alpar@906
|
1 |
/* -*- C++ -*-
|
alpar@906
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@1956
|
5 |
* Copyright (C) 2003-2006
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@906
|
8 |
*
|
alpar@906
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
12 |
*
|
alpar@906
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
15 |
* purpose.
|
alpar@906
|
16 |
*
|
alpar@906
|
17 |
*/
|
alpar@906
|
18 |
|
alpar@921
|
19 |
#ifndef LEMON_BFS_H
|
alpar@921
|
20 |
#define LEMON_BFS_H
|
alpar@774
|
21 |
|
deba@2376
|
22 |
///\ingroup search
|
alpar@774
|
23 |
///\file
|
alpar@774
|
24 |
///\brief Bfs algorithm.
|
alpar@774
|
25 |
|
alpar@1218
|
26 |
#include <lemon/list_graph.h>
|
alpar@1218
|
27 |
#include <lemon/graph_utils.h>
|
deba@2335
|
28 |
#include <lemon/bits/path_dump.h>
|
deba@1993
|
29 |
#include <lemon/bits/invalid.h>
|
alpar@1218
|
30 |
#include <lemon/error.h>
|
alpar@1218
|
31 |
#include <lemon/maps.h>
|
alpar@774
|
32 |
|
alpar@921
|
33 |
namespace lemon {
|
alpar@774
|
34 |
|
alpar@774
|
35 |
|
alpar@1218
|
36 |
|
alpar@1218
|
37 |
///Default traits class of Bfs class.
|
alpar@1218
|
38 |
|
alpar@1218
|
39 |
///Default traits class of Bfs class.
|
alpar@1218
|
40 |
///\param GR Graph type.
|
alpar@1218
|
41 |
template<class GR>
|
alpar@1218
|
42 |
struct BfsDefaultTraits
|
alpar@1218
|
43 |
{
|
alpar@1218
|
44 |
///The graph type the algorithm runs on.
|
alpar@1218
|
45 |
typedef GR Graph;
|
alpar@1218
|
46 |
///\brief The type of the map that stores the last
|
alpar@1218
|
47 |
///edges of the shortest paths.
|
alpar@1218
|
48 |
///
|
alpar@1218
|
49 |
///The type of the map that stores the last
|
alpar@1218
|
50 |
///edges of the shortest paths.
|
alpar@2260
|
51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
52 |
///
|
alpar@1218
|
53 |
typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
|
alpar@1218
|
54 |
///Instantiates a PredMap.
|
alpar@1218
|
55 |
|
alpar@1218
|
56 |
///This function instantiates a \ref PredMap.
|
alpar@1218
|
57 |
///\param G is the graph, to which we would like to define the PredMap.
|
alpar@1218
|
58 |
///\todo The graph alone may be insufficient to initialize
|
alpar@1218
|
59 |
static PredMap *createPredMap(const GR &G)
|
alpar@1218
|
60 |
{
|
alpar@1218
|
61 |
return new PredMap(G);
|
alpar@1218
|
62 |
}
|
alpar@1218
|
63 |
///The type of the map that indicates which nodes are processed.
|
alpar@1218
|
64 |
|
alpar@1218
|
65 |
///The type of the map that indicates which nodes are processed.
|
alpar@2260
|
66 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
67 |
///\todo named parameter to set this type, function to read and write.
|
alpar@1218
|
68 |
typedef NullMap<typename Graph::Node,bool> ProcessedMap;
|
alpar@1218
|
69 |
///Instantiates a ProcessedMap.
|
alpar@1218
|
70 |
|
alpar@1218
|
71 |
///This function instantiates a \ref ProcessedMap.
|
alpar@1536
|
72 |
///\param g is the graph, to which
|
alpar@1218
|
73 |
///we would like to define the \ref ProcessedMap
|
alpar@1536
|
74 |
#ifdef DOXYGEN
|
alpar@1536
|
75 |
static ProcessedMap *createProcessedMap(const GR &g)
|
alpar@1536
|
76 |
#else
|
alpar@1367
|
77 |
static ProcessedMap *createProcessedMap(const GR &)
|
alpar@1536
|
78 |
#endif
|
alpar@1218
|
79 |
{
|
alpar@1218
|
80 |
return new ProcessedMap();
|
alpar@1218
|
81 |
}
|
alpar@1218
|
82 |
///The type of the map that indicates which nodes are reached.
|
alpar@1218
|
83 |
|
alpar@1218
|
84 |
///The type of the map that indicates which nodes are reached.
|
alpar@2260
|
85 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
86 |
///\todo named parameter to set this type, function to read and write.
|
alpar@1218
|
87 |
typedef typename Graph::template NodeMap<bool> ReachedMap;
|
alpar@1218
|
88 |
///Instantiates a ReachedMap.
|
alpar@1218
|
89 |
|
alpar@1218
|
90 |
///This function instantiates a \ref ReachedMap.
|
alpar@1218
|
91 |
///\param G is the graph, to which
|
alpar@1218
|
92 |
///we would like to define the \ref ReachedMap.
|
alpar@1218
|
93 |
static ReachedMap *createReachedMap(const GR &G)
|
alpar@1218
|
94 |
{
|
alpar@1218
|
95 |
return new ReachedMap(G);
|
alpar@1218
|
96 |
}
|
alpar@1218
|
97 |
///The type of the map that stores the dists of the nodes.
|
alpar@1218
|
98 |
|
alpar@1218
|
99 |
///The type of the map that stores the dists of the nodes.
|
alpar@2260
|
100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
101 |
///
|
alpar@1218
|
102 |
typedef typename Graph::template NodeMap<int> DistMap;
|
alpar@1218
|
103 |
///Instantiates a DistMap.
|
alpar@1218
|
104 |
|
alpar@1218
|
105 |
///This function instantiates a \ref DistMap.
|
alpar@1218
|
106 |
///\param G is the graph, to which we would like to define the \ref DistMap
|
alpar@1218
|
107 |
static DistMap *createDistMap(const GR &G)
|
alpar@1218
|
108 |
{
|
alpar@1218
|
109 |
return new DistMap(G);
|
alpar@1218
|
110 |
}
|
alpar@1218
|
111 |
};
|
alpar@1218
|
112 |
|
alpar@781
|
113 |
///%BFS algorithm class.
|
alpar@1218
|
114 |
|
deba@2376
|
115 |
///\ingroup search
|
alpar@1218
|
116 |
///This class provides an efficient implementation of the %BFS algorithm.
|
alpar@774
|
117 |
///
|
alpar@1218
|
118 |
///\param GR The graph type the algorithm runs on. The default value is
|
alpar@1218
|
119 |
///\ref ListGraph. The value of GR is not used directly by Bfs, it
|
alpar@1218
|
120 |
///is only passed to \ref BfsDefaultTraits.
|
alpar@1218
|
121 |
///\param TR Traits class to set various data types used by the algorithm.
|
alpar@1218
|
122 |
///The default traits class is
|
alpar@1218
|
123 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
|
alpar@1218
|
124 |
///See \ref BfsDefaultTraits for the documentation of
|
alpar@1218
|
125 |
///a Bfs traits class.
|
alpar@1218
|
126 |
///
|
jacint@1270
|
127 |
///\author Alpar Juttner
|
alpar@774
|
128 |
|
alpar@774
|
129 |
#ifdef DOXYGEN
|
alpar@1218
|
130 |
template <typename GR,
|
alpar@1218
|
131 |
typename TR>
|
alpar@774
|
132 |
#else
|
alpar@1218
|
133 |
template <typename GR=ListGraph,
|
alpar@1218
|
134 |
typename TR=BfsDefaultTraits<GR> >
|
alpar@774
|
135 |
#endif
|
alpar@1218
|
136 |
class Bfs {
|
alpar@774
|
137 |
public:
|
alpar@1218
|
138 |
/**
|
alpar@1218
|
139 |
* \brief \ref Exception for uninitialized parameters.
|
alpar@1218
|
140 |
*
|
alpar@1218
|
141 |
* This error represents problems in the initialization
|
alpar@1218
|
142 |
* of the parameters of the algorithms.
|
alpar@1218
|
143 |
*/
|
alpar@1218
|
144 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
alpar@1218
|
145 |
public:
|
alpar@2151
|
146 |
virtual const char* what() const throw() {
|
alpar@1218
|
147 |
return "lemon::Bfs::UninitializedParameter";
|
alpar@1218
|
148 |
}
|
alpar@1218
|
149 |
};
|
alpar@1218
|
150 |
|
alpar@1218
|
151 |
typedef TR Traits;
|
alpar@774
|
152 |
///The type of the underlying graph.
|
alpar@1218
|
153 |
typedef typename TR::Graph Graph;
|
alpar@911
|
154 |
///\e
|
alpar@774
|
155 |
typedef typename Graph::Node Node;
|
alpar@911
|
156 |
///\e
|
alpar@774
|
157 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@911
|
158 |
///\e
|
alpar@774
|
159 |
typedef typename Graph::Edge Edge;
|
alpar@911
|
160 |
///\e
|
alpar@774
|
161 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
alpar@774
|
162 |
|
alpar@774
|
163 |
///\brief The type of the map that stores the last
|
alpar@774
|
164 |
///edges of the shortest paths.
|
alpar@1218
|
165 |
typedef typename TR::PredMap PredMap;
|
alpar@1218
|
166 |
///The type of the map indicating which nodes are reached.
|
alpar@1218
|
167 |
typedef typename TR::ReachedMap ReachedMap;
|
alpar@1218
|
168 |
///The type of the map indicating which nodes are processed.
|
alpar@1218
|
169 |
typedef typename TR::ProcessedMap ProcessedMap;
|
alpar@774
|
170 |
///The type of the map that stores the dists of the nodes.
|
alpar@1218
|
171 |
typedef typename TR::DistMap DistMap;
|
alpar@774
|
172 |
private:
|
alpar@802
|
173 |
/// Pointer to the underlying graph.
|
alpar@774
|
174 |
const Graph *G;
|
alpar@802
|
175 |
///Pointer to the map of predecessors edges.
|
alpar@1218
|
176 |
PredMap *_pred;
|
alpar@1218
|
177 |
///Indicates if \ref _pred is locally allocated (\c true) or not.
|
alpar@1218
|
178 |
bool local_pred;
|
alpar@802
|
179 |
///Pointer to the map of distances.
|
alpar@1218
|
180 |
DistMap *_dist;
|
alpar@1218
|
181 |
///Indicates if \ref _dist is locally allocated (\c true) or not.
|
alpar@1218
|
182 |
bool local_dist;
|
alpar@1218
|
183 |
///Pointer to the map of reached status of the nodes.
|
alpar@1218
|
184 |
ReachedMap *_reached;
|
alpar@1218
|
185 |
///Indicates if \ref _reached is locally allocated (\c true) or not.
|
alpar@1218
|
186 |
bool local_reached;
|
alpar@1218
|
187 |
///Pointer to the map of processed status of the nodes.
|
alpar@1218
|
188 |
ProcessedMap *_processed;
|
alpar@1218
|
189 |
///Indicates if \ref _processed is locally allocated (\c true) or not.
|
alpar@1218
|
190 |
bool local_processed;
|
alpar@774
|
191 |
|
alpar@1218
|
192 |
std::vector<typename Graph::Node> _queue;
|
alpar@1218
|
193 |
int _queue_head,_queue_tail,_queue_next_dist;
|
alpar@1218
|
194 |
int _curr_dist;
|
alpar@774
|
195 |
|
alpar@1218
|
196 |
///Creates the maps if necessary.
|
alpar@1218
|
197 |
|
alpar@1218
|
198 |
///\todo Better memory allocation (instead of new).
|
alpar@1218
|
199 |
void create_maps()
|
alpar@774
|
200 |
{
|
alpar@1218
|
201 |
if(!_pred) {
|
alpar@1218
|
202 |
local_pred = true;
|
alpar@1218
|
203 |
_pred = Traits::createPredMap(*G);
|
alpar@774
|
204 |
}
|
alpar@1218
|
205 |
if(!_dist) {
|
alpar@1218
|
206 |
local_dist = true;
|
alpar@1218
|
207 |
_dist = Traits::createDistMap(*G);
|
alpar@774
|
208 |
}
|
alpar@1218
|
209 |
if(!_reached) {
|
alpar@1218
|
210 |
local_reached = true;
|
alpar@1218
|
211 |
_reached = Traits::createReachedMap(*G);
|
alpar@1218
|
212 |
}
|
alpar@1218
|
213 |
if(!_processed) {
|
alpar@1218
|
214 |
local_processed = true;
|
alpar@1218
|
215 |
_processed = Traits::createProcessedMap(*G);
|
alpar@774
|
216 |
}
|
alpar@774
|
217 |
}
|
deba@1710
|
218 |
|
deba@1710
|
219 |
protected:
|
alpar@774
|
220 |
|
deba@1710
|
221 |
Bfs() {}
|
deba@1710
|
222 |
|
deba@1710
|
223 |
public:
|
alpar@1218
|
224 |
|
deba@1710
|
225 |
typedef Bfs Create;
|
deba@1710
|
226 |
|
alpar@1218
|
227 |
///\name Named template parameters
|
alpar@1218
|
228 |
|
alpar@1218
|
229 |
///@{
|
alpar@1218
|
230 |
|
alpar@1218
|
231 |
template <class T>
|
alpar@1218
|
232 |
struct DefPredMapTraits : public Traits {
|
alpar@1218
|
233 |
typedef T PredMap;
|
deba@1799
|
234 |
static PredMap *createPredMap(const Graph &)
|
alpar@1218
|
235 |
{
|
alpar@1218
|
236 |
throw UninitializedParameter();
|
alpar@1218
|
237 |
}
|
alpar@1218
|
238 |
};
|
alpar@1218
|
239 |
///\ref named-templ-param "Named parameter" for setting PredMap type
|
alpar@1218
|
240 |
|
alpar@1218
|
241 |
///\ref named-templ-param "Named parameter" for setting PredMap type
|
alpar@1218
|
242 |
///
|
alpar@1218
|
243 |
template <class T>
|
deba@1709
|
244 |
struct DefPredMap : public Bfs< Graph, DefPredMapTraits<T> > {
|
deba@1709
|
245 |
typedef Bfs< Graph, DefPredMapTraits<T> > Create;
|
deba@1709
|
246 |
};
|
alpar@1218
|
247 |
|
alpar@1218
|
248 |
template <class T>
|
alpar@1218
|
249 |
struct DefDistMapTraits : public Traits {
|
alpar@1218
|
250 |
typedef T DistMap;
|
deba@1799
|
251 |
static DistMap *createDistMap(const Graph &)
|
alpar@1218
|
252 |
{
|
alpar@1218
|
253 |
throw UninitializedParameter();
|
alpar@1218
|
254 |
}
|
alpar@1218
|
255 |
};
|
alpar@1218
|
256 |
///\ref named-templ-param "Named parameter" for setting DistMap type
|
alpar@1218
|
257 |
|
alpar@1218
|
258 |
///\ref named-templ-param "Named parameter" for setting DistMap type
|
alpar@1218
|
259 |
///
|
alpar@1218
|
260 |
template <class T>
|
deba@1709
|
261 |
struct DefDistMap : public Bfs< Graph, DefDistMapTraits<T> > {
|
deba@1709
|
262 |
typedef Bfs< Graph, DefDistMapTraits<T> > Create;
|
deba@1709
|
263 |
};
|
alpar@1218
|
264 |
|
alpar@1218
|
265 |
template <class T>
|
alpar@1218
|
266 |
struct DefReachedMapTraits : public Traits {
|
alpar@1218
|
267 |
typedef T ReachedMap;
|
deba@1799
|
268 |
static ReachedMap *createReachedMap(const Graph &)
|
alpar@1218
|
269 |
{
|
alpar@1218
|
270 |
throw UninitializedParameter();
|
alpar@1218
|
271 |
}
|
alpar@1218
|
272 |
};
|
alpar@1218
|
273 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type
|
alpar@1218
|
274 |
|
alpar@1218
|
275 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type
|
alpar@1218
|
276 |
///
|
alpar@1218
|
277 |
template <class T>
|
deba@1709
|
278 |
struct DefReachedMap : public Bfs< Graph, DefReachedMapTraits<T> > {
|
deba@1709
|
279 |
typedef Bfs< Graph, DefReachedMapTraits<T> > Create;
|
deba@1709
|
280 |
};
|
alpar@1218
|
281 |
|
alpar@1218
|
282 |
template <class T>
|
alpar@1218
|
283 |
struct DefProcessedMapTraits : public Traits {
|
alpar@1218
|
284 |
typedef T ProcessedMap;
|
deba@2033
|
285 |
static ProcessedMap *createProcessedMap(const Graph &)
|
alpar@1218
|
286 |
{
|
alpar@1218
|
287 |
throw UninitializedParameter();
|
alpar@1218
|
288 |
}
|
alpar@1218
|
289 |
};
|
alpar@1218
|
290 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type
|
alpar@1218
|
291 |
|
alpar@1218
|
292 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type
|
alpar@1218
|
293 |
///
|
alpar@1218
|
294 |
template <class T>
|
deba@1709
|
295 |
struct DefProcessedMap : public Bfs< Graph, DefProcessedMapTraits<T> > {
|
deba@1709
|
296 |
typedef Bfs< Graph, DefProcessedMapTraits<T> > Create;
|
deba@1709
|
297 |
};
|
alpar@1218
|
298 |
|
alpar@1218
|
299 |
struct DefGraphProcessedMapTraits : public Traits {
|
alpar@1218
|
300 |
typedef typename Graph::template NodeMap<bool> ProcessedMap;
|
alpar@1218
|
301 |
static ProcessedMap *createProcessedMap(const Graph &G)
|
alpar@1218
|
302 |
{
|
alpar@1218
|
303 |
return new ProcessedMap(G);
|
alpar@1218
|
304 |
}
|
alpar@1218
|
305 |
};
|
alpar@1218
|
306 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
307 |
///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
|
alpar@1218
|
308 |
///
|
alpar@1218
|
309 |
///\ref named-templ-param "Named parameter"
|
alpar@1218
|
310 |
///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
|
jacint@1270
|
311 |
///If you don't set it explicitly, it will be automatically allocated.
|
alpar@1218
|
312 |
template <class T>
|
deba@1709
|
313 |
struct DefProcessedMapToBeDefaultMap :
|
deba@1709
|
314 |
public Bfs< Graph, DefGraphProcessedMapTraits> {
|
deba@1709
|
315 |
typedef Bfs< Graph, DefGraphProcessedMapTraits> Create;
|
deba@1709
|
316 |
};
|
alpar@1218
|
317 |
|
alpar@1218
|
318 |
///@}
|
alpar@1218
|
319 |
|
alpar@1218
|
320 |
public:
|
alpar@1218
|
321 |
|
alpar@802
|
322 |
///Constructor.
|
alpar@802
|
323 |
|
alpar@802
|
324 |
///\param _G the graph the algorithm will run on.
|
alpar@911
|
325 |
///
|
alpar@774
|
326 |
Bfs(const Graph& _G) :
|
alpar@774
|
327 |
G(&_G),
|
alpar@1218
|
328 |
_pred(NULL), local_pred(false),
|
alpar@1218
|
329 |
_dist(NULL), local_dist(false),
|
alpar@1218
|
330 |
_reached(NULL), local_reached(false),
|
alpar@1218
|
331 |
_processed(NULL), local_processed(false)
|
alpar@774
|
332 |
{ }
|
alpar@774
|
333 |
|
alpar@802
|
334 |
///Destructor.
|
alpar@774
|
335 |
~Bfs()
|
alpar@774
|
336 |
{
|
alpar@1218
|
337 |
if(local_pred) delete _pred;
|
alpar@1218
|
338 |
if(local_dist) delete _dist;
|
alpar@1218
|
339 |
if(local_reached) delete _reached;
|
alpar@1218
|
340 |
if(local_processed) delete _processed;
|
alpar@774
|
341 |
}
|
alpar@774
|
342 |
|
alpar@774
|
343 |
///Sets the map storing the predecessor edges.
|
alpar@774
|
344 |
|
alpar@774
|
345 |
///Sets the map storing the predecessor edges.
|
alpar@774
|
346 |
///If you don't use this function before calling \ref run(),
|
jacint@1270
|
347 |
///it will allocate one. The destructor deallocates this
|
alpar@774
|
348 |
///automatically allocated map, of course.
|
alpar@774
|
349 |
///\return <tt> (*this) </tt>
|
alpar@1218
|
350 |
Bfs &predMap(PredMap &m)
|
alpar@774
|
351 |
{
|
alpar@1218
|
352 |
if(local_pred) {
|
alpar@1218
|
353 |
delete _pred;
|
alpar@1218
|
354 |
local_pred=false;
|
alpar@774
|
355 |
}
|
alpar@1218
|
356 |
_pred = &m;
|
alpar@774
|
357 |
return *this;
|
alpar@774
|
358 |
}
|
alpar@774
|
359 |
|
alpar@1218
|
360 |
///Sets the map indicating the reached nodes.
|
alpar@774
|
361 |
|
alpar@1218
|
362 |
///Sets the map indicating the reached nodes.
|
alpar@774
|
363 |
///If you don't use this function before calling \ref run(),
|
jacint@1270
|
364 |
///it will allocate one. The destructor deallocates this
|
alpar@774
|
365 |
///automatically allocated map, of course.
|
alpar@774
|
366 |
///\return <tt> (*this) </tt>
|
alpar@1218
|
367 |
Bfs &reachedMap(ReachedMap &m)
|
alpar@774
|
368 |
{
|
alpar@1218
|
369 |
if(local_reached) {
|
alpar@1218
|
370 |
delete _reached;
|
alpar@1218
|
371 |
local_reached=false;
|
alpar@774
|
372 |
}
|
alpar@1218
|
373 |
_reached = &m;
|
alpar@774
|
374 |
return *this;
|
alpar@774
|
375 |
}
|
alpar@774
|
376 |
|
alpar@1218
|
377 |
///Sets the map indicating the processed nodes.
|
alpar@1218
|
378 |
|
alpar@1218
|
379 |
///Sets the map indicating the processed nodes.
|
alpar@1218
|
380 |
///If you don't use this function before calling \ref run(),
|
jacint@1270
|
381 |
///it will allocate one. The destructor deallocates this
|
alpar@1218
|
382 |
///automatically allocated map, of course.
|
alpar@1218
|
383 |
///\return <tt> (*this) </tt>
|
alpar@1218
|
384 |
Bfs &processedMap(ProcessedMap &m)
|
alpar@1218
|
385 |
{
|
alpar@1218
|
386 |
if(local_processed) {
|
alpar@1218
|
387 |
delete _processed;
|
alpar@1218
|
388 |
local_processed=false;
|
alpar@1218
|
389 |
}
|
alpar@1218
|
390 |
_processed = &m;
|
alpar@1218
|
391 |
return *this;
|
alpar@1218
|
392 |
}
|
alpar@1218
|
393 |
|
alpar@774
|
394 |
///Sets the map storing the distances calculated by the algorithm.
|
alpar@774
|
395 |
|
alpar@774
|
396 |
///Sets the map storing the distances calculated by the algorithm.
|
alpar@774
|
397 |
///If you don't use this function before calling \ref run(),
|
jacint@1270
|
398 |
///it will allocate one. The destructor deallocates this
|
alpar@774
|
399 |
///automatically allocated map, of course.
|
alpar@774
|
400 |
///\return <tt> (*this) </tt>
|
alpar@1218
|
401 |
Bfs &distMap(DistMap &m)
|
alpar@774
|
402 |
{
|
alpar@1218
|
403 |
if(local_dist) {
|
alpar@1218
|
404 |
delete _dist;
|
alpar@1218
|
405 |
local_dist=false;
|
alpar@774
|
406 |
}
|
alpar@1218
|
407 |
_dist = &m;
|
alpar@774
|
408 |
return *this;
|
alpar@774
|
409 |
}
|
alpar@774
|
410 |
|
alpar@1218
|
411 |
public:
|
alpar@1218
|
412 |
///\name Execution control
|
alpar@1218
|
413 |
///The simplest way to execute the algorithm is to use
|
alpar@1218
|
414 |
///one of the member functions called \c run(...).
|
alpar@1218
|
415 |
///\n
|
alpar@1218
|
416 |
///If you need more control on the execution,
|
alpar@1218
|
417 |
///first you must call \ref init(), then you can add several source nodes
|
alpar@1218
|
418 |
///with \ref addSource().
|
alpar@1218
|
419 |
///Finally \ref start() will perform the actual path
|
alpar@1218
|
420 |
///computation.
|
alpar@1218
|
421 |
|
alpar@1218
|
422 |
///@{
|
alpar@1218
|
423 |
|
alpar@1218
|
424 |
///Initializes the internal data structures.
|
alpar@1218
|
425 |
|
alpar@1218
|
426 |
///Initializes the internal data structures.
|
alpar@1218
|
427 |
///
|
alpar@1218
|
428 |
void init()
|
alpar@1218
|
429 |
{
|
alpar@1218
|
430 |
create_maps();
|
alpar@1218
|
431 |
_queue.resize(countNodes(*G));
|
alpar@1218
|
432 |
_queue_head=_queue_tail=0;
|
alpar@1218
|
433 |
_curr_dist=1;
|
alpar@774
|
434 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
alpar@1218
|
435 |
_pred->set(u,INVALID);
|
alpar@1218
|
436 |
_reached->set(u,false);
|
alpar@1218
|
437 |
_processed->set(u,false);
|
alpar@774
|
438 |
}
|
alpar@774
|
439 |
}
|
alpar@774
|
440 |
|
alpar@1218
|
441 |
///Adds a new source node.
|
alpar@774
|
442 |
|
alpar@1218
|
443 |
///Adds a new source node to the set of nodes to be processed.
|
alpar@1218
|
444 |
///
|
alpar@1218
|
445 |
void addSource(Node s)
|
alpar@1218
|
446 |
{
|
alpar@1218
|
447 |
if(!(*_reached)[s])
|
alpar@1218
|
448 |
{
|
alpar@1218
|
449 |
_reached->set(s,true);
|
alpar@1218
|
450 |
_pred->set(s,INVALID);
|
alpar@1218
|
451 |
_dist->set(s,0);
|
alpar@1218
|
452 |
_queue[_queue_head++]=s;
|
alpar@1218
|
453 |
_queue_next_dist=_queue_head;
|
alpar@1218
|
454 |
}
|
alpar@1218
|
455 |
}
|
alpar@1218
|
456 |
|
alpar@1218
|
457 |
///Processes the next node.
|
alpar@1218
|
458 |
|
alpar@1218
|
459 |
///Processes the next node.
|
alpar@1218
|
460 |
///
|
alpar@1516
|
461 |
///\return The processed node.
|
alpar@1516
|
462 |
///
|
alpar@1218
|
463 |
///\warning The queue must not be empty!
|
alpar@1516
|
464 |
Node processNextNode()
|
alpar@1218
|
465 |
{
|
alpar@1218
|
466 |
if(_queue_tail==_queue_next_dist) {
|
alpar@1218
|
467 |
_curr_dist++;
|
alpar@1218
|
468 |
_queue_next_dist=_queue_head;
|
alpar@1218
|
469 |
}
|
alpar@1218
|
470 |
Node n=_queue[_queue_tail++];
|
alpar@1218
|
471 |
_processed->set(n,true);
|
alpar@1218
|
472 |
Node m;
|
alpar@1218
|
473 |
for(OutEdgeIt e(*G,n);e!=INVALID;++e)
|
alpar@1218
|
474 |
if(!(*_reached)[m=G->target(e)]) {
|
alpar@1218
|
475 |
_queue[_queue_head++]=m;
|
alpar@1218
|
476 |
_reached->set(m,true);
|
alpar@1218
|
477 |
_pred->set(m,e);
|
alpar@1218
|
478 |
_dist->set(m,_curr_dist);
|
alpar@1218
|
479 |
}
|
alpar@1516
|
480 |
return n;
|
alpar@1218
|
481 |
}
|
deba@2300
|
482 |
|
deba@2300
|
483 |
///Processes the next node.
|
deba@2300
|
484 |
|
deba@2300
|
485 |
///Processes the next node. And checks that the given target node
|
deba@2300
|
486 |
///is reached. If the target node is reachable from the processed
|
deba@2300
|
487 |
///node then the reached parameter will be set true. The reached
|
deba@2300
|
488 |
///parameter should be initially false.
|
deba@2300
|
489 |
///
|
deba@2300
|
490 |
///\param target The target node.
|
deba@2300
|
491 |
///\retval reached Indicates that the target node is reached.
|
deba@2300
|
492 |
///\return The processed node.
|
deba@2300
|
493 |
///
|
deba@2300
|
494 |
///\warning The queue must not be empty!
|
deba@2300
|
495 |
Node processNextNode(Node target, bool& reached)
|
deba@2300
|
496 |
{
|
deba@2300
|
497 |
if(_queue_tail==_queue_next_dist) {
|
deba@2300
|
498 |
_curr_dist++;
|
deba@2300
|
499 |
_queue_next_dist=_queue_head;
|
deba@2300
|
500 |
}
|
deba@2300
|
501 |
Node n=_queue[_queue_tail++];
|
deba@2300
|
502 |
_processed->set(n,true);
|
deba@2300
|
503 |
Node m;
|
deba@2300
|
504 |
for(OutEdgeIt e(*G,n);e!=INVALID;++e)
|
deba@2300
|
505 |
if(!(*_reached)[m=G->target(e)]) {
|
deba@2300
|
506 |
_queue[_queue_head++]=m;
|
deba@2300
|
507 |
_reached->set(m,true);
|
deba@2300
|
508 |
_pred->set(m,e);
|
deba@2300
|
509 |
_dist->set(m,_curr_dist);
|
deba@2300
|
510 |
reached = reached || (target == m);
|
deba@2300
|
511 |
}
|
deba@2300
|
512 |
return n;
|
deba@2300
|
513 |
}
|
deba@2300
|
514 |
|
deba@2300
|
515 |
///Processes the next node.
|
deba@2300
|
516 |
|
deba@2300
|
517 |
///Processes the next node. And checks that at least one of
|
deba@2300
|
518 |
///reached node has true value in the \c nm nodemap. If one node
|
deba@2300
|
519 |
///with true value is reachable from the processed node then the
|
deba@2300
|
520 |
///reached parameter will be set true. The reached parameter
|
deba@2300
|
521 |
///should be initially false.
|
deba@2300
|
522 |
///
|
alpar@2350
|
523 |
///\param nm The nodemaps of possible targets.
|
deba@2300
|
524 |
///\retval reached Indicates that one of the target nodes is reached.
|
deba@2300
|
525 |
///\return The processed node.
|
deba@2300
|
526 |
///
|
deba@2300
|
527 |
///\warning The queue must not be empty!
|
deba@2300
|
528 |
template<class NM>
|
deba@2300
|
529 |
Node processNextNode(const NM& nm, bool& reached)
|
deba@2300
|
530 |
{
|
deba@2300
|
531 |
if(_queue_tail==_queue_next_dist) {
|
deba@2300
|
532 |
_curr_dist++;
|
deba@2300
|
533 |
_queue_next_dist=_queue_head;
|
deba@2300
|
534 |
}
|
deba@2300
|
535 |
Node n=_queue[_queue_tail++];
|
deba@2300
|
536 |
_processed->set(n,true);
|
deba@2300
|
537 |
Node m;
|
deba@2300
|
538 |
for(OutEdgeIt e(*G,n);e!=INVALID;++e)
|
deba@2300
|
539 |
if(!(*_reached)[m=G->target(e)]) {
|
deba@2300
|
540 |
_queue[_queue_head++]=m;
|
deba@2300
|
541 |
_reached->set(m,true);
|
deba@2300
|
542 |
_pred->set(m,e);
|
deba@2300
|
543 |
_dist->set(m,_curr_dist);
|
deba@2300
|
544 |
reached = reached || nm[m];
|
deba@2300
|
545 |
}
|
deba@2300
|
546 |
return n;
|
deba@2300
|
547 |
}
|
alpar@1218
|
548 |
|
alpar@1665
|
549 |
///Next node to be processed.
|
alpar@1665
|
550 |
|
alpar@1665
|
551 |
///Next node to be processed.
|
alpar@1665
|
552 |
///
|
alpar@1665
|
553 |
///\return The next node to be processed or INVALID if the queue is
|
alpar@1665
|
554 |
/// empty.
|
deba@1694
|
555 |
Node nextNode()
|
alpar@1665
|
556 |
{
|
alpar@1665
|
557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
|
alpar@1665
|
558 |
}
|
alpar@1665
|
559 |
|
alpar@1218
|
560 |
///\brief Returns \c false if there are nodes
|
alpar@1218
|
561 |
///to be processed in the queue
|
alpar@1218
|
562 |
///
|
alpar@1218
|
563 |
///Returns \c false if there are nodes
|
alpar@1218
|
564 |
///to be processed in the queue
|
alpar@1218
|
565 |
bool emptyQueue() { return _queue_tail==_queue_head; }
|
alpar@1218
|
566 |
///Returns the number of the nodes to be processed.
|
alpar@1218
|
567 |
|
alpar@1218
|
568 |
///Returns the number of the nodes to be processed in the queue.
|
alpar@1218
|
569 |
///
|
alpar@1218
|
570 |
int queueSize() { return _queue_head-_queue_tail; }
|
alpar@1218
|
571 |
|
alpar@1218
|
572 |
///Executes the algorithm.
|
alpar@1218
|
573 |
|
alpar@1218
|
574 |
///Executes the algorithm.
|
alpar@1218
|
575 |
///
|
alpar@1218
|
576 |
///\pre init() must be called and at least one node should be added
|
alpar@1218
|
577 |
///with addSource() before using this function.
|
alpar@1218
|
578 |
///
|
alpar@1218
|
579 |
///This method runs the %BFS algorithm from the root node(s)
|
alpar@1218
|
580 |
///in order to
|
alpar@1218
|
581 |
///compute the
|
alpar@1218
|
582 |
///shortest path to each node. The algorithm computes
|
alpar@1218
|
583 |
///- The shortest path tree.
|
alpar@1218
|
584 |
///- The distance of each node from the root(s).
|
alpar@1218
|
585 |
///
|
alpar@1218
|
586 |
void start()
|
alpar@1218
|
587 |
{
|
alpar@1218
|
588 |
while ( !emptyQueue() ) processNextNode();
|
alpar@1218
|
589 |
}
|
alpar@1218
|
590 |
|
deba@2307
|
591 |
///Executes the algorithm until \c dest is reached.
|
alpar@1218
|
592 |
|
deba@2307
|
593 |
///Executes the algorithm until \c dest is reached.
|
alpar@1218
|
594 |
///
|
alpar@1218
|
595 |
///\pre init() must be called and at least one node should be added
|
alpar@1218
|
596 |
///with addSource() before using this function.
|
alpar@1218
|
597 |
///
|
alpar@1218
|
598 |
///This method runs the %BFS algorithm from the root node(s)
|
alpar@1218
|
599 |
///in order to
|
alpar@1218
|
600 |
///compute the
|
alpar@1218
|
601 |
///shortest path to \c dest. The algorithm computes
|
alpar@1218
|
602 |
///- The shortest path to \c dest.
|
alpar@1218
|
603 |
///- The distance of \c dest from the root(s).
|
alpar@1218
|
604 |
///
|
alpar@1218
|
605 |
void start(Node dest)
|
alpar@1218
|
606 |
{
|
deba@2300
|
607 |
bool reached = false;
|
deba@2300
|
608 |
while ( !emptyQueue() && !reached) processNextNode(dest, reached);
|
alpar@1218
|
609 |
}
|
alpar@1218
|
610 |
|
alpar@1218
|
611 |
///Executes the algorithm until a condition is met.
|
alpar@1218
|
612 |
|
alpar@1218
|
613 |
///Executes the algorithm until a condition is met.
|
alpar@1218
|
614 |
///
|
alpar@1218
|
615 |
///\pre init() must be called and at least one node should be added
|
alpar@1218
|
616 |
///with addSource() before using this function.
|
alpar@1218
|
617 |
///
|
deba@2306
|
618 |
///\param nm must be a bool (or convertible) node map. The
|
deba@2307
|
619 |
///algorithm will stop when it reached a node \c v with
|
alpar@2350
|
620 |
/// <tt>nm[v]</tt> true.
|
deba@2300
|
621 |
///\todo query the reached target
|
alpar@1218
|
622 |
template<class NM>
|
deba@1755
|
623 |
void start(const NM &nm)
|
deba@1755
|
624 |
{
|
deba@2300
|
625 |
bool reached = false;
|
deba@2300
|
626 |
while ( !emptyQueue() && !reached) processNextNode(nm, reached);
|
deba@1755
|
627 |
}
|
alpar@1218
|
628 |
|
alpar@1218
|
629 |
///Runs %BFS algorithm from node \c s.
|
alpar@1218
|
630 |
|
alpar@1218
|
631 |
///This method runs the %BFS algorithm from a root node \c s
|
alpar@1218
|
632 |
///in order to
|
alpar@1218
|
633 |
///compute the
|
alpar@1218
|
634 |
///shortest path to each node. The algorithm computes
|
alpar@1218
|
635 |
///- The shortest path tree.
|
alpar@1218
|
636 |
///- The distance of each node from the root.
|
alpar@1218
|
637 |
///
|
deba@2306
|
638 |
///\note b.run(s) is just a shortcut of the following code.
|
alpar@1218
|
639 |
///\code
|
deba@2306
|
640 |
/// b.init();
|
deba@2306
|
641 |
/// b.addSource(s);
|
deba@2306
|
642 |
/// b.start();
|
alpar@1218
|
643 |
///\endcode
|
alpar@1218
|
644 |
void run(Node s) {
|
alpar@1218
|
645 |
init();
|
alpar@1218
|
646 |
addSource(s);
|
alpar@1218
|
647 |
start();
|
alpar@1218
|
648 |
}
|
alpar@1218
|
649 |
|
alpar@1218
|
650 |
///Finds the shortest path between \c s and \c t.
|
alpar@1218
|
651 |
|
alpar@1218
|
652 |
///Finds the shortest path between \c s and \c t.
|
alpar@1218
|
653 |
///
|
alpar@1218
|
654 |
///\return The length of the shortest s---t path if there exists one,
|
alpar@1218
|
655 |
///0 otherwise.
|
deba@2306
|
656 |
///\note Apart from the return value, b.run(s) is
|
alpar@1218
|
657 |
///just a shortcut of the following code.
|
alpar@1218
|
658 |
///\code
|
deba@2306
|
659 |
/// b.init();
|
deba@2306
|
660 |
/// b.addSource(s);
|
deba@2306
|
661 |
/// b.start(t);
|
alpar@1218
|
662 |
///\endcode
|
alpar@1218
|
663 |
int run(Node s,Node t) {
|
alpar@1218
|
664 |
init();
|
alpar@1218
|
665 |
addSource(s);
|
alpar@1218
|
666 |
start(t);
|
deba@2300
|
667 |
return reached(t)? _curr_dist : 0;
|
alpar@1218
|
668 |
}
|
alpar@1218
|
669 |
|
alpar@1218
|
670 |
///@}
|
alpar@1218
|
671 |
|
alpar@1218
|
672 |
///\name Query Functions
|
alpar@1218
|
673 |
///The result of the %BFS algorithm can be obtained using these
|
alpar@1218
|
674 |
///functions.\n
|
alpar@1218
|
675 |
///Before the use of these functions,
|
deba@2306
|
676 |
///either run() or start() must be calleb.
|
alpar@1218
|
677 |
|
alpar@1218
|
678 |
///@{
|
alpar@1218
|
679 |
|
deba@2335
|
680 |
typedef PredMapPath<Graph, PredMap> Path;
|
deba@2335
|
681 |
|
deba@2335
|
682 |
///Gives back the shortest path.
|
alpar@1283
|
683 |
|
deba@2335
|
684 |
///Gives back the shortest path.
|
deba@2335
|
685 |
///\pre The \c t should be reachable from the source.
|
deba@2335
|
686 |
Path path(Node t)
|
alpar@1283
|
687 |
{
|
deba@2335
|
688 |
return Path(*G, *_pred, t);
|
alpar@1283
|
689 |
}
|
alpar@1283
|
690 |
|
alpar@1218
|
691 |
///The distance of a node from the root(s).
|
alpar@1218
|
692 |
|
alpar@1218
|
693 |
///Returns the distance of a node from the root(s).
|
alpar@774
|
694 |
///\pre \ref run() must be called before using this function.
|
alpar@1218
|
695 |
///\warning If node \c v in unreachable from the root(s) the return value
|
jacint@1270
|
696 |
///of this function is undefined.
|
alpar@1218
|
697 |
int dist(Node v) const { return (*_dist)[v]; }
|
alpar@774
|
698 |
|
alpar@1218
|
699 |
///Returns the 'previous edge' of the shortest path tree.
|
alpar@774
|
700 |
|
alpar@1218
|
701 |
///For a node \c v it returns the 'previous edge'
|
alpar@1218
|
702 |
///of the shortest path tree,
|
alpar@1218
|
703 |
///i.e. it returns the last edge of a shortest path from the root(s) to \c
|
alpar@774
|
704 |
///v. It is \ref INVALID
|
alpar@1218
|
705 |
///if \c v is unreachable from the root(s) or \c v is a root. The
|
alpar@1218
|
706 |
///shortest path tree used here is equal to the shortest path tree used in
|
alpar@1631
|
707 |
///\ref predNode().
|
alpar@1218
|
708 |
///\pre Either \ref run() or \ref start() must be called before using
|
alpar@774
|
709 |
///this function.
|
deba@1763
|
710 |
Edge predEdge(Node v) const { return (*_pred)[v];}
|
alpar@774
|
711 |
|
alpar@1218
|
712 |
///Returns the 'previous node' of the shortest path tree.
|
alpar@774
|
713 |
|
alpar@1218
|
714 |
///For a node \c v it returns the 'previous node'
|
alpar@1218
|
715 |
///of the shortest path tree,
|
alpar@774
|
716 |
///i.e. it returns the last but one node from a shortest path from the
|
alpar@1218
|
717 |
///root(a) to \c /v.
|
alpar@1218
|
718 |
///It is INVALID if \c v is unreachable from the root(s) or
|
alpar@1218
|
719 |
///if \c v itself a root.
|
alpar@1218
|
720 |
///The shortest path tree used here is equal to the shortest path
|
deba@1763
|
721 |
///tree used in \ref predEdge().
|
alpar@1218
|
722 |
///\pre Either \ref run() or \ref start() must be called before
|
alpar@774
|
723 |
///using this function.
|
alpar@1218
|
724 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
alpar@1218
|
725 |
G->source((*_pred)[v]); }
|
alpar@774
|
726 |
|
alpar@774
|
727 |
///Returns a reference to the NodeMap of distances.
|
alpar@1218
|
728 |
|
alpar@1218
|
729 |
///Returns a reference to the NodeMap of distances.
|
alpar@1218
|
730 |
///\pre Either \ref run() or \ref init() must
|
alpar@774
|
731 |
///be called before using this function.
|
alpar@1218
|
732 |
const DistMap &distMap() const { return *_dist;}
|
alpar@774
|
733 |
|
alpar@1218
|
734 |
///Returns a reference to the shortest path tree map.
|
alpar@774
|
735 |
|
alpar@774
|
736 |
///Returns a reference to the NodeMap of the edges of the
|
alpar@1218
|
737 |
///shortest path tree.
|
alpar@1218
|
738 |
///\pre Either \ref run() or \ref init()
|
alpar@1218
|
739 |
///must be called before using this function.
|
alpar@1218
|
740 |
const PredMap &predMap() const { return *_pred;}
|
alpar@774
|
741 |
|
alpar@774
|
742 |
///Checks if a node is reachable from the root.
|
alpar@774
|
743 |
|
alpar@774
|
744 |
///Returns \c true if \c v is reachable from the root.
|
jacint@1270
|
745 |
///\warning The source nodes are indicated as unreached.
|
alpar@1218
|
746 |
///\pre Either \ref run() or \ref start()
|
alpar@1218
|
747 |
///must be called before using this function.
|
alpar@774
|
748 |
///
|
alpar@1218
|
749 |
bool reached(Node v) { return (*_reached)[v]; }
|
alpar@1218
|
750 |
|
alpar@1218
|
751 |
///@}
|
alpar@1218
|
752 |
};
|
alpar@1218
|
753 |
|
alpar@1218
|
754 |
///Default traits class of Bfs function.
|
alpar@1218
|
755 |
|
alpar@1218
|
756 |
///Default traits class of Bfs function.
|
alpar@1218
|
757 |
///\param GR Graph type.
|
alpar@1218
|
758 |
template<class GR>
|
alpar@1218
|
759 |
struct BfsWizardDefaultTraits
|
alpar@1218
|
760 |
{
|
alpar@1218
|
761 |
///The graph type the algorithm runs on.
|
alpar@1218
|
762 |
typedef GR Graph;
|
alpar@1218
|
763 |
///\brief The type of the map that stores the last
|
alpar@1218
|
764 |
///edges of the shortest paths.
|
alpar@1218
|
765 |
///
|
alpar@1218
|
766 |
///The type of the map that stores the last
|
alpar@1218
|
767 |
///edges of the shortest paths.
|
alpar@2260
|
768 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@774
|
769 |
///
|
alpar@1218
|
770 |
typedef NullMap<typename Graph::Node,typename GR::Edge> PredMap;
|
alpar@1218
|
771 |
///Instantiates a PredMap.
|
alpar@1218
|
772 |
|
alpar@1218
|
773 |
///This function instantiates a \ref PredMap.
|
alpar@1536
|
774 |
///\param g is the graph, to which we would like to define the PredMap.
|
alpar@1218
|
775 |
///\todo The graph alone may be insufficient to initialize
|
alpar@1536
|
776 |
#ifdef DOXYGEN
|
alpar@1536
|
777 |
static PredMap *createPredMap(const GR &g)
|
alpar@1536
|
778 |
#else
|
alpar@1367
|
779 |
static PredMap *createPredMap(const GR &)
|
alpar@1536
|
780 |
#endif
|
alpar@1218
|
781 |
{
|
alpar@1218
|
782 |
return new PredMap();
|
alpar@1218
|
783 |
}
|
alpar@1218
|
784 |
|
alpar@1218
|
785 |
///The type of the map that indicates which nodes are processed.
|
alpar@1218
|
786 |
|
alpar@1218
|
787 |
///The type of the map that indicates which nodes are processed.
|
alpar@2260
|
788 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
789 |
///\todo named parameter to set this type, function to read and write.
|
alpar@1218
|
790 |
typedef NullMap<typename Graph::Node,bool> ProcessedMap;
|
alpar@1218
|
791 |
///Instantiates a ProcessedMap.
|
alpar@1218
|
792 |
|
alpar@1218
|
793 |
///This function instantiates a \ref ProcessedMap.
|
alpar@1536
|
794 |
///\param g is the graph, to which
|
alpar@1218
|
795 |
///we would like to define the \ref ProcessedMap
|
alpar@1536
|
796 |
#ifdef DOXYGEN
|
alpar@1536
|
797 |
static ProcessedMap *createProcessedMap(const GR &g)
|
alpar@1536
|
798 |
#else
|
alpar@1367
|
799 |
static ProcessedMap *createProcessedMap(const GR &)
|
alpar@1536
|
800 |
#endif
|
alpar@1218
|
801 |
{
|
alpar@1218
|
802 |
return new ProcessedMap();
|
alpar@1218
|
803 |
}
|
alpar@1218
|
804 |
///The type of the map that indicates which nodes are reached.
|
alpar@1218
|
805 |
|
alpar@1218
|
806 |
///The type of the map that indicates which nodes are reached.
|
alpar@2260
|
807 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
808 |
///\todo named parameter to set this type, function to read and write.
|
alpar@1218
|
809 |
typedef typename Graph::template NodeMap<bool> ReachedMap;
|
alpar@1218
|
810 |
///Instantiates a ReachedMap.
|
alpar@1218
|
811 |
|
alpar@1218
|
812 |
///This function instantiates a \ref ReachedMap.
|
alpar@1218
|
813 |
///\param G is the graph, to which
|
alpar@1218
|
814 |
///we would like to define the \ref ReachedMap.
|
alpar@1218
|
815 |
static ReachedMap *createReachedMap(const GR &G)
|
alpar@1218
|
816 |
{
|
alpar@1218
|
817 |
return new ReachedMap(G);
|
alpar@1218
|
818 |
}
|
alpar@1218
|
819 |
///The type of the map that stores the dists of the nodes.
|
alpar@1218
|
820 |
|
alpar@1218
|
821 |
///The type of the map that stores the dists of the nodes.
|
alpar@2260
|
822 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
823 |
///
|
alpar@1218
|
824 |
typedef NullMap<typename Graph::Node,int> DistMap;
|
alpar@1218
|
825 |
///Instantiates a DistMap.
|
alpar@1218
|
826 |
|
alpar@1218
|
827 |
///This function instantiates a \ref DistMap.
|
alpar@1536
|
828 |
///\param g is the graph, to which we would like to define the \ref DistMap
|
alpar@1536
|
829 |
#ifdef DOXYGEN
|
alpar@1536
|
830 |
static DistMap *createDistMap(const GR &g)
|
alpar@1536
|
831 |
#else
|
alpar@1367
|
832 |
static DistMap *createDistMap(const GR &)
|
alpar@1536
|
833 |
#endif
|
alpar@1218
|
834 |
{
|
alpar@1218
|
835 |
return new DistMap();
|
alpar@1218
|
836 |
}
|
alpar@1218
|
837 |
};
|
alpar@1218
|
838 |
|
alpar@1218
|
839 |
/// Default traits used by \ref BfsWizard
|
alpar@1218
|
840 |
|
alpar@1218
|
841 |
/// To make it easier to use Bfs algorithm
|
alpar@1218
|
842 |
///we have created a wizard class.
|
alpar@1218
|
843 |
/// This \ref BfsWizard class needs default traits,
|
alpar@1218
|
844 |
///as well as the \ref Bfs class.
|
alpar@1218
|
845 |
/// The \ref BfsWizardBase is a class to be the default traits of the
|
alpar@1218
|
846 |
/// \ref BfsWizard class.
|
alpar@1218
|
847 |
template<class GR>
|
alpar@1218
|
848 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR>
|
alpar@1218
|
849 |
{
|
alpar@1218
|
850 |
|
alpar@1218
|
851 |
typedef BfsWizardDefaultTraits<GR> Base;
|
alpar@1218
|
852 |
protected:
|
alpar@1218
|
853 |
/// Type of the nodes in the graph.
|
alpar@1218
|
854 |
typedef typename Base::Graph::Node Node;
|
alpar@1218
|
855 |
|
alpar@1218
|
856 |
/// Pointer to the underlying graph.
|
alpar@1218
|
857 |
void *_g;
|
alpar@1218
|
858 |
///Pointer to the map of reached nodes.
|
alpar@1218
|
859 |
void *_reached;
|
alpar@1218
|
860 |
///Pointer to the map of processed nodes.
|
alpar@1218
|
861 |
void *_processed;
|
alpar@1218
|
862 |
///Pointer to the map of predecessors edges.
|
alpar@1218
|
863 |
void *_pred;
|
alpar@1218
|
864 |
///Pointer to the map of distances.
|
alpar@1218
|
865 |
void *_dist;
|
alpar@1218
|
866 |
///Pointer to the source node.
|
alpar@1218
|
867 |
Node _source;
|
alpar@1218
|
868 |
|
alpar@1218
|
869 |
public:
|
alpar@1218
|
870 |
/// Constructor.
|
alpar@1218
|
871 |
|
alpar@1218
|
872 |
/// This constructor does not require parameters, therefore it initiates
|
alpar@1218
|
873 |
/// all of the attributes to default values (0, INVALID).
|
alpar@1218
|
874 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
|
alpar@1218
|
875 |
_dist(0), _source(INVALID) {}
|
alpar@1218
|
876 |
|
alpar@1218
|
877 |
/// Constructor.
|
alpar@1218
|
878 |
|
alpar@1218
|
879 |
/// This constructor requires some parameters,
|
alpar@1218
|
880 |
/// listed in the parameters list.
|
alpar@1218
|
881 |
/// Others are initiated to 0.
|
alpar@1218
|
882 |
/// \param g is the initial value of \ref _g
|
alpar@1218
|
883 |
/// \param s is the initial value of \ref _source
|
alpar@1218
|
884 |
BfsWizardBase(const GR &g, Node s=INVALID) :
|
alpar@1218
|
885 |
_g((void *)&g), _reached(0), _processed(0), _pred(0),
|
alpar@1218
|
886 |
_dist(0), _source(s) {}
|
alpar@1218
|
887 |
|
alpar@1218
|
888 |
};
|
alpar@1218
|
889 |
|
alpar@1218
|
890 |
/// A class to make the usage of Bfs algorithm easier
|
alpar@1218
|
891 |
|
alpar@1218
|
892 |
/// This class is created to make it easier to use Bfs algorithm.
|
alpar@1218
|
893 |
/// It uses the functions and features of the plain \ref Bfs,
|
alpar@1218
|
894 |
/// but it is much simpler to use it.
|
alpar@1218
|
895 |
///
|
alpar@1218
|
896 |
/// Simplicity means that the way to change the types defined
|
alpar@1218
|
897 |
/// in the traits class is based on functions that returns the new class
|
alpar@1218
|
898 |
/// and not on templatable built-in classes.
|
alpar@1218
|
899 |
/// When using the plain \ref Bfs
|
alpar@1218
|
900 |
/// the new class with the modified type comes from
|
alpar@1218
|
901 |
/// the original class by using the ::
|
alpar@1218
|
902 |
/// operator. In the case of \ref BfsWizard only
|
alpar@1218
|
903 |
/// a function have to be called and it will
|
alpar@1218
|
904 |
/// return the needed class.
|
alpar@1218
|
905 |
///
|
alpar@1218
|
906 |
/// It does not have own \ref run method. When its \ref run method is called
|
alpar@1218
|
907 |
/// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run
|
alpar@1218
|
908 |
/// method of it.
|
alpar@1218
|
909 |
template<class TR>
|
alpar@1218
|
910 |
class BfsWizard : public TR
|
alpar@1218
|
911 |
{
|
alpar@1218
|
912 |
typedef TR Base;
|
alpar@1218
|
913 |
|
alpar@1218
|
914 |
///The type of the underlying graph.
|
alpar@1218
|
915 |
typedef typename TR::Graph Graph;
|
alpar@1218
|
916 |
//\e
|
alpar@1218
|
917 |
typedef typename Graph::Node Node;
|
alpar@1218
|
918 |
//\e
|
alpar@1218
|
919 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@1218
|
920 |
//\e
|
alpar@1218
|
921 |
typedef typename Graph::Edge Edge;
|
alpar@1218
|
922 |
//\e
|
alpar@1218
|
923 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
alpar@1218
|
924 |
|
alpar@1218
|
925 |
///\brief The type of the map that stores
|
alpar@1218
|
926 |
///the reached nodes
|
alpar@1218
|
927 |
typedef typename TR::ReachedMap ReachedMap;
|
alpar@1218
|
928 |
///\brief The type of the map that stores
|
alpar@1218
|
929 |
///the processed nodes
|
alpar@1218
|
930 |
typedef typename TR::ProcessedMap ProcessedMap;
|
alpar@1218
|
931 |
///\brief The type of the map that stores the last
|
alpar@1218
|
932 |
///edges of the shortest paths.
|
alpar@1218
|
933 |
typedef typename TR::PredMap PredMap;
|
alpar@1218
|
934 |
///The type of the map that stores the dists of the nodes.
|
alpar@1218
|
935 |
typedef typename TR::DistMap DistMap;
|
alpar@1218
|
936 |
|
deba@2306
|
937 |
public:
|
alpar@1218
|
938 |
/// Constructor.
|
alpar@1218
|
939 |
BfsWizard() : TR() {}
|
alpar@1218
|
940 |
|
alpar@1218
|
941 |
/// Constructor that requires parameters.
|
alpar@1218
|
942 |
|
alpar@1218
|
943 |
/// Constructor that requires parameters.
|
alpar@1218
|
944 |
/// These parameters will be the default values for the traits class.
|
alpar@1218
|
945 |
BfsWizard(const Graph &g, Node s=INVALID) :
|
alpar@1218
|
946 |
TR(g,s) {}
|
alpar@1218
|
947 |
|
alpar@1218
|
948 |
///Copy constructor
|
alpar@1218
|
949 |
BfsWizard(const TR &b) : TR(b) {}
|
alpar@1218
|
950 |
|
alpar@1218
|
951 |
~BfsWizard() {}
|
alpar@1218
|
952 |
|
alpar@1218
|
953 |
///Runs Bfs algorithm from a given node.
|
alpar@1218
|
954 |
|
alpar@1218
|
955 |
///Runs Bfs algorithm from a given node.
|
alpar@1218
|
956 |
///The node can be given by the \ref source function.
|
alpar@1218
|
957 |
void run()
|
alpar@1218
|
958 |
{
|
alpar@1218
|
959 |
if(Base::_source==INVALID) throw UninitializedParameter();
|
alpar@1218
|
960 |
Bfs<Graph,TR> alg(*(Graph*)Base::_g);
|
alpar@1218
|
961 |
if(Base::_reached)
|
alpar@1218
|
962 |
alg.reachedMap(*(ReachedMap*)Base::_reached);
|
alpar@1218
|
963 |
if(Base::_processed) alg.processedMap(*(ProcessedMap*)Base::_processed);
|
alpar@1218
|
964 |
if(Base::_pred) alg.predMap(*(PredMap*)Base::_pred);
|
alpar@1218
|
965 |
if(Base::_dist) alg.distMap(*(DistMap*)Base::_dist);
|
alpar@1218
|
966 |
alg.run(Base::_source);
|
alpar@1218
|
967 |
}
|
alpar@1218
|
968 |
|
alpar@1218
|
969 |
///Runs Bfs algorithm from the given node.
|
alpar@1218
|
970 |
|
alpar@1218
|
971 |
///Runs Bfs algorithm from the given node.
|
alpar@1218
|
972 |
///\param s is the given source.
|
alpar@1218
|
973 |
void run(Node s)
|
alpar@1218
|
974 |
{
|
alpar@1218
|
975 |
Base::_source=s;
|
alpar@1218
|
976 |
run();
|
alpar@1218
|
977 |
}
|
alpar@1218
|
978 |
|
alpar@1218
|
979 |
template<class T>
|
alpar@1218
|
980 |
struct DefPredMapBase : public Base {
|
alpar@1218
|
981 |
typedef T PredMap;
|
alpar@1367
|
982 |
static PredMap *createPredMap(const Graph &) { return 0; };
|
alpar@1236
|
983 |
DefPredMapBase(const TR &b) : TR(b) {}
|
alpar@1218
|
984 |
};
|
alpar@1218
|
985 |
|
alpar@1218
|
986 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
987 |
///function for setting PredMap
|
alpar@1218
|
988 |
///
|
alpar@1218
|
989 |
/// \ref named-templ-param "Named parameter"
|
alpar@1218
|
990 |
///function for setting PredMap
|
alpar@1218
|
991 |
///
|
alpar@1218
|
992 |
template<class T>
|
alpar@1218
|
993 |
BfsWizard<DefPredMapBase<T> > predMap(const T &t)
|
alpar@1218
|
994 |
{
|
alpar@1218
|
995 |
Base::_pred=(void *)&t;
|
alpar@1218
|
996 |
return BfsWizard<DefPredMapBase<T> >(*this);
|
alpar@1218
|
997 |
}
|
alpar@1218
|
998 |
|
alpar@1218
|
999 |
|
alpar@1218
|
1000 |
template<class T>
|
alpar@1218
|
1001 |
struct DefReachedMapBase : public Base {
|
alpar@1218
|
1002 |
typedef T ReachedMap;
|
alpar@1367
|
1003 |
static ReachedMap *createReachedMap(const Graph &) { return 0; };
|
alpar@1236
|
1004 |
DefReachedMapBase(const TR &b) : TR(b) {}
|
alpar@1218
|
1005 |
};
|
alpar@1218
|
1006 |
|
alpar@1218
|
1007 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
1008 |
///function for setting ReachedMap
|
alpar@1218
|
1009 |
///
|
alpar@1218
|
1010 |
/// \ref named-templ-param "Named parameter"
|
alpar@1218
|
1011 |
///function for setting ReachedMap
|
alpar@1218
|
1012 |
///
|
alpar@1218
|
1013 |
template<class T>
|
alpar@1218
|
1014 |
BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t)
|
alpar@1218
|
1015 |
{
|
alpar@1218
|
1016 |
Base::_pred=(void *)&t;
|
alpar@1218
|
1017 |
return BfsWizard<DefReachedMapBase<T> >(*this);
|
alpar@1218
|
1018 |
}
|
alpar@1218
|
1019 |
|
alpar@1218
|
1020 |
|
alpar@1218
|
1021 |
template<class T>
|
alpar@1218
|
1022 |
struct DefProcessedMapBase : public Base {
|
alpar@1218
|
1023 |
typedef T ProcessedMap;
|
alpar@1367
|
1024 |
static ProcessedMap *createProcessedMap(const Graph &) { return 0; };
|
alpar@1236
|
1025 |
DefProcessedMapBase(const TR &b) : TR(b) {}
|
alpar@1218
|
1026 |
};
|
alpar@1218
|
1027 |
|
alpar@1218
|
1028 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
1029 |
///function for setting ProcessedMap
|
alpar@1218
|
1030 |
///
|
alpar@1218
|
1031 |
/// \ref named-templ-param "Named parameter"
|
alpar@1218
|
1032 |
///function for setting ProcessedMap
|
alpar@1218
|
1033 |
///
|
alpar@1218
|
1034 |
template<class T>
|
alpar@1218
|
1035 |
BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t)
|
alpar@1218
|
1036 |
{
|
alpar@1218
|
1037 |
Base::_pred=(void *)&t;
|
alpar@1218
|
1038 |
return BfsWizard<DefProcessedMapBase<T> >(*this);
|
alpar@1218
|
1039 |
}
|
alpar@1218
|
1040 |
|
alpar@1218
|
1041 |
|
alpar@1218
|
1042 |
template<class T>
|
alpar@1218
|
1043 |
struct DefDistMapBase : public Base {
|
alpar@1218
|
1044 |
typedef T DistMap;
|
alpar@1367
|
1045 |
static DistMap *createDistMap(const Graph &) { return 0; };
|
alpar@1236
|
1046 |
DefDistMapBase(const TR &b) : TR(b) {}
|
alpar@1218
|
1047 |
};
|
alpar@1218
|
1048 |
|
alpar@1218
|
1049 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
1050 |
///function for setting DistMap type
|
alpar@1218
|
1051 |
///
|
alpar@1218
|
1052 |
/// \ref named-templ-param "Named parameter"
|
alpar@1218
|
1053 |
///function for setting DistMap type
|
alpar@1218
|
1054 |
///
|
alpar@1218
|
1055 |
template<class T>
|
alpar@1218
|
1056 |
BfsWizard<DefDistMapBase<T> > distMap(const T &t)
|
alpar@1218
|
1057 |
{
|
alpar@1218
|
1058 |
Base::_dist=(void *)&t;
|
alpar@1218
|
1059 |
return BfsWizard<DefDistMapBase<T> >(*this);
|
alpar@1218
|
1060 |
}
|
alpar@1218
|
1061 |
|
alpar@1218
|
1062 |
/// Sets the source node, from which the Bfs algorithm runs.
|
alpar@1218
|
1063 |
|
alpar@1218
|
1064 |
/// Sets the source node, from which the Bfs algorithm runs.
|
alpar@1218
|
1065 |
/// \param s is the source node.
|
alpar@1218
|
1066 |
BfsWizard<TR> &source(Node s)
|
alpar@1218
|
1067 |
{
|
alpar@1218
|
1068 |
Base::_source=s;
|
alpar@1218
|
1069 |
return *this;
|
alpar@1218
|
1070 |
}
|
alpar@774
|
1071 |
|
alpar@774
|
1072 |
};
|
alpar@774
|
1073 |
|
alpar@1218
|
1074 |
///Function type interface for Bfs algorithm.
|
alpar@1218
|
1075 |
|
deba@2376
|
1076 |
/// \ingroup search
|
alpar@1218
|
1077 |
///Function type interface for Bfs algorithm.
|
alpar@1218
|
1078 |
///
|
alpar@1218
|
1079 |
///This function also has several
|
alpar@1218
|
1080 |
///\ref named-templ-func-param "named parameters",
|
alpar@1218
|
1081 |
///they are declared as the members of class \ref BfsWizard.
|
alpar@1218
|
1082 |
///The following
|
alpar@1218
|
1083 |
///example shows how to use these parameters.
|
alpar@1218
|
1084 |
///\code
|
alpar@1218
|
1085 |
/// bfs(g,source).predMap(preds).run();
|
alpar@1218
|
1086 |
///\endcode
|
alpar@1218
|
1087 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()"
|
alpar@1218
|
1088 |
///to the end of the parameter list.
|
alpar@1218
|
1089 |
///\sa BfsWizard
|
alpar@1218
|
1090 |
///\sa Bfs
|
alpar@1218
|
1091 |
template<class GR>
|
alpar@1218
|
1092 |
BfsWizard<BfsWizardBase<GR> >
|
alpar@1218
|
1093 |
bfs(const GR &g,typename GR::Node s=INVALID)
|
alpar@1218
|
1094 |
{
|
alpar@1218
|
1095 |
return BfsWizard<BfsWizardBase<GR> >(g,s);
|
alpar@1218
|
1096 |
}
|
alpar@1218
|
1097 |
|
deba@2306
|
1098 |
#ifdef DOXYGEN
|
deba@2306
|
1099 |
/// \brief Visitor class for bfs.
|
deba@2306
|
1100 |
///
|
deba@2306
|
1101 |
/// It gives a simple interface for a functional interface for bfs
|
deba@2306
|
1102 |
/// traversal. The traversal on a linear data structure.
|
deba@2306
|
1103 |
template <typename _Graph>
|
deba@2306
|
1104 |
struct BfsVisitor {
|
deba@2306
|
1105 |
typedef _Graph Graph;
|
deba@2306
|
1106 |
typedef typename Graph::Edge Edge;
|
deba@2306
|
1107 |
typedef typename Graph::Node Node;
|
deba@2306
|
1108 |
/// \brief Called when the edge reach a node.
|
deba@2306
|
1109 |
///
|
deba@2306
|
1110 |
/// It is called when the bfs find an edge which target is not
|
deba@2306
|
1111 |
/// reached yet.
|
deba@2306
|
1112 |
void discover(const Edge& edge) {}
|
deba@2306
|
1113 |
/// \brief Called when the node reached first time.
|
deba@2306
|
1114 |
///
|
deba@2306
|
1115 |
/// It is Called when the node reached first time.
|
deba@2306
|
1116 |
void reach(const Node& node) {}
|
deba@2306
|
1117 |
/// \brief Called when the edge examined but target of the edge
|
deba@2306
|
1118 |
/// already discovered.
|
deba@2306
|
1119 |
///
|
deba@2306
|
1120 |
/// It called when the edge examined but the target of the edge
|
deba@2306
|
1121 |
/// already discovered.
|
deba@2306
|
1122 |
void examine(const Edge& edge) {}
|
deba@2306
|
1123 |
/// \brief Called for the source node of the bfs.
|
deba@2306
|
1124 |
///
|
deba@2306
|
1125 |
/// It is called for the source node of the bfs.
|
deba@2306
|
1126 |
void start(const Node& node) {}
|
deba@2306
|
1127 |
/// \brief Called when the node processed.
|
deba@2306
|
1128 |
///
|
deba@2306
|
1129 |
/// It is Called when the node processed.
|
deba@2306
|
1130 |
void process(const Node& node) {}
|
deba@2306
|
1131 |
};
|
deba@2306
|
1132 |
#else
|
deba@2306
|
1133 |
template <typename _Graph>
|
deba@2306
|
1134 |
struct BfsVisitor {
|
deba@2306
|
1135 |
typedef _Graph Graph;
|
deba@2306
|
1136 |
typedef typename Graph::Edge Edge;
|
deba@2306
|
1137 |
typedef typename Graph::Node Node;
|
deba@2306
|
1138 |
void discover(const Edge&) {}
|
deba@2306
|
1139 |
void reach(const Node&) {}
|
deba@2306
|
1140 |
void examine(const Edge&) {}
|
deba@2306
|
1141 |
void start(const Node&) {}
|
deba@2306
|
1142 |
void process(const Node&) {}
|
deba@2306
|
1143 |
|
deba@2306
|
1144 |
template <typename _Visitor>
|
deba@2306
|
1145 |
struct Constraints {
|
deba@2306
|
1146 |
void constraints() {
|
deba@2306
|
1147 |
Edge edge;
|
deba@2306
|
1148 |
Node node;
|
deba@2306
|
1149 |
visitor.discover(edge);
|
deba@2306
|
1150 |
visitor.reach(node);
|
deba@2306
|
1151 |
visitor.examine(edge);
|
deba@2306
|
1152 |
visitor.start(node);
|
deba@2306
|
1153 |
visitor.process(node);
|
deba@2306
|
1154 |
}
|
deba@2306
|
1155 |
_Visitor& visitor;
|
deba@2306
|
1156 |
};
|
deba@2306
|
1157 |
};
|
deba@2306
|
1158 |
#endif
|
deba@2306
|
1159 |
|
deba@2306
|
1160 |
/// \brief Default traits class of BfsVisit class.
|
deba@2306
|
1161 |
///
|
deba@2306
|
1162 |
/// Default traits class of BfsVisit class.
|
deba@2306
|
1163 |
/// \param _Graph Graph type.
|
deba@2306
|
1164 |
template<class _Graph>
|
deba@2306
|
1165 |
struct BfsVisitDefaultTraits {
|
deba@2306
|
1166 |
|
deba@2306
|
1167 |
/// \brief The graph type the algorithm runs on.
|
deba@2306
|
1168 |
typedef _Graph Graph;
|
deba@2306
|
1169 |
|
deba@2306
|
1170 |
/// \brief The type of the map that indicates which nodes are reached.
|
deba@2306
|
1171 |
///
|
deba@2306
|
1172 |
/// The type of the map that indicates which nodes are reached.
|
deba@2306
|
1173 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
deba@2306
|
1174 |
/// \todo named parameter to set this type, function to read and write.
|
deba@2306
|
1175 |
typedef typename Graph::template NodeMap<bool> ReachedMap;
|
deba@2306
|
1176 |
|
deba@2306
|
1177 |
/// \brief Instantiates a ReachedMap.
|
deba@2306
|
1178 |
///
|
deba@2306
|
1179 |
/// This function instantiates a \ref ReachedMap.
|
deba@2306
|
1180 |
/// \param graph is the graph, to which
|
deba@2306
|
1181 |
/// we would like to define the \ref ReachedMap.
|
deba@2306
|
1182 |
static ReachedMap *createReachedMap(const Graph &graph) {
|
deba@2306
|
1183 |
return new ReachedMap(graph);
|
deba@2306
|
1184 |
}
|
deba@2306
|
1185 |
|
deba@2306
|
1186 |
};
|
deba@2306
|
1187 |
|
deba@2306
|
1188 |
/// %BFS Visit algorithm class.
|
deba@2306
|
1189 |
|
deba@2376
|
1190 |
/// \ingroup search
|
deba@2306
|
1191 |
/// This class provides an efficient implementation of the %BFS algorithm
|
deba@2306
|
1192 |
/// with visitor interface.
|
deba@2306
|
1193 |
///
|
deba@2306
|
1194 |
/// The %BfsVisit class provides an alternative interface to the Bfs
|
deba@2306
|
1195 |
/// class. It works with callback mechanism, the BfsVisit object calls
|
deba@2306
|
1196 |
/// on every bfs event the \c Visitor class member functions.
|
deba@2306
|
1197 |
///
|
deba@2306
|
1198 |
/// \param _Graph The graph type the algorithm runs on. The default value is
|
deba@2306
|
1199 |
/// \ref ListGraph. The value of _Graph is not used directly by Bfs, it
|
deba@2306
|
1200 |
/// is only passed to \ref BfsDefaultTraits.
|
deba@2306
|
1201 |
/// \param _Visitor The Visitor object for the algorithm. The
|
deba@2306
|
1202 |
/// \ref BfsVisitor "BfsVisitor<_Graph>" is an empty Visitor which
|
deba@2306
|
1203 |
/// does not observe the Bfs events. If you want to observe the bfs
|
deba@2306
|
1204 |
/// events you should implement your own Visitor class.
|
deba@2306
|
1205 |
/// \param _Traits Traits class to set various data types used by the
|
deba@2306
|
1206 |
/// algorithm. The default traits class is
|
deba@2306
|
1207 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Graph>".
|
deba@2306
|
1208 |
/// See \ref BfsVisitDefaultTraits for the documentation of
|
deba@2306
|
1209 |
/// a Bfs visit traits class.
|
deba@2306
|
1210 |
///
|
deba@2306
|
1211 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
|
deba@2306
|
1212 |
#ifdef DOXYGEN
|
deba@2306
|
1213 |
template <typename _Graph, typename _Visitor, typename _Traits>
|
deba@2306
|
1214 |
#else
|
deba@2306
|
1215 |
template <typename _Graph = ListGraph,
|
deba@2306
|
1216 |
typename _Visitor = BfsVisitor<_Graph>,
|
deba@2306
|
1217 |
typename _Traits = BfsDefaultTraits<_Graph> >
|
deba@2306
|
1218 |
#endif
|
deba@2306
|
1219 |
class BfsVisit {
|
deba@2306
|
1220 |
public:
|
deba@2306
|
1221 |
|
deba@2306
|
1222 |
/// \brief \ref Exception for uninitialized parameters.
|
deba@2306
|
1223 |
///
|
deba@2306
|
1224 |
/// This error represents problems in the initialization
|
deba@2306
|
1225 |
/// of the parameters of the algorithms.
|
deba@2306
|
1226 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
deba@2306
|
1227 |
public:
|
deba@2306
|
1228 |
virtual const char* what() const throw()
|
deba@2306
|
1229 |
{
|
deba@2306
|
1230 |
return "lemon::BfsVisit::UninitializedParameter";
|
deba@2306
|
1231 |
}
|
deba@2306
|
1232 |
};
|
deba@2306
|
1233 |
|
deba@2306
|
1234 |
typedef _Traits Traits;
|
deba@2306
|
1235 |
|
deba@2306
|
1236 |
typedef typename Traits::Graph Graph;
|
deba@2306
|
1237 |
|
deba@2306
|
1238 |
typedef _Visitor Visitor;
|
deba@2306
|
1239 |
|
deba@2306
|
1240 |
///The type of the map indicating which nodes are reached.
|
deba@2306
|
1241 |
typedef typename Traits::ReachedMap ReachedMap;
|
deba@2306
|
1242 |
|
deba@2306
|
1243 |
private:
|
deba@2306
|
1244 |
|
deba@2306
|
1245 |
typedef typename Graph::Node Node;
|
deba@2306
|
1246 |
typedef typename Graph::NodeIt NodeIt;
|
deba@2306
|
1247 |
typedef typename Graph::Edge Edge;
|
deba@2306
|
1248 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
deba@2306
|
1249 |
|
deba@2306
|
1250 |
/// Pointer to the underlying graph.
|
deba@2306
|
1251 |
const Graph *_graph;
|
deba@2306
|
1252 |
/// Pointer to the visitor object.
|
deba@2306
|
1253 |
Visitor *_visitor;
|
deba@2306
|
1254 |
///Pointer to the map of reached status of the nodes.
|
deba@2306
|
1255 |
ReachedMap *_reached;
|
deba@2306
|
1256 |
///Indicates if \ref _reached is locally allocated (\c true) or not.
|
deba@2306
|
1257 |
bool local_reached;
|
deba@2306
|
1258 |
|
deba@2306
|
1259 |
std::vector<typename Graph::Node> _list;
|
deba@2306
|
1260 |
int _list_front, _list_back;
|
deba@2306
|
1261 |
|
deba@2306
|
1262 |
/// \brief Creates the maps if necessary.
|
deba@2306
|
1263 |
///
|
deba@2306
|
1264 |
/// Creates the maps if necessary.
|
deba@2306
|
1265 |
void create_maps() {
|
deba@2306
|
1266 |
if(!_reached) {
|
deba@2306
|
1267 |
local_reached = true;
|
deba@2306
|
1268 |
_reached = Traits::createReachedMap(*_graph);
|
deba@2306
|
1269 |
}
|
deba@2306
|
1270 |
}
|
deba@2306
|
1271 |
|
deba@2306
|
1272 |
protected:
|
deba@2306
|
1273 |
|
deba@2306
|
1274 |
BfsVisit() {}
|
deba@2306
|
1275 |
|
deba@2306
|
1276 |
public:
|
deba@2306
|
1277 |
|
deba@2306
|
1278 |
typedef BfsVisit Create;
|
deba@2306
|
1279 |
|
deba@2306
|
1280 |
/// \name Named template parameters
|
deba@2306
|
1281 |
|
deba@2306
|
1282 |
///@{
|
deba@2306
|
1283 |
template <class T>
|
deba@2306
|
1284 |
struct DefReachedMapTraits : public Traits {
|
deba@2306
|
1285 |
typedef T ReachedMap;
|
deba@2306
|
1286 |
static ReachedMap *createReachedMap(const Graph &graph) {
|
deba@2306
|
1287 |
throw UninitializedParameter();
|
deba@2306
|
1288 |
}
|
deba@2306
|
1289 |
};
|
deba@2306
|
1290 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
deba@2306
|
1291 |
/// ReachedMap type
|
deba@2306
|
1292 |
///
|
deba@2306
|
1293 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type
|
deba@2306
|
1294 |
template <class T>
|
deba@2306
|
1295 |
struct DefReachedMap : public BfsVisit< Graph, Visitor,
|
deba@2306
|
1296 |
DefReachedMapTraits<T> > {
|
deba@2306
|
1297 |
typedef BfsVisit< Graph, Visitor, DefReachedMapTraits<T> > Create;
|
deba@2306
|
1298 |
};
|
deba@2306
|
1299 |
///@}
|
deba@2306
|
1300 |
|
deba@2306
|
1301 |
public:
|
deba@2306
|
1302 |
|
deba@2306
|
1303 |
/// \brief Constructor.
|
deba@2306
|
1304 |
///
|
deba@2306
|
1305 |
/// Constructor.
|
deba@2306
|
1306 |
///
|
deba@2306
|
1307 |
/// \param graph the graph the algorithm will run on.
|
deba@2306
|
1308 |
/// \param visitor The visitor of the algorithm.
|
deba@2306
|
1309 |
///
|
deba@2306
|
1310 |
BfsVisit(const Graph& graph, Visitor& visitor)
|
deba@2306
|
1311 |
: _graph(&graph), _visitor(&visitor),
|
deba@2306
|
1312 |
_reached(0), local_reached(false) {}
|
deba@2306
|
1313 |
|
deba@2306
|
1314 |
/// \brief Destructor.
|
deba@2306
|
1315 |
///
|
deba@2306
|
1316 |
/// Destructor.
|
deba@2306
|
1317 |
~BfsVisit() {
|
deba@2306
|
1318 |
if(local_reached) delete _reached;
|
deba@2306
|
1319 |
}
|
deba@2306
|
1320 |
|
deba@2306
|
1321 |
/// \brief Sets the map indicating if a node is reached.
|
deba@2306
|
1322 |
///
|
deba@2306
|
1323 |
/// Sets the map indicating if a node is reached.
|
deba@2306
|
1324 |
/// If you don't use this function before calling \ref run(),
|
deba@2306
|
1325 |
/// it will allocate one. The destuctor deallocates this
|
deba@2306
|
1326 |
/// automatically allocated map, of course.
|
deba@2306
|
1327 |
/// \return <tt> (*this) </tt>
|
deba@2306
|
1328 |
BfsVisit &reachedMap(ReachedMap &m) {
|
deba@2306
|
1329 |
if(local_reached) {
|
deba@2306
|
1330 |
delete _reached;
|
deba@2306
|
1331 |
local_reached = false;
|
deba@2306
|
1332 |
}
|
deba@2306
|
1333 |
_reached = &m;
|
deba@2306
|
1334 |
return *this;
|
deba@2306
|
1335 |
}
|
deba@2306
|
1336 |
|
deba@2306
|
1337 |
public:
|
deba@2306
|
1338 |
/// \name Execution control
|
deba@2306
|
1339 |
/// The simplest way to execute the algorithm is to use
|
deba@2306
|
1340 |
/// one of the member functions called \c run(...).
|
deba@2306
|
1341 |
/// \n
|
deba@2306
|
1342 |
/// If you need more control on the execution,
|
deba@2306
|
1343 |
/// first you must call \ref init(), then you can adda source node
|
deba@2306
|
1344 |
/// with \ref addSource().
|
deba@2306
|
1345 |
/// Finally \ref start() will perform the actual path
|
deba@2306
|
1346 |
/// computation.
|
deba@2306
|
1347 |
|
deba@2306
|
1348 |
/// @{
|
deba@2306
|
1349 |
/// \brief Initializes the internal data structures.
|
deba@2306
|
1350 |
///
|
deba@2306
|
1351 |
/// Initializes the internal data structures.
|
deba@2306
|
1352 |
///
|
deba@2306
|
1353 |
void init() {
|
deba@2306
|
1354 |
create_maps();
|
deba@2306
|
1355 |
_list.resize(countNodes(*_graph));
|
deba@2306
|
1356 |
_list_front = _list_back = -1;
|
deba@2306
|
1357 |
for (NodeIt u(*_graph) ; u != INVALID ; ++u) {
|
deba@2306
|
1358 |
_reached->set(u, false);
|
deba@2306
|
1359 |
}
|
deba@2306
|
1360 |
}
|
deba@2306
|
1361 |
|
deba@2306
|
1362 |
/// \brief Adds a new source node.
|
deba@2306
|
1363 |
///
|
deba@2306
|
1364 |
/// Adds a new source node to the set of nodes to be processed.
|
deba@2306
|
1365 |
void addSource(Node s) {
|
deba@2306
|
1366 |
if(!(*_reached)[s]) {
|
deba@2306
|
1367 |
_reached->set(s,true);
|
deba@2306
|
1368 |
_visitor->start(s);
|
deba@2306
|
1369 |
_visitor->reach(s);
|
deba@2306
|
1370 |
_list[++_list_back] = s;
|
deba@2306
|
1371 |
}
|
deba@2306
|
1372 |
}
|
deba@2306
|
1373 |
|
deba@2306
|
1374 |
/// \brief Processes the next node.
|
deba@2306
|
1375 |
///
|
deba@2306
|
1376 |
/// Processes the next node.
|
deba@2306
|
1377 |
///
|
deba@2306
|
1378 |
/// \return The processed node.
|
deba@2306
|
1379 |
///
|
deba@2306
|
1380 |
/// \pre The queue must not be empty!
|
deba@2306
|
1381 |
Node processNextNode() {
|
deba@2306
|
1382 |
Node n = _list[++_list_front];
|
deba@2306
|
1383 |
_visitor->process(n);
|
deba@2306
|
1384 |
Edge e;
|
deba@2306
|
1385 |
for (_graph->firstOut(e, n); e != INVALID; _graph->nextOut(e)) {
|
deba@2306
|
1386 |
Node m = _graph->target(e);
|
deba@2306
|
1387 |
if (!(*_reached)[m]) {
|
deba@2306
|
1388 |
_visitor->discover(e);
|
deba@2306
|
1389 |
_visitor->reach(m);
|
deba@2306
|
1390 |
_reached->set(m, true);
|
deba@2306
|
1391 |
_list[++_list_back] = m;
|
deba@2306
|
1392 |
} else {
|
deba@2306
|
1393 |
_visitor->examine(e);
|
deba@2306
|
1394 |
}
|
deba@2306
|
1395 |
}
|
deba@2306
|
1396 |
return n;
|
deba@2306
|
1397 |
}
|
deba@2306
|
1398 |
|
deba@2306
|
1399 |
/// \brief Processes the next node.
|
deba@2306
|
1400 |
///
|
deba@2306
|
1401 |
/// Processes the next node. And checks that the given target node
|
deba@2306
|
1402 |
/// is reached. If the target node is reachable from the processed
|
deba@2306
|
1403 |
/// node then the reached parameter will be set true. The reached
|
deba@2306
|
1404 |
/// parameter should be initially false.
|
deba@2306
|
1405 |
///
|
deba@2306
|
1406 |
/// \param target The target node.
|
deba@2306
|
1407 |
/// \retval reached Indicates that the target node is reached.
|
deba@2306
|
1408 |
/// \return The processed node.
|
deba@2306
|
1409 |
///
|
deba@2306
|
1410 |
/// \warning The queue must not be empty!
|
deba@2306
|
1411 |
Node processNextNode(Node target, bool& reached) {
|
deba@2306
|
1412 |
Node n = _list[++_list_front];
|
deba@2306
|
1413 |
_visitor->process(n);
|
deba@2306
|
1414 |
Edge e;
|
deba@2306
|
1415 |
for (_graph->firstOut(e, n); e != INVALID; _graph->nextOut(e)) {
|
deba@2306
|
1416 |
Node m = _graph->target(e);
|
deba@2306
|
1417 |
if (!(*_reached)[m]) {
|
deba@2306
|
1418 |
_visitor->discover(e);
|
deba@2306
|
1419 |
_visitor->reach(m);
|
deba@2306
|
1420 |
_reached->set(m, true);
|
deba@2306
|
1421 |
_list[++_list_back] = m;
|
deba@2306
|
1422 |
reached = reached || (target == m);
|
deba@2306
|
1423 |
} else {
|
deba@2306
|
1424 |
_visitor->examine(e);
|
deba@2306
|
1425 |
}
|
deba@2306
|
1426 |
}
|
deba@2306
|
1427 |
return n;
|
deba@2306
|
1428 |
}
|
deba@2306
|
1429 |
|
deba@2306
|
1430 |
/// \brief Processes the next node.
|
deba@2306
|
1431 |
///
|
deba@2306
|
1432 |
/// Processes the next node. And checks that at least one of
|
deba@2306
|
1433 |
/// reached node has true value in the \c nm nodemap. If one node
|
deba@2306
|
1434 |
/// with true value is reachable from the processed node then the
|
deba@2306
|
1435 |
/// reached parameter will be set true. The reached parameter
|
deba@2306
|
1436 |
/// should be initially false.
|
deba@2306
|
1437 |
///
|
alpar@2350
|
1438 |
/// \param nm The nodemaps of possible targets.
|
deba@2306
|
1439 |
/// \retval reached Indicates that one of the target nodes is reached.
|
deba@2306
|
1440 |
/// \return The processed node.
|
deba@2306
|
1441 |
///
|
deba@2306
|
1442 |
/// \warning The queue must not be empty!
|
deba@2306
|
1443 |
template <typename NM>
|
deba@2306
|
1444 |
Node processNextNode(const NM& nm, bool& reached) {
|
deba@2306
|
1445 |
Node n = _list[++_list_front];
|
deba@2306
|
1446 |
_visitor->process(n);
|
deba@2306
|
1447 |
Edge e;
|
deba@2306
|
1448 |
for (_graph->firstOut(e, n); e != INVALID; _graph->nextOut(e)) {
|
deba@2306
|
1449 |
Node m = _graph->target(e);
|
deba@2306
|
1450 |
if (!(*_reached)[m]) {
|
deba@2306
|
1451 |
_visitor->discover(e);
|
deba@2306
|
1452 |
_visitor->reach(m);
|
deba@2306
|
1453 |
_reached->set(m, true);
|
deba@2306
|
1454 |
_list[++_list_back] = m;
|
deba@2306
|
1455 |
reached = reached || nm[m];
|
deba@2306
|
1456 |
} else {
|
deba@2306
|
1457 |
_visitor->examine(e);
|
deba@2306
|
1458 |
}
|
deba@2306
|
1459 |
}
|
deba@2306
|
1460 |
return n;
|
deba@2306
|
1461 |
}
|
deba@2306
|
1462 |
|
deba@2306
|
1463 |
/// \brief Next node to be processed.
|
deba@2306
|
1464 |
///
|
deba@2306
|
1465 |
/// Next node to be processed.
|
deba@2306
|
1466 |
///
|
deba@2306
|
1467 |
/// \return The next node to be processed or INVALID if the stack is
|
deba@2306
|
1468 |
/// empty.
|
deba@2306
|
1469 |
Node nextNode() {
|
deba@2306
|
1470 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
|
deba@2306
|
1471 |
}
|
deba@2306
|
1472 |
|
deba@2306
|
1473 |
/// \brief Returns \c false if there are nodes
|
deba@2306
|
1474 |
/// to be processed in the queue
|
deba@2306
|
1475 |
///
|
deba@2306
|
1476 |
/// Returns \c false if there are nodes
|
deba@2306
|
1477 |
/// to be processed in the queue
|
deba@2306
|
1478 |
bool emptyQueue() { return _list_front == _list_back; }
|
deba@2306
|
1479 |
|
deba@2306
|
1480 |
/// \brief Returns the number of the nodes to be processed.
|
deba@2306
|
1481 |
///
|
deba@2306
|
1482 |
/// Returns the number of the nodes to be processed in the queue.
|
deba@2306
|
1483 |
int queueSize() { return _list_back - _list_front; }
|
deba@2306
|
1484 |
|
deba@2306
|
1485 |
/// \brief Executes the algorithm.
|
deba@2306
|
1486 |
///
|
deba@2306
|
1487 |
/// Executes the algorithm.
|
deba@2306
|
1488 |
///
|
deba@2306
|
1489 |
/// \pre init() must be called and at least one node should be added
|
deba@2306
|
1490 |
/// with addSource() before using this function.
|
deba@2306
|
1491 |
void start() {
|
deba@2306
|
1492 |
while ( !emptyQueue() ) processNextNode();
|
deba@2306
|
1493 |
}
|
deba@2306
|
1494 |
|
deba@2307
|
1495 |
/// \brief Executes the algorithm until \c dest is reached.
|
deba@2306
|
1496 |
///
|
deba@2307
|
1497 |
/// Executes the algorithm until \c dest is reached.
|
deba@2306
|
1498 |
///
|
deba@2306
|
1499 |
/// \pre init() must be called and at least one node should be added
|
deba@2306
|
1500 |
/// with addSource() before using this function.
|
deba@2306
|
1501 |
void start(Node dest) {
|
deba@2306
|
1502 |
bool reached = false;
|
deba@2306
|
1503 |
while (!emptyQueue() && !reached) {
|
deba@2306
|
1504 |
processNextNode(dest, reached);
|
deba@2306
|
1505 |
}
|
deba@2306
|
1506 |
}
|
deba@2306
|
1507 |
|
deba@2306
|
1508 |
/// \brief Executes the algorithm until a condition is met.
|
deba@2306
|
1509 |
///
|
deba@2306
|
1510 |
/// Executes the algorithm until a condition is met.
|
deba@2306
|
1511 |
///
|
deba@2306
|
1512 |
/// \pre init() must be called and at least one node should be added
|
deba@2306
|
1513 |
/// with addSource() before using this function.
|
deba@2306
|
1514 |
///
|
deba@2306
|
1515 |
///\param nm must be a bool (or convertible) node map. The
|
deba@2307
|
1516 |
///algorithm will stop when it reached a node \c v with
|
alpar@2350
|
1517 |
/// <tt>nm[v]</tt> true.
|
deba@2306
|
1518 |
template <typename NM>
|
deba@2306
|
1519 |
void start(const NM &nm) {
|
deba@2306
|
1520 |
bool reached = false;
|
deba@2306
|
1521 |
while (!emptyQueue() && !reached) {
|
deba@2306
|
1522 |
processNextNode(nm, reached);
|
deba@2306
|
1523 |
}
|
deba@2306
|
1524 |
}
|
deba@2306
|
1525 |
|
deba@2306
|
1526 |
/// \brief Runs %BFSVisit algorithm from node \c s.
|
deba@2306
|
1527 |
///
|
deba@2306
|
1528 |
/// This method runs the %BFS algorithm from a root node \c s.
|
deba@2306
|
1529 |
/// \note b.run(s) is just a shortcut of the following code.
|
deba@2306
|
1530 |
///\code
|
deba@2306
|
1531 |
/// b.init();
|
deba@2306
|
1532 |
/// b.addSource(s);
|
deba@2306
|
1533 |
/// b.start();
|
deba@2306
|
1534 |
///\endcode
|
deba@2306
|
1535 |
void run(Node s) {
|
deba@2306
|
1536 |
init();
|
deba@2306
|
1537 |
addSource(s);
|
deba@2306
|
1538 |
start();
|
deba@2306
|
1539 |
}
|
deba@2306
|
1540 |
|
deba@2306
|
1541 |
/// \brief Runs %BFSVisit algorithm to visit all nodes in the graph.
|
deba@2306
|
1542 |
///
|
deba@2306
|
1543 |
/// This method runs the %BFS algorithm in order to
|
deba@2306
|
1544 |
/// compute the %BFS path to each node. The algorithm computes
|
deba@2306
|
1545 |
/// - The %BFS tree.
|
deba@2306
|
1546 |
/// - The distance of each node from the root in the %BFS tree.
|
deba@2306
|
1547 |
///
|
deba@2306
|
1548 |
///\note b.run() is just a shortcut of the following code.
|
deba@2306
|
1549 |
///\code
|
deba@2306
|
1550 |
/// b.init();
|
deba@2306
|
1551 |
/// for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@2306
|
1552 |
/// if (!b.reached(it)) {
|
deba@2306
|
1553 |
/// b.addSource(it);
|
deba@2306
|
1554 |
/// b.start();
|
deba@2306
|
1555 |
/// }
|
deba@2306
|
1556 |
/// }
|
deba@2306
|
1557 |
///\endcode
|
deba@2306
|
1558 |
void run() {
|
deba@2306
|
1559 |
init();
|
deba@2306
|
1560 |
for (NodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2306
|
1561 |
if (!reached(it)) {
|
deba@2306
|
1562 |
addSource(it);
|
deba@2306
|
1563 |
start();
|
deba@2306
|
1564 |
}
|
deba@2306
|
1565 |
}
|
deba@2306
|
1566 |
}
|
deba@2306
|
1567 |
///@}
|
deba@2306
|
1568 |
|
deba@2306
|
1569 |
/// \name Query Functions
|
deba@2306
|
1570 |
/// The result of the %BFS algorithm can be obtained using these
|
deba@2306
|
1571 |
/// functions.\n
|
deba@2306
|
1572 |
/// Before the use of these functions,
|
deba@2306
|
1573 |
/// either run() or start() must be called.
|
deba@2306
|
1574 |
///@{
|
deba@2306
|
1575 |
|
deba@2306
|
1576 |
/// \brief Checks if a node is reachable from the root.
|
deba@2306
|
1577 |
///
|
deba@2306
|
1578 |
/// Returns \c true if \c v is reachable from the root(s).
|
deba@2306
|
1579 |
/// \warning The source nodes are inditated as unreachable.
|
deba@2306
|
1580 |
/// \pre Either \ref run() or \ref start()
|
deba@2306
|
1581 |
/// must be called before using this function.
|
deba@2306
|
1582 |
///
|
deba@2306
|
1583 |
bool reached(Node v) { return (*_reached)[v]; }
|
deba@2306
|
1584 |
///@}
|
deba@2306
|
1585 |
};
|
deba@2306
|
1586 |
|
alpar@921
|
1587 |
} //END OF NAMESPACE LEMON
|
alpar@774
|
1588 |
|
alpar@774
|
1589 |
#endif
|
alpar@774
|
1590 |
|