1724
|
80 |
///
|
deba@1724
|
81 |
/// \brief Returns the number of items stored in the heap.
|
deba@1724
|
82 |
int size() const { return data.size(); }
|
deba@1724
|
83 |
|
deba@1724
|
84 |
/// \brief Checks if the heap stores no items.
|
deba@1724
|
85 |
///
|
deba@1724
|
86 |
/// Returns \c true if and only if the heap stores no items.
|
deba@1724
|
87 |
bool empty() const { return data.empty(); }
|
deba@1724
|
88 |
|
deba@1724
|
89 |
/// \brief Make empty this heap.
|
deba@1724
|
90 |
///
|
deba@1724
|
91 |
/// Make empty this heap.
|
deba@1724
|
92 |
void clear() {
|
deba@1724
|
93 |
for (int i = 0; i < (int)data.size(); ++i) {
|
deba@1724
|
94 |
index[data[i].item] = -2;
|
deba@1724
|
95 |
}
|
deba@1724
|
96 |
data.clear(); first.clear(); minimal = 0;
|
deba@1724
|
97 |
}
|
deba@1724
|
98 |
|
deba@1724
|
99 |
private:
|
deba@1724
|
100 |
|
deba@1724
|
101 |
void relocate_last(int idx) {
|
deba@1724
|
102 |
if (idx + 1 < (int)data.size()) {
|
deba@1724
|
103 |
data[idx] = data.back();
|
deba@1724
|
104 |
if (data[idx].prev != -1) {
|
deba@1724
|
105 |
data[data[idx].prev].next = idx;
|
deba@1724
|
106 |
} else {
|
deba@1724
|
107 |
first[data[idx].value] = idx;
|
deba@1724
|
108 |
}
|
deba@1724
|
109 |
if (data[idx].next != -1) {
|
deba@1724
|
110 |
data[data[idx].next].prev = idx;
|
deba@1724
|
111 |
}
|
deba@1724
|
112 |
index[data[idx].item] = idx;
|
deba@1724
|
113 |
}
|
deba@1724
|
114 |
data.pop_back();
|
deba@1724
|
115 |
}
|
deba@1724
|
116 |
|
deba@1724
|
117 |
void unlace(int idx) {
|
deba@1724
|
118 |
if (data[idx].prev != -1) {
|
deba@1724
|
119 |
data[data[idx].prev].next = data[idx].next;
|
deba@1724
|
120 |
} else {
|
deba@1724
|
121 |
first[data[idx].value] = data[idx].next;
|
deba@1724
|
122 |
}
|
deba@1724
|
123 |
if (data[idx].next != -1) {
|
deba@1724
|
124 |
data[data[idx].next].prev = data[idx].prev;
|
deba@1724
|
125 |
}
|
deba@1724
|
126 |
}
|
deba@1724
|
127 |
|
deba@1724
|
128 |
void lace(int idx) {
|
deba@1724
|
129 |
if ((int)first.size() <= data[idx].value) {
|
deba@1724
|
130 |
first.resize(data[idx].value + 1, -1);
|
deba@1724
|
131 |
}
|
deba@1724
|
132 |
data[idx].next = first[data[idx].value];
|
deba@1724
|
133 |
if (data[idx].next != -1) {
|
deba@1724
|
134 |
data[data[idx].next].prev = idx;
|
deba@1724
|
135 |
}
|
deba@1724
|
136 |
first[data[idx].value] = idx;
|
deba@1724
|
137 |
data[idx].prev = -1;
|
deba@1724
|
138 |
}
|
deba@1724
|
139 |
|
deba@1724
|
140 |
public:
|
deba@1724
|
141 |
/// \brief Insert a pair of item and priority into the heap.
|
deba@1724
|
142 |
///
|
deba@1724
|
143 |
/// Adds \c p.first to the heap with priority \c p.second.
|
deba@1724
|
144 |
/// \param p The pair to insert.
|
deba@1724
|
145 |
void push(const Pair& p) {
|
deba@1724
|
146 |
push(p.first, p.second);
|
deba@1724
|
147 |
}
|
deba@1724
|
148 |
|
deba@1724
|
149 |
/// \brief Insert an item into the heap with the given priority.
|
deba@1724
|
150 |
///
|
deba@1724
|
151 |
/// Adds \c i to the heap with priority \c p.
|
deba@1724
|
152 |
/// \param i The item to insert.
|
deba@1724
|
153 |
/// \param p The priority of the item.
|
deba@1724
|
154 |
void push(const Item &i, const Prio &p) {
|
deba@1724
|
155 |
int idx = data.size();
|
deba@1724
|
156 |
index[i] = idx;
|
deba@1724
|
157 |
data.push_back(LinearItem(i, p));
|
deba@1724
|
158 |
lace(idx);
|
deba@1724
|
159 |
if (p < minimal) {
|
deba@1724
|
160 |
minimal = p;
|
deba@1724
|
161 |
}
|
deba@1724
|
162 |
}
|
deba@1724
|
163 |
|
deba@1758
|
164 |
/// \brief Returns the item with minimum priority.
|
deba@1724
|
165 |
///
|
deba@1758
|
166 |
/// This method returns the item with minimum priority.
|
deba@1724
|
167 |
/// \pre The heap must be nonempty.
|
deba@1724
|
168 |
Item top() const {
|
deba@1724
|
169 |
while (first[minimal] == -1) {
|
deba@1724
|
170 |
++minimal;
|
deba@1724
|
171 |
}
|
deba@1724
|
172 |
return data[first[minimal]].item;
|
deba@1724
|
173 |
}
|
deba@1724
|
174 |
|
deba@1758
|
175 |
/// \brief Returns the minimum priority.
|
deba@1724
|
176 |
///
|
deba@1758
|
177 |
/// It returns the minimum priority.
|
deba@1724
|
178 |
/// \pre The heap must be nonempty.
|
deba@1724
|
179 |
Prio prio() const {
|
deba@1724
|
180 |
while (first[minimal] == -1) {
|
deba@1724
|
181 |
++minimal;
|
deba@1724
|
182 |
}
|
deba@1724
|
183 |
return minimal;
|
deba@1724
|
184 |
}
|
deba@1724
|
185 |
|
deba@1758
|
186 |
/// \brief Deletes the item with minimum priority.
|
deba@1724
|
187 |
///
|
deba@1758
|
188 |
/// This method deletes the item with minimum priority from the heap.
|
deba@1724
|
189 |
/// \pre The heap must be non-empty.
|
deba@1724
|
190 |
void pop() {
|
deba@1724
|
191 |
while (first[minimal] == -1) {
|
deba@1724
|
192 |
++minimal;
|
deba@1724
|
193 |
}
|
deba@1724
|
194 |
int idx = first[minimal];
|
deba@1724
|
195 |
index[data[idx].item] = -2;
|
deba@1724
|
196 |
unlace(idx);
|
deba@1724
|
197 |
relocate_last(idx);
|
deba@1724
|
198 |
}
|
deba@1724
|
199 |
|
deba@1724
|
200 |
/// \brief Deletes \c i from the heap.
|
deba@1724
|
201 |
///
|
deba@1724
|
202 |
/// This method deletes item \c i from the heap, if \c i was
|
deba@1724
|
203 |
/// already stored in the heap.
|
deba@1724
|
204 |
/// \param i The item to erase.
|
deba@1724
|
205 |
void erase(const Item &i) {
|
deba@1724
|
206 |
int idx = index[i];
|
deba@1724
|
207 |
index[data[idx].item] = -2;
|
deba@1724
|
208 |
unlace(idx);
|
deba@1724
|
209 |
relocate_last(idx);
|
deba@1724
|
210 |
}
|
deba@1724
|
211 |
|
deba@1724
|
212 |
|
deba@1724
|
213 |
/// \brief Returns the priority of \c i.
|
deba@1724
|
214 |
///
|
deba@1724
|
215 |
/// This function returns the priority of item \c i.
|
deba@1724
|
216 |
/// \pre \c i must be in the heap.
|
deba@1724
|
217 |
/// \param i The item.
|
deba@1724
|
218 |
Prio operator[](const Item &i) const {
|
deba@1724
|
219 |
int idx = index[i];
|
deba@1724
|
220 |
return data[idx].value;
|
deba@1724
|
221 |
}
|
deba@1724
|
222 |
|
deba@1724
|
223 |
/// \brief \c i gets to the heap with priority \c p independently
|
deba@1724
|
224 |
/// if \c i was already there.
|
deba@1724
|
225 |
///
|
deba@1724
|
226 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored
|
deba@1724
|
227 |
/// in the heap and sets the priority of \c i to \c p otherwise.
|
deba@1724
|
228 |
/// \param i The item.
|
deba@1724
|
229 |
/// \param p The priority.
|
deba@1724
|
230 |
void set(const Item &i, const Prio &p) {
|
deba@1724
|
231 |
int idx = index[i];
|
deba@1724
|
232 |
if (idx < 0) {
|
deba@1724
|
233 |
push(i,p);
|
deba@1724
|
234 |
} else if (p > data[idx].value) {
|
deba@1724
|
235 |
increase(i, p);
|
deba@1724
|
236 |
} else {
|
deba@1724
|
237 |
decrease(i, p);
|
deba@1724
|
238 |
}
|
deba@1724
|
239 |
}
|
deba@1724
|
240 |
|
deba@1724
|
241 |
/// \brief Decreases the priority of \c i to \c p.
|
deba@1724
|
242 |
|
deba@1724
|
243 |
/// This method decreases the priority of item \c i to \c p.
|
deba@1724
|
244 |
/// \pre \c i must be stored in the heap with priority at least \c
|
deba@1724
|
245 |
/// p relative to \c Compare.
|
deba@1724
|
246 |
/// \param i The item.
|
deba@1724
|
247 |
/// \param p The priority.
|
deba@1724
|
248 |
void decrease(const Item &i, const Prio &p) {
|
deba@1724
|
249 |
int idx = index[i];
|
deba@1724
|
250 |
unlace(idx);
|
deba@1724
|
251 |
data[idx].value = p;
|
deba@1724
|
252 |
if (p < minimal) {
|
deba@1724
|
253 |
minimal = p;
|
deba@1724
|
254 |
}
|
deba@1724
|
255 |
lace(idx);
|
deba@1724
|
256 |
}
|
deba@1724
|
257 |
|
deba@1724
|
258 |
/// \brief Increases the priority of \c i to \c p.
|
deba@1724
|
259 |
///
|
deba@1724
|
260 |
/// This method sets the priority of item \c i to \c p.
|
deba@1724
|
261 |
/// \pre \c i must be stored in the heap with priority at most \c
|
deba@1724
|
262 |
/// p relative to \c Compare.
|
deba@1724
|
263 |
/// \param i The item.
|
deba@1724
|
264 |
/// \param p The priority.
|
deba@1724
|
265 |
void increase(const Item &i, const Prio &p) {
|
deba@1724
|
266 |
int idx = index[i];
|
deba@1724
|
267 |
unlace(idx);
|
deba@1724
|
268 |
data[idx].value = p;
|
deba@1724
|
269 |
lace(idx);
|
deba@1724
|
270 |
}
|
deba@1724
|
271 |
|
deba@1724
|
272 |
/// \brief Returns if \c item is in, has already been in, or has
|
deba@1724
|
273 |
/// never been in the heap.
|
deba@1724
|
274 |
///
|
deba@1724
|
275 |
/// This method returns PRE_HEAP if \c item has never been in the
|
deba@1724
|
276 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
|
deba@1724
|
277 |
/// otherwise. In the latter case it is possible that \c item will
|
deba@1724
|
278 |
/// get back to the heap again.
|
deba@1724
|
279 |
/// \param i The item.
|
deba@1724
|
280 |
state_enum state(const Item &i) const {
|
deba@1724
|
281 |
int idx = index[i];
|
deba@1724
|
282 |
if (idx >= 0) idx = 0;
|
deba@1724
|
283 |
return state_enum(idx);
|
deba@1724
|
284 |
}
|
deba@1724
|
285 |
|
deba@1724
|
286 |
private:
|
deba@1724
|
287 |
|
deba@1724
|
288 |
struct LinearItem {
|
deba@1724
|
289 |
LinearItem(const Item& _item, int _value)
|
deba@1724
|
290 |
: item(_item), value(_value) {}
|
deba@1724
|
291 |
|
deba@1724
|
292 |
Item item;
|
deba@1724
|
293 |
int value;
|
deba@1724
|
294 |
|
deba@1724
|
295 |
int prev, next;
|
deba@1724
|
296 |
};
|
deba@1724
|
297 |
|
deba@1724
|
298 |
ItemIntMap& index;
|
deba@1724
|
299 |
std::vector<int> first;
|
deba@1724
|
300 |
std::vector<LinearItem> data;
|
deba@1724
|
301 |
mutable int minimal;
|
deba@1724
|
302 |
|
deba@1724
|
303 |
}; // class LinearHeap
|
deba@1724
|
304 |
|
deba@1724
|
305 |
|
deba@1724
|
306 |
template <typename _Item, typename _ItemIntMap>
|
deba@1724
|
307 |
class LinearHeap<_Item, _ItemIntMap, false> {
|
deba@1724
|
308 |
|
deba@1724
|
309 |
public:
|
deba@1724
|
310 |
typedef _Item Item;
|
deba@1724
|
311 |
typedef int Prio;
|
deba@1724
|
312 |
typedef std::pair<Item, Prio> Pair;
|
deba@1724
|
313 |
typedef _ItemIntMap ItemIntMap;
|
deba@1724
|
314 |
|
deba@1724
|
315 |
enum state_enum {
|
deba@1724
|
316 |
IN_HEAP = 0,
|
deba@1724
|
317 |
PRE_HEAP = -1,
|
deba@1724
|
318 |
POST_HEAP = -2
|
deba@1724
|
319 |
};
|
deba@1724
|
320 |
|
deba@1724
|
321 |
public:
|
deba@1724
|
322 |
|
deba@1724
|
323 |
explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
|
deba@1724
|
324 |
|
deba@1724
|
325 |
int size() const { return data.size(); }
|
deba@1724
|
326 |
bool empty() const { return data.empty(); }
|
deba@1724
|
327 |
|
deba@1724
|
328 |
void clear() {
|
deba@1724
|
329 |
for (int i = 0; i < (int)data.size(); ++i) {
|
deba@1724
|
330 |
index[data[i].item] = -2;
|
deba@1724
|
331 |
}
|
deba@1724
|
332 |
data.clear(); first.clear(); maximal = -1;
|
deba@1724
|
333 |
}
|
deba@1724
|
334 |
|
deba@1724
|
335 |
private:
|
deba@1724
|
336 |
|
deba@1724
|
337 |
void relocate_last(int idx) {
|
deba@1724
|
338 |
if (idx + 1 != (int)data.size()) {
|
deba@1724
|
339 |
data[idx] = data.back();
|
deba@1724
|
340 |
if (data[idx].prev != -1) {
|
deba@1724
|
341 |
data[data[idx].prev].next = idx;
|
deba@1724
|
342 |
} else {
|
deba@1724
|
343 |
first[data[idx].value] = idx;
|
deba@1724
|
344 |
}
|
deba@1724
|
345 |
if (data[idx].next != -1) {
|
deba@1724
|
346 |
data[data[idx].next].prev = idx;
|
deba@1724
|
347 |
}
|
deba@1724
|
348 |
index[data[idx].item] = idx;
|
deba@1724
|
349 |
}
|
deba@1724
|
350 |
data.pop_back();
|
deba@1724
|
351 |
}
|
deba@1724
|
352 |
|
deba@1724
|
353 |
void unlace(int idx) {
|
deba@1724
|
354 |
if (data[idx].prev != -1) {
|
deba@1724
|
355 |
data[data[idx].prev].next = data[idx].next;
|
deba@1724
|
356 |
} else {
|
deba@1724
|
357 |
first[data[idx].value] = data[idx].next;
|
deba@1724
|
358 |
}
|
deba@1724
|
359 |
if (data[idx].next != -1) {
|
deba@1724
|
360 |
data[data[idx].next].prev = data[idx].prev;
|
deba@1724
|
361 |
}
|
deba@1724
|
362 |
}
|
deba@1724
|
363 |
|
deba@1724
|
364 |
void lace(int idx) {
|
deba@1724
|
365 |
if ((int)first.size() <= data[idx].value) {
|
deba@1724
|
366 |
first.resize(data[idx].value + 1, -1);
|
deba@1724
|
367 |
}
|
deba@1724
|
368 |
data[idx].next = first[data[idx].value];
|
deba@1724
|
369 |
if (data[idx].next != -1) {
|
deba@1724
|
370 |
data[data[idx].next].prev = idx;
|
deba@1724
|
371 |
}
|
deba@1724
|
372 |
first[data[idx].value] = idx;
|
deba@1724
|
373 |
data[idx].prev = -1;
|
deba@1724
|
374 |
}
|
deba@1724
|
375 |
|
deba@1724
|
376 |
public:
|
deba@1724
|
377 |
|
deba@1724
|
378 |
void push(const Pair& p) {
|
deba@1724
|
379 |
push(p.first, p.second);
|
deba@1724
|
380 |
}
|
deba@1724
|
381 |
|
deba@1724
|
382 |
void push(const Item &i, const Prio &p) {
|
deba@1724
|
383 |
int idx = data.size();
|
deba@1724
|
384 |
index[i] = idx;
|
deba@1724
|
385 |
data.push_back(LinearItem(i, p));
|
deba@1724
|
386 |
lace(idx);
|
deba@1724
|
387 |
if (data[idx].value > maximal) {
|
deba@1724
|
388 |
maximal = data[idx].value;
|
deba@1724
|
389 |
}
|
deba@1724
|
390 |
}
|
deba@1724
|
391 |
|
deba@1724
|
392 |
Item top() const {
|
deba@1724
|
393 |
while (first[maximal] == -1) {
|
deba@1724
|
394 |
--maximal;
|
deba@1724
|
395 |
}
|
deba@1724
|
396 |
return data[first[maximal]].item;
|
deba@1724
|
397 |
}
|
deba@1724
|
398 |
|
deba@1724
|
399 |
Prio prio() const {
|
deba@1724
|
400 |
while (first[maximal] == -1) {
|
deba@1724
|
401 |
--maximal;
|
deba@1724
|
402 |
}
|
deba@1724
|
403 |
return maximal;
|
deba@1724
|
404 |
}
|
deba@1724
|
405 |
|
deba@1724
|
406 |
void pop() {
|
deba@1724
|
407 |
while (first[maximal] == -1) {
|
deba@1724
|
408 |
--maximal;
|
deba@1724
|
409 |
}
|
deba@1724
|
410 |
int idx = first[maximal];
|
deba@1724
|
411 |
index[data[idx].item] = -2;
|
deba@1724
|
412 |
unlace(idx);
|
deba@1724
|
413 |
relocate_last(idx);
|
deba@1724
|
414 |
}
|
deba@1724
|
415 |
|
deba@1724
|
416 |
void erase(const Item &i) {
|
deba@1724
|
417 |
int idx = index[i];
|
deba@1724
|
418 |
index[data[idx].item] = -2;
|
deba@1724
|
419 |
unlace(idx);
|
deba@1724
|
420 |
relocate_last(idx);
|
deba@1724
|
421 |
}
|
deba@1724
|
422 |
|
deba@1724
|
423 |
Prio operator[](const Item &i) const {
|
deba@1724
|
424 |
int idx = index[i];
|
deba@1724
|
425 |
return data[idx].value;
|
deba@1724
|
426 |
}
|
deba@1724
|
427 |
|
deba@1724
|
428 |
void set(const Item &i, const Prio &p) {
|
deba@1724
|
429 |
int idx = index[i];
|
deba@1724
|
430 |
if (idx < 0) {
|
deba@1724
|
431 |
push(i,p);
|
deba@1724
|
432 |
} else if (p > data[idx].value) {
|
deba@1724
|
433 |
decrease(i, p);
|
deba@1724
|
434 |
} else {
|
deba@1724
|
435 |
increase(i, p);
|
deba@1724
|
436 |
}
|
deba@1724
|
437 |
}
|
deba@1724
|
438 |
|
deba@1724
|
439 |
void decrease(const Item &i, const Prio &p) {
|
deba@1724
|
440 |
int idx = index[i];
|
deba@1724
|
441 |
unlace(idx);
|
deba@1724
|
442 |
data[idx].value = p;
|
deba@1724
|
443 |
if (p > maximal) {
|
deba@1724
|
444 |
maximal = p;
|
deba@1724
|
445 |
}
|
deba@1724
|
446 |
lace(idx);
|
deba@1724
|
447 |
}
|
deba@1724
|
448 |
|
deba@1724
|
449 |
void increase(const Item &i, const Prio &p) {
|
deba@1724
|
450 |
int idx = index[i];
|
deba@1724
|
451 |
unlace(idx);
|
deba@1724
|
452 |
data[idx].value = p;
|
deba@1724
|
453 |
lace(idx);
|
deba@1724
|
454 |
}
|
deba@1724
|
455 |
|
deba@1724
|
456 |
state_enum state(const Item &i) const {
|
deba@1724
|
457 |
int idx = index[i];
|
deba@1724
|
458 |
if (idx >= 0) idx = 0;
|
deba@1724
|
459 |
return state_enum(idx);
|
deba@1724
|
460 |
}
|
deba@1724
|
461 |
|
deba@1724
|
462 |
private:
|
deba@1724
|
463 |
|
deba@1724
|
464 |
struct LinearItem {
|
deba@1724
|
465 |
LinearItem(const Item& _item, int _value)
|
deba@1724
|
466 |
: item(_item), value(_value) {}
|
deba@1724
|
467 |
|
deba@1724
|
468 |
Item item;
|
deba@1724
|
469 |
int value;
|
deba@1724
|
470 |
|
deba@1724
|
471 |
int prev, next;
|
deba@1724
|
472 |
};
|
deba@1724
|
473 |
|
deba@1724
|
474 |
ItemIntMap& index;
|
deba@1724
|
475 |
std::vector<int> first;
|
deba@1724
|
476 |
std::vector<LinearItem> data;
|
deba@1724
|
477 |
mutable int maximal;
|
deba@1724
|
478 |
|
deba@1724
|
479 |
}; // class LinearHeap
|
deba@1724
|
480 |
|
deba@1724
|
481 |
}
|
deba@1724
|
482 |
|
deba@1724
|
483 |
#endif
|