deba@1912
|
1 |
/* -*- C++ -*-
|
deba@1912
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@1912
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@1912
|
8 |
*
|
deba@1912
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@1912
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@1912
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@1912
|
12 |
*
|
deba@1912
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@1912
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@1912
|
15 |
* purpose.
|
deba@1912
|
16 |
*
|
deba@1912
|
17 |
*/
|
deba@1912
|
18 |
|
deba@1912
|
19 |
#ifndef LEMON_PRIM_H
|
deba@1912
|
20 |
#define LEMON_PRIM_H
|
deba@1912
|
21 |
|
deba@1912
|
22 |
///\ingroup spantree
|
deba@1912
|
23 |
///\file
|
deba@1912
|
24 |
///\brief Prim algorithm to compute minimum spanning tree.
|
deba@1912
|
25 |
|
deba@1912
|
26 |
#include <lemon/list_graph.h>
|
deba@1912
|
27 |
#include <lemon/bin_heap.h>
|
deba@1993
|
28 |
#include <lemon/bits/invalid.h>
|
deba@1912
|
29 |
#include <lemon/error.h>
|
deba@1912
|
30 |
#include <lemon/maps.h>
|
deba@1993
|
31 |
#include <lemon/bits/traits.h>
|
deba@1912
|
32 |
|
alpar@2260
|
33 |
#include <lemon/concepts/ugraph.h>
|
deba@1912
|
34 |
|
deba@1912
|
35 |
namespace lemon {
|
deba@1912
|
36 |
|
deba@1912
|
37 |
///Default traits class of Prim class.
|
deba@1912
|
38 |
|
deba@1912
|
39 |
///Default traits class of Prim class.
|
deba@1912
|
40 |
///\param GR Graph type.
|
deba@2030
|
41 |
///\param CM Type of cost map.
|
deba@2030
|
42 |
template<class GR, class CM>
|
deba@1912
|
43 |
struct PrimDefaultTraits{
|
deba@1912
|
44 |
///The graph type the algorithm runs on.
|
deba@1912
|
45 |
typedef GR UGraph;
|
deba@1912
|
46 |
///The type of the map that stores the edge costs.
|
deba@1912
|
47 |
|
deba@1912
|
48 |
///The type of the map that stores the edge costs.
|
alpar@2260
|
49 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
deba@2030
|
50 |
typedef CM CostMap;
|
deba@1912
|
51 |
//The type of the cost of the edges.
|
deba@2030
|
52 |
typedef typename CM::Value Value;
|
deba@1912
|
53 |
/// The cross reference type used by heap.
|
deba@1912
|
54 |
|
deba@1912
|
55 |
/// The cross reference type used by heap.
|
deba@1912
|
56 |
/// Usually it is \c UGraph::NodeMap<int>.
|
deba@1912
|
57 |
typedef typename UGraph::template NodeMap<int> HeapCrossRef;
|
deba@1912
|
58 |
///Instantiates a HeapCrossRef.
|
deba@1912
|
59 |
|
deba@1912
|
60 |
///This function instantiates a \ref HeapCrossRef.
|
alpar@1953
|
61 |
/// \param _graph is the graph, to which we would like to define the
|
deba@1912
|
62 |
/// HeapCrossRef.
|
deba@1912
|
63 |
static HeapCrossRef *createHeapCrossRef(const GR &_graph){
|
deba@1912
|
64 |
return new HeapCrossRef(_graph);
|
deba@1912
|
65 |
}
|
deba@1912
|
66 |
|
deba@1912
|
67 |
///The heap type used by Prim algorithm.
|
deba@1912
|
68 |
|
deba@1912
|
69 |
///The heap type used by Prim algorithm.
|
deba@1912
|
70 |
///
|
deba@1912
|
71 |
///\sa BinHeap
|
deba@1912
|
72 |
///\sa Prim
|
mqrelly@2263
|
73 |
typedef BinHeap<typename CM::Value,
|
deba@1912
|
74 |
HeapCrossRef, std::less<Value> > Heap;
|
deba@1912
|
75 |
|
deba@1912
|
76 |
static Heap *createHeap(HeapCrossRef& _ref){
|
deba@1912
|
77 |
return new Heap(_ref);
|
deba@1912
|
78 |
}
|
deba@1912
|
79 |
|
deba@1912
|
80 |
///\brief The type of the map that stores the last
|
deba@1912
|
81 |
///edges of the minimum spanning tree.
|
deba@1912
|
82 |
///
|
deba@1912
|
83 |
///The type of the map that stores the last
|
deba@1912
|
84 |
///edges of the minimum spanning tree.
|
alpar@2260
|
85 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
deba@1912
|
86 |
///
|
deba@1912
|
87 |
typedef typename UGraph::template NodeMap<typename GR::UEdge> PredMap;
|
deba@1912
|
88 |
///Instantiates a PredMap.
|
deba@1912
|
89 |
|
deba@1912
|
90 |
///This function instantiates a \ref PredMap.
|
alpar@1953
|
91 |
///\param _graph is the graph, to which we would like to define the PredMap.
|
deba@1912
|
92 |
static PredMap *createPredMap(const GR &_graph){
|
deba@1912
|
93 |
return new PredMap(_graph);
|
deba@1912
|
94 |
}
|
deba@1912
|
95 |
|
deba@1912
|
96 |
///The type of the map that stores whether an edge is in the
|
deba@1912
|
97 |
///spanning tree or not.
|
deba@1912
|
98 |
|
deba@1912
|
99 |
///The type of the map that stores whether an edge is in the
|
deba@1912
|
100 |
///spanning tree or not.
|
deba@1912
|
101 |
///By default it is a NullMap.
|
deba@1912
|
102 |
typedef NullMap<typename UGraph::UEdge,bool> TreeMap;
|
deba@1912
|
103 |
///Instantiates a TreeMap.
|
deba@1912
|
104 |
|
deba@1912
|
105 |
///This function instantiates a \ref TreeMap.
|
alpar@1953
|
106 |
///
|
alpar@1953
|
107 |
///The first parameter is the graph, to which
|
deba@1912
|
108 |
///we would like to define the \ref TreeMap
|
deba@1912
|
109 |
static TreeMap *createTreeMap(const GR &){
|
deba@1912
|
110 |
return new TreeMap();
|
deba@1912
|
111 |
}
|
deba@1912
|
112 |
|
deba@1912
|
113 |
///The type of the map that stores whether a nodes is processed.
|
deba@1912
|
114 |
|
deba@1912
|
115 |
///The type of the map that stores whether a nodes is processed.
|
alpar@2260
|
116 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
deba@1912
|
117 |
///By default it is a NodeMap<bool>.
|
deba@1912
|
118 |
typedef NullMap<typename UGraph::Node,bool> ProcessedMap;
|
deba@1912
|
119 |
///Instantiates a ProcessedMap.
|
deba@1912
|
120 |
|
deba@1912
|
121 |
///This function instantiates a \ref ProcessedMap.
|
alpar@1953
|
122 |
///\param _graph is the graph, to which
|
deba@1912
|
123 |
///we would like to define the \ref ProcessedMap
|
deba@1912
|
124 |
#ifdef DOXYGEN
|
deba@1912
|
125 |
static ProcessedMap *createProcessedMap(const GR &_graph)
|
deba@1912
|
126 |
#else
|
deba@1912
|
127 |
static ProcessedMap *createProcessedMap(const GR &)
|
deba@1912
|
128 |
#endif
|
deba@1912
|
129 |
{
|
deba@1912
|
130 |
return new ProcessedMap();
|
deba@1912
|
131 |
}
|
deba@1912
|
132 |
};
|
deba@1912
|
133 |
|
deba@1912
|
134 |
///%Prim algorithm class to find a minimum spanning tree.
|
deba@1912
|
135 |
|
deba@1912
|
136 |
/// \ingroup spantree
|
deba@1912
|
137 |
///This class provides an efficient implementation of %Prim algorithm.
|
deba@1912
|
138 |
///
|
deba@2042
|
139 |
///The running time is \f$ O(e\log(n)) \f$ where e is the number of edges and
|
deba@1912
|
140 |
///n is the number of nodes in the graph.
|
deba@1912
|
141 |
///
|
deba@1912
|
142 |
///The edge costs are passed to the algorithm using a
|
alpar@2260
|
143 |
///\ref concepts::ReadMap "ReadMap",
|
deba@1912
|
144 |
///so it is easy to change it to any kind of cost.
|
deba@1912
|
145 |
///
|
deba@1912
|
146 |
///The type of the cost is determined by the
|
alpar@2260
|
147 |
///\ref concepts::ReadMap::Value "Value" of the cost map.
|
deba@1912
|
148 |
///
|
deba@1912
|
149 |
///It is also possible to change the underlying priority heap.
|
deba@1912
|
150 |
///
|
deba@1912
|
151 |
///\param GR The graph type the algorithm runs on. The default value
|
deba@1912
|
152 |
///is \ref ListUGraph. The value of GR is not used directly by
|
deba@1912
|
153 |
///Prim, it is only passed to \ref PrimDefaultTraits.
|
deba@1912
|
154 |
///
|
deba@2030
|
155 |
///\param CM This read-only UEdgeMap determines the costs of the
|
deba@1912
|
156 |
///edges. It is read once for each edge, so the map may involve in
|
deba@1912
|
157 |
///relatively time consuming process to compute the edge cost if
|
deba@1912
|
158 |
///it is necessary. The default map type is \ref
|
alpar@2260
|
159 |
///concepts::UGraph::UEdgeMap "UGraph::UEdgeMap<int>". The value
|
deba@2030
|
160 |
///of CM is not used directly by Prim, it is only passed to \ref
|
deba@1912
|
161 |
///PrimDefaultTraits.
|
deba@1912
|
162 |
///
|
deba@1912
|
163 |
///\param TR Traits class to set
|
deba@1912
|
164 |
///various data types used by the algorithm. The default traits
|
deba@1912
|
165 |
///class is \ref PrimDefaultTraits
|
deba@2030
|
166 |
///"PrimDefaultTraits<GR,CM>". See \ref
|
deba@1912
|
167 |
///PrimDefaultTraits for the documentation of a Prim traits
|
deba@1912
|
168 |
///class.
|
deba@1912
|
169 |
///
|
deba@1912
|
170 |
///\author Balazs Attila Mihaly
|
deba@1912
|
171 |
|
deba@1912
|
172 |
#ifdef DOXYGEN
|
deba@1912
|
173 |
template <typename GR,
|
deba@2030
|
174 |
typename CM,
|
deba@1912
|
175 |
typename TR>
|
deba@1912
|
176 |
#else
|
deba@1912
|
177 |
template <typename GR=ListUGraph,
|
deba@2030
|
178 |
typename CM=typename GR::template UEdgeMap<int>,
|
deba@2030
|
179 |
typename TR=PrimDefaultTraits<GR,CM> >
|
deba@1912
|
180 |
#endif
|
deba@1912
|
181 |
class Prim {
|
deba@1912
|
182 |
public:
|
deba@2030
|
183 |
|
deba@2030
|
184 |
/// \brief \ref Exception for uninitialized parameters.
|
deba@2030
|
185 |
///
|
deba@2030
|
186 |
/// This error represents problems in the initialization
|
deba@2030
|
187 |
/// of the parameters of the algorithms.
|
deba@1912
|
188 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
deba@1912
|
189 |
public:
|
alpar@2151
|
190 |
virtual const char* what() const throw() {
|
deba@1912
|
191 |
return "lemon::Prim::UninitializedParameter";
|
deba@1912
|
192 |
}
|
deba@1912
|
193 |
};
|
deba@1912
|
194 |
|
deba@1912
|
195 |
typedef TR Traits;
|
deba@1912
|
196 |
///The type of the underlying graph.
|
deba@1912
|
197 |
typedef typename TR::UGraph UGraph;
|
deba@1912
|
198 |
///\e
|
deba@1912
|
199 |
typedef typename UGraph::Node Node;
|
deba@1912
|
200 |
///\e
|
deba@1912
|
201 |
typedef typename UGraph::NodeIt NodeIt;
|
deba@1912
|
202 |
///\e
|
deba@1912
|
203 |
typedef typename UGraph::UEdge UEdge;
|
deba@1912
|
204 |
///\e
|
deba@1912
|
205 |
typedef typename UGraph::IncEdgeIt IncEdgeIt;
|
deba@1912
|
206 |
|
deba@1912
|
207 |
///The type of the cost of the edges.
|
deba@1912
|
208 |
typedef typename TR::CostMap::Value Value;
|
deba@1912
|
209 |
///The type of the map that stores the edge costs.
|
deba@1912
|
210 |
typedef typename TR::CostMap CostMap;
|
deba@1912
|
211 |
///\brief The type of the map that stores the last
|
deba@1912
|
212 |
///predecessor edges of the spanning tree.
|
deba@1912
|
213 |
typedef typename TR::PredMap PredMap;
|
deba@1912
|
214 |
///Edges of the spanning tree.
|
deba@1912
|
215 |
typedef typename TR::TreeMap TreeMap;
|
deba@1912
|
216 |
///The type of the map indicating if a node is processed.
|
deba@1912
|
217 |
typedef typename TR::ProcessedMap ProcessedMap;
|
deba@1912
|
218 |
///The cross reference type used for the current heap.
|
deba@1912
|
219 |
typedef typename TR::HeapCrossRef HeapCrossRef;
|
deba@1912
|
220 |
///The heap type used by the prim algorithm.
|
deba@1912
|
221 |
typedef typename TR::Heap Heap;
|
deba@1912
|
222 |
private:
|
deba@1912
|
223 |
/// Pointer to the underlying graph.
|
deba@1912
|
224 |
const UGraph *graph;
|
deba@1912
|
225 |
/// Pointer to the cost map
|
deba@1912
|
226 |
const CostMap *cost;
|
deba@1912
|
227 |
///Pointer to the map of predecessors edges.
|
deba@1912
|
228 |
PredMap *_pred;
|
deba@1912
|
229 |
///Indicates if \ref _pred is locally allocated (\c true) or not.
|
deba@1912
|
230 |
bool local_pred;
|
deba@1912
|
231 |
///Pointer to the map of tree edges.
|
deba@1912
|
232 |
TreeMap *_tree;
|
deba@1912
|
233 |
///Indicates if \ref _tree is locally allocated (\c true) or not.
|
deba@1912
|
234 |
bool local_tree;
|
deba@1912
|
235 |
///Pointer to the map of processed status of the nodes.
|
deba@1912
|
236 |
ProcessedMap *_processed;
|
deba@1912
|
237 |
///Indicates if \ref _processed is locally allocated (\c true) or not.
|
deba@1912
|
238 |
bool local_processed;
|
deba@1912
|
239 |
///Pointer to the heap cross references.
|
deba@1912
|
240 |
HeapCrossRef *_heap_cross_ref;
|
deba@1912
|
241 |
///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
|
deba@1912
|
242 |
bool local_heap_cross_ref;
|
deba@1912
|
243 |
///Pointer to the heap.
|
deba@1912
|
244 |
Heap *_heap;
|
deba@1912
|
245 |
///Indicates if \ref _heap is locally allocated (\c true) or not.
|
deba@1912
|
246 |
bool local_heap;
|
deba@1912
|
247 |
|
deba@1912
|
248 |
///Creates the maps if necessary.
|
deba@1912
|
249 |
void create_maps(){
|
deba@1912
|
250 |
if(!_pred) {
|
deba@1912
|
251 |
local_pred = true;
|
deba@1912
|
252 |
_pred = Traits::createPredMap(*graph);
|
deba@1912
|
253 |
}
|
deba@1912
|
254 |
if(!_tree) {
|
deba@1912
|
255 |
local_tree = true;
|
deba@1912
|
256 |
_tree = Traits::createTreeMap(*graph);
|
deba@1912
|
257 |
}
|
deba@1912
|
258 |
if(!_processed) {
|
deba@1912
|
259 |
local_processed = true;
|
deba@1912
|
260 |
_processed = Traits::createProcessedMap(*graph);
|
deba@1912
|
261 |
}
|
deba@1912
|
262 |
if (!_heap_cross_ref) {
|
deba@1912
|
263 |
local_heap_cross_ref = true;
|
deba@1912
|
264 |
_heap_cross_ref = Traits::createHeapCrossRef(*graph);
|
deba@1912
|
265 |
}
|
deba@1912
|
266 |
if (!_heap) {
|
deba@1912
|
267 |
local_heap = true;
|
deba@1912
|
268 |
_heap = Traits::createHeap(*_heap_cross_ref);
|
deba@1912
|
269 |
}
|
deba@1912
|
270 |
}
|
deba@1912
|
271 |
|
deba@1912
|
272 |
public :
|
deba@1912
|
273 |
|
deba@1912
|
274 |
typedef Prim Create;
|
deba@1912
|
275 |
|
deba@1912
|
276 |
///\name Named template parameters
|
deba@1912
|
277 |
|
deba@1912
|
278 |
///@{
|
deba@1912
|
279 |
|
deba@1912
|
280 |
template <class T>
|
deba@1912
|
281 |
struct DefPredMapTraits : public Traits {
|
deba@1912
|
282 |
typedef T PredMap;
|
deba@1912
|
283 |
static PredMap *createPredMap(const UGraph &_graph){
|
deba@1912
|
284 |
throw UninitializedParameter();
|
deba@1912
|
285 |
}
|
deba@1912
|
286 |
};
|
deba@2490
|
287 |
///\brief \ref named-templ-param "Named parameter" for setting PredMap type
|
deba@2490
|
288 |
///
|
deba@1912
|
289 |
///\ref named-templ-param "Named parameter" for setting PredMap type
|
deba@1912
|
290 |
///
|
deba@1912
|
291 |
template <class T>
|
deba@1912
|
292 |
struct DefPredMap
|
deba@1912
|
293 |
: public Prim< UGraph, CostMap, DefPredMapTraits<T> > {
|
deba@1912
|
294 |
typedef Prim< UGraph, CostMap, DefPredMapTraits<T> > Create;
|
deba@1912
|
295 |
};
|
deba@1912
|
296 |
|
deba@1912
|
297 |
template <class T>
|
deba@1912
|
298 |
struct DefProcessedMapTraits : public Traits {
|
deba@1912
|
299 |
typedef T ProcessedMap;
|
deba@1912
|
300 |
static ProcessedMap *createProcessedMap(const UGraph &_graph){
|
deba@1912
|
301 |
throw UninitializedParameter();
|
deba@1912
|
302 |
}
|
deba@1912
|
303 |
};
|
deba@2490
|
304 |
///\brief \ref named-templ-param "Named parameter" for setting
|
deba@2490
|
305 |
///ProcessedMap type
|
deba@2490
|
306 |
///
|
deba@1912
|
307 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type
|
deba@1912
|
308 |
///
|
deba@1912
|
309 |
template <class T>
|
deba@1912
|
310 |
struct DefProcessedMap
|
deba@1912
|
311 |
: public Prim< UGraph, CostMap, DefProcessedMapTraits<T> > {
|
deba@1912
|
312 |
typedef Prim< UGraph, CostMap, DefProcessedMapTraits<T> > Create;
|
deba@1912
|
313 |
};
|
deba@1912
|
314 |
|
deba@1912
|
315 |
struct DefGraphProcessedMapTraits : public Traits {
|
deba@1912
|
316 |
typedef typename UGraph::template NodeMap<bool> ProcessedMap;
|
deba@1912
|
317 |
static ProcessedMap *createProcessedMap(const UGraph &_graph){
|
deba@1912
|
318 |
return new ProcessedMap(_graph);
|
deba@1912
|
319 |
}
|
deba@1912
|
320 |
};
|
deba@1912
|
321 |
|
deba@1912
|
322 |
|
deba@1912
|
323 |
template <class H, class CR>
|
deba@1912
|
324 |
struct DefHeapTraits : public Traits {
|
deba@1912
|
325 |
typedef CR HeapCrossRef;
|
deba@1912
|
326 |
typedef H Heap;
|
deba@1912
|
327 |
static HeapCrossRef *createHeapCrossRef(const UGraph &) {
|
deba@1912
|
328 |
throw UninitializedParameter();
|
deba@1912
|
329 |
}
|
deba@1912
|
330 |
static Heap *createHeap(HeapCrossRef &){
|
deba@1912
|
331 |
return UninitializedParameter();
|
deba@1912
|
332 |
}
|
deba@1912
|
333 |
};
|
deba@2230
|
334 |
///\brief \ref named-templ-param "Named parameter" for setting
|
deba@2230
|
335 |
///heap and cross reference type
|
deba@2230
|
336 |
///
|
deba@1912
|
337 |
///\ref named-templ-param "Named parameter" for setting heap and cross
|
deba@1912
|
338 |
///reference type
|
deba@1912
|
339 |
///
|
deba@1912
|
340 |
template <class H, class CR = typename UGraph::template NodeMap<int> >
|
deba@1912
|
341 |
struct DefHeap
|
deba@1912
|
342 |
: public Prim< UGraph, CostMap, DefHeapTraits<H, CR> > {
|
deba@1912
|
343 |
typedef Prim< UGraph, CostMap, DefHeapTraits<H, CR> > Create;
|
deba@1912
|
344 |
};
|
deba@1912
|
345 |
|
deba@1912
|
346 |
template <class H, class CR>
|
deba@1912
|
347 |
struct DefStandardHeapTraits : public Traits {
|
deba@1912
|
348 |
typedef CR HeapCrossRef;
|
deba@1912
|
349 |
typedef H Heap;
|
deba@1912
|
350 |
static HeapCrossRef *createHeapCrossRef(const UGraph &_graph) {
|
deba@1912
|
351 |
return new HeapCrossRef(_graph);
|
deba@1912
|
352 |
}
|
deba@1912
|
353 |
static Heap *createHeap(HeapCrossRef &ref){
|
deba@1912
|
354 |
return new Heap(ref);
|
deba@1912
|
355 |
}
|
deba@1912
|
356 |
};
|
deba@2230
|
357 |
///\brief \ref named-templ-param "Named parameter" for setting
|
deba@2230
|
358 |
///heap and cross reference type with automatic allocation
|
deba@2230
|
359 |
///
|
deba@1912
|
360 |
///\ref named-templ-param "Named parameter" for setting heap and cross
|
deba@1912
|
361 |
///reference type. It can allocate the heap and the cross reference
|
deba@1912
|
362 |
///object if the cross reference's constructor waits for the graph as
|
deba@1912
|
363 |
///parameter and the heap's constructor waits for the cross reference.
|
deba@1912
|
364 |
template <class H, class CR = typename UGraph::template NodeMap<int> >
|
deba@1912
|
365 |
struct DefStandardHeap
|
deba@1912
|
366 |
: public Prim< UGraph, CostMap, DefStandardHeapTraits<H, CR> > {
|
deba@1912
|
367 |
typedef Prim< UGraph, CostMap, DefStandardHeapTraits<H, CR> >
|
deba@1912
|
368 |
Create;
|
deba@1912
|
369 |
};
|
deba@1912
|
370 |
|
deba@1912
|
371 |
template <class TM>
|
deba@1912
|
372 |
struct DefTreeMapTraits : public Traits {
|
deba@1912
|
373 |
typedef TM TreeMap;
|
deba@1912
|
374 |
static TreeMap *createTreeMap(const UGraph &) {
|
deba@1912
|
375 |
throw UninitializedParameter();
|
deba@1912
|
376 |
}
|
deba@1912
|
377 |
};
|
deba@2490
|
378 |
///\brief \ref named-templ-param "Named parameter" for setting
|
deba@2490
|
379 |
///TreeMap
|
deba@2490
|
380 |
///
|
deba@1912
|
381 |
///\ref named-templ-param "Named parameter" for setting TreeMap
|
deba@1912
|
382 |
///
|
deba@1912
|
383 |
template <class TM>
|
deba@1912
|
384 |
struct DefTreeMap
|
deba@1912
|
385 |
: public Prim< UGraph, CostMap, DefTreeMapTraits<TM> > {
|
deba@1912
|
386 |
typedef Prim< UGraph, CostMap, DefTreeMapTraits<TM> > Create;
|
deba@1912
|
387 |
};
|
deba@1912
|
388 |
|
deba@1912
|
389 |
struct DefGraphTreeMapTraits : public Traits {
|
deba@1912
|
390 |
typedef typename UGraph::template NodeMap<bool> TreeMap;
|
deba@1912
|
391 |
static TreeMap *createTreeMap(const UGraph &_graph){
|
deba@1912
|
392 |
return new TreeMap(_graph);
|
deba@1912
|
393 |
}
|
deba@1912
|
394 |
};
|
deba@1912
|
395 |
|
deba@1912
|
396 |
///@}
|
deba@1912
|
397 |
|
deba@1912
|
398 |
|
deba@1912
|
399 |
protected:
|
deba@1912
|
400 |
|
deba@1912
|
401 |
Prim() {}
|
deba@1912
|
402 |
|
deba@1912
|
403 |
public:
|
deba@1912
|
404 |
|
deba@1912
|
405 |
///Constructor.
|
deba@2397
|
406 |
///
|
deba@1912
|
407 |
///\param _graph the graph the algorithm will run on.
|
deba@1912
|
408 |
///\param _cost the cost map used by the algorithm.
|
deba@1912
|
409 |
Prim(const UGraph& _graph, const CostMap& _cost) :
|
deba@1912
|
410 |
graph(&_graph), cost(&_cost),
|
deba@2397
|
411 |
_pred(0), local_pred(false),
|
deba@2397
|
412 |
_tree(0), local_tree(false),
|
deba@2397
|
413 |
_processed(0), local_processed(false),
|
deba@2397
|
414 |
_heap_cross_ref(0), local_heap_cross_ref(false),
|
deba@2397
|
415 |
_heap(0), local_heap(false)
|
deba@1912
|
416 |
{
|
alpar@2260
|
417 |
checkConcept<concepts::UGraph, UGraph>();
|
deba@1912
|
418 |
}
|
deba@1912
|
419 |
|
deba@1912
|
420 |
///Destructor.
|
deba@1912
|
421 |
~Prim(){
|
deba@1912
|
422 |
if(local_pred) delete _pred;
|
deba@1912
|
423 |
if(local_tree) delete _tree;
|
deba@1912
|
424 |
if(local_processed) delete _processed;
|
deba@1912
|
425 |
if(local_heap_cross_ref) delete _heap_cross_ref;
|
deba@1912
|
426 |
if(local_heap) delete _heap;
|
deba@1912
|
427 |
}
|
deba@1912
|
428 |
|
deba@1912
|
429 |
///\brief Sets the cost map.
|
deba@2397
|
430 |
///
|
deba@1912
|
431 |
///Sets the cost map.
|
deba@1912
|
432 |
///\return <tt> (*this) </tt>
|
deba@1912
|
433 |
Prim &costMap(const CostMap &m){
|
deba@1912
|
434 |
cost = &m;
|
deba@1912
|
435 |
return *this;
|
deba@1912
|
436 |
}
|
deba@1912
|
437 |
|
deba@1912
|
438 |
///\brief Sets the map storing the predecessor edges.
|
deba@2397
|
439 |
///
|
deba@1912
|
440 |
///Sets the map storing the predecessor edges.
|
deba@1912
|
441 |
///If you don't use this function before calling \ref run(),
|
deba@1912
|
442 |
///it will allocate one. The destuctor deallocates this
|
deba@1912
|
443 |
///automatically allocated map, of course.
|
deba@1912
|
444 |
///\return <tt> (*this) </tt>
|
deba@1912
|
445 |
Prim &predMap(PredMap &m){
|
deba@1912
|
446 |
if(local_pred) {
|
deba@1912
|
447 |
delete _pred;
|
deba@1912
|
448 |
local_pred=false;
|
deba@1912
|
449 |
}
|
deba@1912
|
450 |
_pred = &m;
|
deba@1912
|
451 |
return *this;
|
deba@1912
|
452 |
}
|
deba@1912
|
453 |
|
deba@1912
|
454 |
///\brief Sets the map storing the tree edges.
|
deba@2397
|
455 |
///
|
deba@1912
|
456 |
///Sets the map storing the tree edges.
|
deba@1912
|
457 |
///If you don't use this function before calling \ref run(),
|
deba@1912
|
458 |
///it will allocate one. The destuctor deallocates this
|
deba@1912
|
459 |
///automatically allocated map, of course.
|
deba@1912
|
460 |
///By default this is a NullMap.
|
deba@1912
|
461 |
///\return <tt> (*this) </tt>
|
deba@1912
|
462 |
Prim &treeMap(TreeMap &m){
|
deba@1912
|
463 |
if(local_tree) {
|
deba@1912
|
464 |
delete _tree;
|
deba@1912
|
465 |
local_tree=false;
|
deba@1912
|
466 |
}
|
deba@1912
|
467 |
_tree = &m;
|
deba@1912
|
468 |
return *this;
|
deba@1912
|
469 |
}
|
deba@1912
|
470 |
|
deba@1912
|
471 |
///\brief Sets the heap and the cross reference used by algorithm.
|
deba@2397
|
472 |
///
|
deba@1912
|
473 |
///Sets the heap and the cross reference used by algorithm.
|
deba@1912
|
474 |
///If you don't use this function before calling \ref run(),
|
deba@1912
|
475 |
///it will allocate one. The destuctor deallocates this
|
deba@1912
|
476 |
///automatically allocated map, of course.
|
deba@1912
|
477 |
///\return <tt> (*this) </tt>
|
deba@1912
|
478 |
Prim &heap(Heap& heap, HeapCrossRef &crossRef){
|
deba@1912
|
479 |
if(local_heap_cross_ref) {
|
deba@1912
|
480 |
delete _heap_cross_ref;
|
deba@1912
|
481 |
local_heap_cross_ref=false;
|
deba@1912
|
482 |
}
|
deba@1912
|
483 |
_heap_cross_ref = &crossRef;
|
deba@1912
|
484 |
if(local_heap) {
|
deba@1912
|
485 |
delete _heap;
|
deba@1912
|
486 |
local_heap=false;
|
deba@1912
|
487 |
}
|
deba@1912
|
488 |
_heap = &heap;
|
deba@1912
|
489 |
return *this;
|
deba@1912
|
490 |
}
|
deba@1912
|
491 |
|
deba@1912
|
492 |
public:
|
deba@1912
|
493 |
///\name Execution control
|
deba@1912
|
494 |
///The simplest way to execute the algorithm is to use
|
deba@1912
|
495 |
///one of the member functions called \c run(...).
|
deba@1912
|
496 |
///\n
|
deba@1912
|
497 |
///If you need more control on the execution,
|
deba@1912
|
498 |
///first you must call \ref init(), then you can add several source nodes
|
deba@1912
|
499 |
///with \ref addSource().
|
deba@1912
|
500 |
///Finally \ref start() will perform the actual path
|
deba@1912
|
501 |
///computation.
|
deba@1912
|
502 |
|
deba@1912
|
503 |
///@{
|
deba@1912
|
504 |
|
deba@1912
|
505 |
///\brief Initializes the internal data structures.
|
deba@2397
|
506 |
///
|
deba@1912
|
507 |
///Initializes the internal data structures.
|
deba@1912
|
508 |
///
|
deba@1912
|
509 |
void init(){
|
deba@1912
|
510 |
create_maps();
|
deba@1912
|
511 |
_heap->clear();
|
deba@1912
|
512 |
for ( NodeIt u(*graph) ; u!=INVALID ; ++u ) {
|
deba@1912
|
513 |
_pred->set(u,INVALID);
|
deba@1912
|
514 |
_processed->set(u,false);
|
deba@1912
|
515 |
_heap_cross_ref->set(u,Heap::PRE_HEAP);
|
deba@1912
|
516 |
}
|
deba@1912
|
517 |
}
|
deba@1912
|
518 |
|
deba@1912
|
519 |
///\brief Adds a new source node.
|
deba@2397
|
520 |
///
|
deba@1912
|
521 |
///Adds a new source node to the priority heap.
|
deba@1912
|
522 |
///
|
deba@1912
|
523 |
///It checks if the node has already been added to the heap and
|
deba@1912
|
524 |
///it is pushed to the heap only if it was not in the heap.
|
deba@1912
|
525 |
void addSource(Node s){
|
deba@1912
|
526 |
if(_heap->state(s) != Heap::IN_HEAP) {
|
deba@1912
|
527 |
_heap->push(s,Value());
|
deba@1912
|
528 |
}
|
deba@1912
|
529 |
}
|
deba@1912
|
530 |
///\brief Processes the next node in the priority heap
|
deba@2397
|
531 |
///
|
deba@1912
|
532 |
///Processes the next node in the priority heap.
|
deba@1912
|
533 |
///
|
deba@1912
|
534 |
///\return The processed node.
|
deba@1912
|
535 |
///
|
deba@1912
|
536 |
///\warning The priority heap must not be empty!
|
deba@1912
|
537 |
Node processNextNode(){
|
deba@1912
|
538 |
Node v=_heap->top();
|
deba@1912
|
539 |
_heap->pop();
|
deba@1912
|
540 |
_processed->set(v,true);
|
deba@1912
|
541 |
|
deba@1912
|
542 |
for(IncEdgeIt e(*graph,v); e!=INVALID; ++e) {
|
deba@1912
|
543 |
Node w=graph->oppositeNode(v,e);
|
deba@1912
|
544 |
switch(_heap->state(w)) {
|
deba@1912
|
545 |
case Heap::PRE_HEAP:
|
deba@1912
|
546 |
_heap->push(w,(*cost)[e]);
|
deba@1912
|
547 |
_pred->set(w,e);
|
deba@1912
|
548 |
break;
|
deba@1912
|
549 |
case Heap::IN_HEAP:
|
deba@1912
|
550 |
if ( (*cost)[e] < (*_heap)[w] ) {
|
deba@1912
|
551 |
_heap->decrease(w,(*cost)[e]);
|
deba@1912
|
552 |
_pred->set(w,e);
|
deba@1912
|
553 |
}
|
deba@1912
|
554 |
break;
|
deba@1912
|
555 |
case Heap::POST_HEAP:
|
deba@1912
|
556 |
break;
|
deba@1912
|
557 |
}
|
deba@1912
|
558 |
}
|
deba@1912
|
559 |
if ((*_pred)[v]!=INVALID)_tree->set((*_pred)[v],true);
|
deba@1912
|
560 |
return v;
|
deba@1912
|
561 |
}
|
deba@1912
|
562 |
|
deba@1912
|
563 |
///\brief Next node to be processed.
|
deba@2397
|
564 |
///
|
deba@1912
|
565 |
///Next node to be processed.
|
deba@1912
|
566 |
///
|
deba@1912
|
567 |
///\return The next node to be processed or INVALID if the priority heap
|
deba@1912
|
568 |
/// is empty.
|
deba@1912
|
569 |
Node nextNode(){
|
deba@1912
|
570 |
return _heap->empty()?_heap->top():INVALID;
|
deba@1912
|
571 |
}
|
deba@1912
|
572 |
|
deba@2397
|
573 |
///\brief Returns \c false if there are nodes to be processed in
|
deba@2397
|
574 |
///the priority heap
|
deba@1912
|
575 |
///
|
deba@1912
|
576 |
///Returns \c false if there are nodes
|
deba@1912
|
577 |
///to be processed in the priority heap
|
deba@1912
|
578 |
bool emptyQueue() { return _heap->empty(); }
|
deba@1912
|
579 |
|
deba@2397
|
580 |
///\brief Returns the number of the nodes to be processed in the
|
deba@2397
|
581 |
///priority heap
|
deba@2397
|
582 |
///
|
deba@1912
|
583 |
///Returns the number of the nodes to be processed in the priority heap
|
deba@1912
|
584 |
///
|
deba@1912
|
585 |
int queueSize() { return _heap->size(); }
|
deba@1912
|
586 |
|
deba@1912
|
587 |
///\brief Executes the algorithm.
|
deba@2397
|
588 |
///
|
deba@1912
|
589 |
///Executes the algorithm.
|
deba@1912
|
590 |
///
|
deba@1912
|
591 |
///\pre init() must be called and at least one node should be added
|
deba@1912
|
592 |
///with addSource() before using this function.
|
deba@1912
|
593 |
///
|
deba@1912
|
594 |
///This method runs the %Prim algorithm from the node(s)
|
deba@1912
|
595 |
///in order to compute the
|
deba@1912
|
596 |
///minimum spanning tree.
|
deba@1912
|
597 |
///
|
deba@1912
|
598 |
void start(){
|
deba@1912
|
599 |
while ( !_heap->empty() ) processNextNode();
|
deba@1912
|
600 |
}
|
deba@1912
|
601 |
|
deba@1912
|
602 |
///\brief Executes the algorithm until a condition is met.
|
deba@2397
|
603 |
///
|
deba@1912
|
604 |
///Executes the algorithm until a condition is met.
|
deba@1912
|
605 |
///
|
deba@1912
|
606 |
///\pre init() must be called and at least one node should be added
|
deba@1912
|
607 |
///with addSource() before using this function.
|
deba@1912
|
608 |
///
|
deba@1912
|
609 |
///\param nm must be a bool (or convertible) node map. The algorithm
|
deba@1912
|
610 |
///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
|
deba@1912
|
611 |
template<class NodeBoolMap>
|
deba@1912
|
612 |
void start(const NodeBoolMap &nm){
|
deba@1912
|
613 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
|
deba@1912
|
614 |
if ( !_heap->empty() ) _processed->set(_heap->top(),true);
|
deba@1912
|
615 |
}
|
deba@1912
|
616 |
|
deba@1912
|
617 |
///\brief Runs %Prim algorithm.
|
deba@2397
|
618 |
///
|
deba@1912
|
619 |
///This method runs the %Prim algorithm
|
deba@1912
|
620 |
///in order to compute the
|
deba@1912
|
621 |
///minimum spanning tree (or minimum spanning forest).
|
deba@1912
|
622 |
///The method also works on graphs that has more than one components.
|
deba@1912
|
623 |
///In this case it computes the minimum spanning forest.
|
deba@1912
|
624 |
void run() {
|
deba@1912
|
625 |
init();
|
deba@1912
|
626 |
for(NodeIt it(*graph);it!=INVALID;++it){
|
deba@1912
|
627 |
if(!processed(it)){
|
deba@1912
|
628 |
addSource(it);
|
deba@1912
|
629 |
start();
|
deba@1912
|
630 |
}
|
deba@1912
|
631 |
}
|
deba@1912
|
632 |
}
|
deba@1912
|
633 |
|
deba@1912
|
634 |
///\brief Runs %Prim algorithm from node \c s.
|
deba@2397
|
635 |
///
|
deba@1912
|
636 |
///This method runs the %Prim algorithm from node \c s
|
deba@1912
|
637 |
///in order to
|
deba@1912
|
638 |
///compute the
|
deba@1912
|
639 |
///minimun spanning tree
|
deba@1912
|
640 |
///
|
deba@2397
|
641 |
///\note p.run(s) is just a shortcut of the following code.
|
deba@1912
|
642 |
///\code
|
deba@2397
|
643 |
/// p.init();
|
deba@2397
|
644 |
/// p.addSource(s);
|
deba@2397
|
645 |
/// p.start();
|
deba@1912
|
646 |
///\endcode
|
deba@1912
|
647 |
///\note If the graph has more than one components, the method
|
deba@1912
|
648 |
///will compute the minimun spanning tree for only one component.
|
deba@1912
|
649 |
///
|
deba@1912
|
650 |
///See \ref run() if you want to compute the minimal spanning forest.
|
deba@1912
|
651 |
void run(Node s){
|
deba@1912
|
652 |
init();
|
deba@1912
|
653 |
addSource(s);
|
deba@1912
|
654 |
start();
|
deba@1912
|
655 |
}
|
deba@1912
|
656 |
|
deba@1912
|
657 |
///@}
|
deba@1912
|
658 |
|
deba@1912
|
659 |
///\name Query Functions
|
deba@1912
|
660 |
///The result of the %Prim algorithm can be obtained using these
|
deba@1912
|
661 |
///functions.\n
|
deba@1912
|
662 |
///Before the use of these functions,
|
deba@1912
|
663 |
///either run() or start() must be called.
|
deba@1912
|
664 |
|
deba@1912
|
665 |
///@{
|
deba@1912
|
666 |
|
deba@1912
|
667 |
///\brief Returns the 'previous edge' of the minimum spanning tree.
|
deba@1912
|
668 |
|
deba@2397
|
669 |
///For a node \c v it returns the 'previous edge' of the minimum
|
deba@2397
|
670 |
///spanning tree, i.e. it returns the edge from where \c v was
|
deba@2397
|
671 |
///reached. For a source node or an unreachable node it is \ref
|
deba@2397
|
672 |
///INVALID. The minimum spanning tree used here is equal to the
|
deba@2397
|
673 |
///minimum spanning tree used in \ref predNode().
|
deba@2397
|
674 |
///\pre \ref run() or \ref start() must be called before using
|
deba@2397
|
675 |
///this function.
|
deba@1912
|
676 |
UEdge predEdge(Node v) const { return (*_pred)[v]; }
|
deba@1912
|
677 |
|
deba@2397
|
678 |
///\brief Returns the 'previous node' of the minimum spanning
|
deba@2397
|
679 |
///tree.
|
deba@2397
|
680 |
///
|
deba@2397
|
681 |
///For a node \c v it returns the 'previous node' of the minimum
|
deba@2397
|
682 |
///spanning tree, i.e. it returns the node from where \c v was
|
deba@2397
|
683 |
///reached. For a source node or an unreachable node it is \ref
|
deba@2397
|
684 |
///INVALID. //The minimum spanning tree used here is equal to the
|
deba@2397
|
685 |
///minimum spanning tree used in \ref predEdge().
|
deba@2397
|
686 |
///\pre \ref run() or \ref start() must be called before using
|
deba@2397
|
687 |
///this function.
|
deba@1912
|
688 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
deba@1912
|
689 |
graph->source((*_pred)[v]); }
|
deba@1912
|
690 |
|
deba@2397
|
691 |
///\brief Returns a reference to the NodeMap of the edges of the
|
deba@1912
|
692 |
///minimum spanning tree.
|
deba@2397
|
693 |
///
|
deba@2397
|
694 |
///Returns a reference to the NodeMap of the edges of the minimum
|
deba@2397
|
695 |
///spanning tree.
|
deba@2397
|
696 |
///\pre \ref run() or \ref start() must be called before using
|
deba@2397
|
697 |
///this function.
|
deba@1912
|
698 |
const PredMap &predMap() const { return *_pred;}
|
deba@1912
|
699 |
|
deba@1912
|
700 |
///\brief Returns a reference to the tree edges map.
|
deba@1912
|
701 |
|
deba@1912
|
702 |
///Returns a reference to the TreeEdgeMap of the edges of the
|
deba@2397
|
703 |
///minimum spanning tree. The value of the map is \c true only if
|
deba@2397
|
704 |
///the edge is in the minimum spanning tree.
|
deba@2397
|
705 |
///
|
deba@1912
|
706 |
///\warning By default, the TreeEdgeMap is a NullMap.
|
deba@1912
|
707 |
///
|
deba@2397
|
708 |
///If it is not set before the execution of the algorithm, use the
|
deba@2397
|
709 |
///\ref treeMap(TreeMap&) function (after the execution) to set an
|
deba@2397
|
710 |
///UEdgeMap with the edges of the minimum spanning tree in O(n)
|
deba@2397
|
711 |
///time where n is the number of nodes in the graph.
|
deba@2397
|
712 |
///\pre \ref run() or \ref start() must be called before using
|
deba@2397
|
713 |
///this function.
|
deba@1912
|
714 |
const TreeMap &treeMap() const { return *_tree;}
|
deba@1912
|
715 |
|
deba@1912
|
716 |
///\brief Sets the tree edges map.
|
deba@2397
|
717 |
///
|
deba@1912
|
718 |
///Sets the TreeMap of the edges of the minimum spanning tree.
|
deba@1912
|
719 |
///The map values belonging to the edges of the minimum
|
alpar@1953
|
720 |
///spanning tree are set to \c tree_edge_value or \c true by default,
|
deba@1912
|
721 |
///the other map values remain untouched.
|
deba@1912
|
722 |
///
|
deba@2397
|
723 |
///\pre \ref run() or \ref start() must be called before using
|
deba@2397
|
724 |
///this function.
|
deba@1912
|
725 |
|
deba@1912
|
726 |
template<class TreeMap>
|
deba@2397
|
727 |
void quickTreeEdges(TreeMap& tree) const {
|
deba@1912
|
728 |
for(NodeIt i(*graph);i!=INVALID;++i){
|
deba@2397
|
729 |
if((*_pred)[i]!=INVALID) tree.set((*_pred)[i],true);
|
deba@1912
|
730 |
}
|
deba@1912
|
731 |
}
|
deba@1912
|
732 |
|
deba@1912
|
733 |
///\brief Sets the tree edges map.
|
deba@2397
|
734 |
///
|
deba@1912
|
735 |
///Sets the TreeMap of the edges of the minimum spanning tree.
|
deba@1912
|
736 |
///The map values belonging to the edges of the minimum
|
alpar@1953
|
737 |
///spanning tree are set to \c tree_edge_value or \c true by default while
|
deba@1912
|
738 |
///the edge values not belonging to the minimum spanning tree are set to
|
alpar@1953
|
739 |
///\c tree_default_value or \c false by default.
|
deba@1912
|
740 |
///
|
deba@2397
|
741 |
///\pre \ref run() or \ref start() must be called before using
|
deba@2397
|
742 |
///this function.
|
deba@2397
|
743 |
template <class TreeMap>
|
deba@2397
|
744 |
void treeEdges(TreeMap& tree) const {
|
deba@2397
|
745 |
typedef typename ItemSetTraits<UGraph,UEdge>::ItemIt TreeMapIt;
|
deba@2397
|
746 |
for(TreeMapIt i(*graph); i != INVALID; ++i) {
|
deba@2397
|
747 |
tree.set(i,false);
|
deba@2397
|
748 |
}
|
deba@2397
|
749 |
for(NodeIt i(*graph); i != INVALID; ++i){
|
deba@2397
|
750 |
if((*_pred)[i] != INVALID) tree.set((*_pred)[i],true);
|
deba@1912
|
751 |
}
|
deba@1912
|
752 |
}
|
deba@1912
|
753 |
|
deba@1912
|
754 |
///\brief Checks if a node is reachable from the starting node.
|
deba@2397
|
755 |
///
|
deba@1912
|
756 |
///Returns \c true if \c v is reachable from the starting node.
|
deba@1912
|
757 |
///\warning The source nodes are inditated as unreached.
|
deba@2397
|
758 |
///\pre \ref run() or \ref start() must be called before using
|
deba@2397
|
759 |
///this function.
|
deba@1912
|
760 |
///
|
deba@1912
|
761 |
bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
|
deba@1912
|
762 |
|
deba@1912
|
763 |
///\brief Checks if a node is processed.
|
deba@1912
|
764 |
///
|
deba@2397
|
765 |
///Returns \c true if \c v is processed, i.e. \c v is already
|
deba@2397
|
766 |
///connencted to the minimum spanning tree. \pre \ref run() or
|
deba@2397
|
767 |
///\ref start() must be called before using this function.
|
deba@1912
|
768 |
bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
|
deba@1912
|
769 |
|
deba@1912
|
770 |
|
deba@1912
|
771 |
///\brief Checks if an edge is in the spanning tree or not.
|
deba@2397
|
772 |
///
|
deba@1912
|
773 |
///Checks if an edge is in the spanning tree or not.
|
deba@1912
|
774 |
///\param e is the edge that will be checked
|
deba@1912
|
775 |
///\return \c true if e is in the spanning tree, \c false otherwise
|
deba@1912
|
776 |
bool tree(UEdge e){
|
deba@1912
|
777 |
return (*_pred)[*graph.source(e)]==e || (*_pred)[*graph.target(e)]==e;
|
deba@1912
|
778 |
}
|
deba@2397
|
779 |
|
deba@2397
|
780 |
///\brief Returns the value of the total cost of the spanning tree.
|
deba@2397
|
781 |
///
|
deba@2397
|
782 |
/// Returns the value of the total cost of the spanning tree.
|
deba@2397
|
783 |
Value treeValue() const {
|
deba@2397
|
784 |
Value value = 0;
|
deba@2397
|
785 |
for(NodeIt i(*graph); i!= INVALID; ++i){
|
deba@2397
|
786 |
if ((*_pred)[i] != INVALID) value += (*cost)[(*_pred)[i]];
|
deba@2397
|
787 |
}
|
deba@2397
|
788 |
return value;
|
deba@2397
|
789 |
}
|
deba@1912
|
790 |
///@}
|
deba@1912
|
791 |
};
|
deba@1912
|
792 |
|
deba@1912
|
793 |
|
deba@1912
|
794 |
/// \ingroup spantree
|
deba@1912
|
795 |
///
|
deba@1912
|
796 |
/// \brief Function type interface for Prim algorithm.
|
deba@1912
|
797 |
///
|
deba@1912
|
798 |
/// Function type interface for Prim algorithm.
|
deba@1912
|
799 |
/// \param graph the UGraph that the algorithm runs on
|
deba@1912
|
800 |
/// \param cost the CostMap of the edges
|
deba@1912
|
801 |
/// \retval tree the EdgeMap that contains whether an edge is in
|
deba@1912
|
802 |
/// the spanning tree or not
|
deba@2397
|
803 |
/// \return The total cost of the spanning tree
|
deba@1912
|
804 |
///
|
deba@1912
|
805 |
///\sa Prim
|
deba@1912
|
806 |
template<class Graph,class CostMap,class TreeMap>
|
deba@2397
|
807 |
typename CostMap::Value prim(const Graph& graph,
|
deba@2397
|
808 |
const CostMap& cost,
|
deba@2397
|
809 |
TreeMap& tree){
|
deba@2397
|
810 |
typename Prim<Graph,CostMap>::
|
deba@2397
|
811 |
template DefTreeMap<TreeMap>::
|
deba@1912
|
812 |
Create prm(graph,cost);
|
deba@1912
|
813 |
prm.treeMap(tree);
|
deba@1912
|
814 |
prm.run();
|
deba@2397
|
815 |
return prm.treeValue();
|
deba@2397
|
816 |
}
|
deba@2397
|
817 |
|
deba@2397
|
818 |
/// \ingroup spantree
|
deba@2397
|
819 |
///
|
deba@2397
|
820 |
/// \brief Function type interface for Prim algorithm.
|
deba@2397
|
821 |
///
|
deba@2397
|
822 |
/// Function type interface for Prim algorithm.
|
deba@2397
|
823 |
/// \param graph the UGraph that the algorithm runs on
|
deba@2397
|
824 |
/// \param cost the CostMap of the edges
|
deba@2397
|
825 |
/// the spanning tree or not
|
deba@2397
|
826 |
/// \return The total cost of the spanning tree
|
deba@2397
|
827 |
///
|
deba@2397
|
828 |
///\sa Prim
|
deba@2397
|
829 |
template<class Graph,class CostMap,class TreeMap>
|
deba@2397
|
830 |
typename CostMap::Value prim(const Graph& graph,
|
deba@2397
|
831 |
const CostMap& cost){
|
deba@2397
|
832 |
typename Prim<Graph,CostMap>::
|
deba@2397
|
833 |
Create prm(graph,cost);
|
deba@2397
|
834 |
prm.run();
|
deba@2397
|
835 |
return prm.treeValue();
|
deba@1979
|
836 |
}
|
deba@1912
|
837 |
|
deba@1912
|
838 |
} //END OF NAMESPACE LEMON
|
deba@1912
|
839 |
|
deba@1912
|
840 |
#endif
|