alpar@2409
|
1 |
/* -*- C++ -*-
|
alpar@2409
|
2 |
*
|
alpar@2409
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@2409
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
alpar@2409
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@2409
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@2409
|
8 |
*
|
alpar@2409
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@2409
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@2409
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@2409
|
12 |
*
|
alpar@2409
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@2409
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@2409
|
15 |
* purpose.
|
alpar@2409
|
16 |
*
|
alpar@2409
|
17 |
*/
|
alpar@2409
|
18 |
|
alpar@2409
|
19 |
#ifndef LEMON_MIN_MEAN_CYCLE_H
|
alpar@2409
|
20 |
#define LEMON_MIN_MEAN_CYCLE_H
|
alpar@2409
|
21 |
|
deba@2529
|
22 |
/// \ingroup shortest_path
|
alpar@2409
|
23 |
///
|
deba@2437
|
24 |
/// \file
|
kpeter@2555
|
25 |
/// \brief Howard's algorithm for finding a minimum mean directed cycle.
|
alpar@2409
|
26 |
|
kpeter@2509
|
27 |
#include <vector>
|
alpar@2409
|
28 |
#include <lemon/graph_utils.h>
|
alpar@2409
|
29 |
#include <lemon/path.h>
|
kpeter@2555
|
30 |
#include <lemon/tolerance.h>
|
kpeter@2583
|
31 |
#include <lemon/topology.h>
|
alpar@2409
|
32 |
|
alpar@2409
|
33 |
namespace lemon {
|
alpar@2409
|
34 |
|
deba@2529
|
35 |
/// \addtogroup shortest_path
|
alpar@2409
|
36 |
/// @{
|
alpar@2409
|
37 |
|
kpeter@2555
|
38 |
/// \brief Implementation of Howard's algorithm for finding a minimum
|
kpeter@2555
|
39 |
/// mean directed cycle.
|
alpar@2409
|
40 |
///
|
kpeter@2555
|
41 |
/// \ref MinMeanCycle implements Howard's algorithm for finding a
|
kpeter@2555
|
42 |
/// minimum mean directed cycle.
|
alpar@2409
|
43 |
///
|
kpeter@2583
|
44 |
/// \tparam Graph The directed graph type the algorithm runs on.
|
kpeter@2583
|
45 |
/// \tparam LengthMap The type of the length (cost) map.
|
alpar@2409
|
46 |
///
|
kpeter@2555
|
47 |
/// \warning \c LengthMap::Value must be convertible to \c double.
|
kpeter@2555
|
48 |
///
|
alpar@2409
|
49 |
/// \author Peter Kovacs
|
alpar@2409
|
50 |
|
kpeter@2555
|
51 |
template < typename Graph,
|
kpeter@2555
|
52 |
typename LengthMap = typename Graph::template EdgeMap<int> >
|
alpar@2409
|
53 |
class MinMeanCycle
|
alpar@2409
|
54 |
{
|
kpeter@2555
|
55 |
GRAPH_TYPEDEFS(typename Graph);
|
alpar@2409
|
56 |
|
alpar@2409
|
57 |
typedef typename LengthMap::Value Length;
|
alpar@2409
|
58 |
typedef Path<Graph> Path;
|
alpar@2409
|
59 |
|
kpeter@2583
|
60 |
private:
|
deba@2413
|
61 |
|
kpeter@2583
|
62 |
// The directed graph the algorithm runs on
|
kpeter@2555
|
63 |
const Graph &_graph;
|
kpeter@2583
|
64 |
// The length of the edges
|
kpeter@2555
|
65 |
const LengthMap &_length;
|
deba@2413
|
66 |
|
kpeter@2583
|
67 |
// The total length of the found cycle
|
kpeter@2555
|
68 |
Length _cycle_length;
|
kpeter@2583
|
69 |
// The number of edges on the found cycle
|
kpeter@2555
|
70 |
int _cycle_size;
|
kpeter@2583
|
71 |
// The found cycle
|
kpeter@2555
|
72 |
Path *_cycle_path;
|
deba@2413
|
73 |
|
kpeter@2555
|
74 |
bool _local_path;
|
kpeter@2555
|
75 |
bool _cycle_found;
|
kpeter@2555
|
76 |
Node _cycle_node;
|
alpar@2409
|
77 |
|
kpeter@2583
|
78 |
typename Graph::template NodeMap<bool> _reached;
|
kpeter@2583
|
79 |
typename Graph::template NodeMap<double> _dist;
|
kpeter@2583
|
80 |
typename Graph::template NodeMap<Edge> _policy;
|
kpeter@2583
|
81 |
|
kpeter@2555
|
82 |
typename Graph::template NodeMap<int> _component;
|
kpeter@2555
|
83 |
int _component_num;
|
deba@2437
|
84 |
|
kpeter@2555
|
85 |
std::vector<Node> _nodes;
|
kpeter@2555
|
86 |
std::vector<Edge> _edges;
|
kpeter@2555
|
87 |
Tolerance<double> _tolerance;
|
deba@2437
|
88 |
|
kpeter@2555
|
89 |
public:
|
alpar@2409
|
90 |
|
alpar@2409
|
91 |
/// \brief The constructor of the class.
|
alpar@2409
|
92 |
///
|
alpar@2409
|
93 |
/// The constructor of the class.
|
alpar@2409
|
94 |
///
|
kpeter@2555
|
95 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2555
|
96 |
/// \param length The length (cost) of the edges.
|
kpeter@2555
|
97 |
MinMeanCycle( const Graph &graph,
|
kpeter@2555
|
98 |
const LengthMap &length ) :
|
kpeter@2583
|
99 |
_graph(graph), _length(length), _cycle_length(0), _cycle_size(-1),
|
kpeter@2583
|
100 |
_cycle_path(NULL), _local_path(false), _reached(graph),
|
kpeter@2583
|
101 |
_dist(graph), _policy(graph), _component(graph)
|
kpeter@2583
|
102 |
{}
|
alpar@2409
|
103 |
|
kpeter@2555
|
104 |
/// The destructor of the class.
|
deba@2437
|
105 |
~MinMeanCycle() {
|
kpeter@2555
|
106 |
if (_local_path) delete _cycle_path;
|
alpar@2409
|
107 |
}
|
alpar@2409
|
108 |
|
kpeter@2583
|
109 |
/// \brief Sets the \ref Path "path" structure for storing the found
|
kpeter@2583
|
110 |
/// cycle.
|
kpeter@2583
|
111 |
///
|
kpeter@2583
|
112 |
/// Sets an external \ref Path "path" structure for storing the
|
kpeter@2583
|
113 |
/// found cycle.
|
kpeter@2583
|
114 |
///
|
kpeter@2583
|
115 |
/// If you don't call this function before calling \ref run() or
|
kpeter@2583
|
116 |
/// \ref init(), it will allocate a local \ref Path "path"
|
kpeter@2583
|
117 |
/// structure.
|
kpeter@2583
|
118 |
/// The destuctor deallocates this automatically allocated map,
|
kpeter@2583
|
119 |
/// of course.
|
kpeter@2583
|
120 |
///
|
kpeter@2583
|
121 |
/// \note The algorithm calls only the \ref lemon::Path::addBack()
|
kpeter@2583
|
122 |
/// "addBack()" function of the given \ref Path "path" structure.
|
kpeter@2583
|
123 |
///
|
kpeter@2583
|
124 |
/// \return <tt>(*this)</tt>
|
kpeter@2583
|
125 |
///
|
kpeter@2583
|
126 |
/// \sa cycle()
|
kpeter@2583
|
127 |
MinMeanCycle& cyclePath(Path &path) {
|
kpeter@2583
|
128 |
if (_local_path) {
|
kpeter@2583
|
129 |
delete _cycle_path;
|
kpeter@2583
|
130 |
_local_path = false;
|
alpar@2409
|
131 |
}
|
kpeter@2583
|
132 |
_cycle_path = &path;
|
kpeter@2583
|
133 |
return *this;
|
kpeter@2555
|
134 |
}
|
kpeter@2555
|
135 |
|
kpeter@2583
|
136 |
/// \name Execution control
|
kpeter@2588
|
137 |
/// The simplest way to execute the algorithm is to call the run()
|
kpeter@2588
|
138 |
/// function.
|
kpeter@2583
|
139 |
/// \n
|
kpeter@2583
|
140 |
/// If you only need the minimum mean value, you may call init()
|
kpeter@2583
|
141 |
/// and findMinMean().
|
kpeter@2583
|
142 |
/// \n
|
kpeter@2583
|
143 |
/// If you would like to run the algorithm again (e.g. the
|
kpeter@2583
|
144 |
/// underlaying graph and/or the edge costs were modified), you may
|
kpeter@2583
|
145 |
/// not create a new instance of the class, rather call reset(),
|
kpeter@2583
|
146 |
/// findMinMean(), and findCycle() instead.
|
kpeter@2555
|
147 |
|
kpeter@2583
|
148 |
/// @{
|
deba@2437
|
149 |
|
alpar@2409
|
150 |
/// \brief Runs the algorithm.
|
alpar@2409
|
151 |
///
|
alpar@2409
|
152 |
/// Runs the algorithm.
|
alpar@2409
|
153 |
///
|
kpeter@2555
|
154 |
/// \return Returns \c true if a directed cycle exists in the graph.
|
deba@2413
|
155 |
///
|
kpeter@2555
|
156 |
/// \note Apart from the return value, <tt>mmc.run()</tt> is just a
|
kpeter@2517
|
157 |
/// shortcut of the following code.
|
deba@2413
|
158 |
/// \code
|
kpeter@2555
|
159 |
/// mmc.init();
|
kpeter@2555
|
160 |
/// mmc.findMinMean();
|
kpeter@2555
|
161 |
/// mmc.findCycle();
|
deba@2413
|
162 |
/// \endcode
|
alpar@2409
|
163 |
bool run() {
|
alpar@2409
|
164 |
init();
|
kpeter@2555
|
165 |
return findMinMean() && findCycle();
|
deba@2413
|
166 |
}
|
deba@2437
|
167 |
|
deba@2413
|
168 |
/// \brief Initializes the internal data structures.
|
kpeter@2517
|
169 |
///
|
kpeter@2517
|
170 |
/// Initializes the internal data structures.
|
kpeter@2517
|
171 |
///
|
kpeter@2517
|
172 |
/// \sa reset()
|
deba@2413
|
173 |
void init() {
|
kpeter@2583
|
174 |
_tolerance.epsilon(1e-6);
|
kpeter@2555
|
175 |
if (!_cycle_path) {
|
kpeter@2555
|
176 |
_local_path = true;
|
kpeter@2555
|
177 |
_cycle_path = new Path;
|
deba@2413
|
178 |
}
|
kpeter@2555
|
179 |
_cycle_found = false;
|
kpeter@2555
|
180 |
_component_num = stronglyConnectedComponents(_graph, _component);
|
deba@2413
|
181 |
}
|
deba@2413
|
182 |
|
deba@2413
|
183 |
/// \brief Resets the internal data structures.
|
deba@2413
|
184 |
///
|
deba@2437
|
185 |
/// Resets the internal data structures so that \ref findMinMean()
|
deba@2437
|
186 |
/// and \ref findCycle() can be called again (e.g. when the
|
deba@2413
|
187 |
/// underlaying graph has been modified).
|
kpeter@2517
|
188 |
///
|
kpeter@2517
|
189 |
/// \sa init()
|
deba@2413
|
190 |
void reset() {
|
kpeter@2555
|
191 |
if (_cycle_path) _cycle_path->clear();
|
kpeter@2555
|
192 |
_cycle_found = false;
|
kpeter@2555
|
193 |
_component_num = stronglyConnectedComponents(_graph, _component);
|
kpeter@2555
|
194 |
}
|
kpeter@2555
|
195 |
|
kpeter@2555
|
196 |
/// \brief Finds the minimum cycle mean length in the graph.
|
kpeter@2555
|
197 |
///
|
kpeter@2555
|
198 |
/// Computes all the required data and finds the minimum cycle mean
|
kpeter@2555
|
199 |
/// length in the graph.
|
kpeter@2555
|
200 |
///
|
kpeter@2555
|
201 |
/// \return Returns \c true if a directed cycle exists in the graph.
|
kpeter@2555
|
202 |
///
|
kpeter@2555
|
203 |
/// \pre \ref init() must be called before using this function.
|
kpeter@2555
|
204 |
bool findMinMean() {
|
kpeter@2555
|
205 |
// Finding the minimum mean cycle in the components
|
kpeter@2555
|
206 |
for (int comp = 0; comp < _component_num; ++comp) {
|
kpeter@2555
|
207 |
if (!initCurrentComponent(comp)) continue;
|
kpeter@2555
|
208 |
while (true) {
|
kpeter@2583
|
209 |
if (!findPolicyCycles()) break;
|
kpeter@2555
|
210 |
contractPolicyGraph(comp);
|
kpeter@2583
|
211 |
if (!computeNodeDistances(comp)) break;
|
kpeter@2555
|
212 |
}
|
kpeter@2555
|
213 |
}
|
kpeter@2583
|
214 |
return _cycle_found;
|
kpeter@2555
|
215 |
}
|
kpeter@2555
|
216 |
|
kpeter@2555
|
217 |
/// \brief Finds a critical (minimum mean) directed cycle.
|
kpeter@2555
|
218 |
///
|
kpeter@2555
|
219 |
/// Finds a critical (minimum mean) directed cycle using the data
|
kpeter@2555
|
220 |
/// computed in the \ref findMinMean() function.
|
kpeter@2555
|
221 |
///
|
kpeter@2555
|
222 |
/// \return Returns \c true if a directed cycle exists in the graph.
|
kpeter@2555
|
223 |
///
|
kpeter@2555
|
224 |
/// \pre \ref init() and \ref findMinMean() must be called before
|
kpeter@2555
|
225 |
/// using this function.
|
kpeter@2555
|
226 |
bool findCycle() {
|
kpeter@2555
|
227 |
if (!_cycle_found) return false;
|
kpeter@2555
|
228 |
_cycle_path->addBack(_policy[_cycle_node]);
|
kpeter@2555
|
229 |
for ( Node v = _cycle_node;
|
kpeter@2555
|
230 |
(v = _graph.target(_policy[v])) != _cycle_node; ) {
|
kpeter@2555
|
231 |
_cycle_path->addBack(_policy[v]);
|
kpeter@2555
|
232 |
}
|
kpeter@2555
|
233 |
return true;
|
deba@2413
|
234 |
}
|
kpeter@2583
|
235 |
|
kpeter@2583
|
236 |
/// @}
|
deba@2437
|
237 |
|
kpeter@2583
|
238 |
/// \name Query Functions
|
kpeter@2583
|
239 |
/// The result of the algorithm can be obtained using these
|
kpeter@2583
|
240 |
/// functions.
|
kpeter@2588
|
241 |
/// \n The algorithm should be executed before using them.
|
kpeter@2583
|
242 |
|
kpeter@2583
|
243 |
/// @{
|
kpeter@2583
|
244 |
|
deba@2413
|
245 |
/// \brief Returns the total length of the found cycle.
|
deba@2413
|
246 |
///
|
deba@2413
|
247 |
/// Returns the total length of the found cycle.
|
alpar@2409
|
248 |
///
|
kpeter@2555
|
249 |
/// \pre \ref run() or \ref findMinMean() must be called before
|
kpeter@2555
|
250 |
/// using this function.
|
deba@2437
|
251 |
Length cycleLength() const {
|
kpeter@2555
|
252 |
return _cycle_length;
|
alpar@2409
|
253 |
}
|
deba@2437
|
254 |
|
kpeter@2555
|
255 |
/// \brief Returns the number of edges on the found cycle.
|
alpar@2409
|
256 |
///
|
kpeter@2555
|
257 |
/// Returns the number of edges on the found cycle.
|
alpar@2409
|
258 |
///
|
kpeter@2555
|
259 |
/// \pre \ref run() or \ref findMinMean() must be called before
|
kpeter@2555
|
260 |
/// using this function.
|
deba@2437
|
261 |
int cycleEdgeNum() const {
|
kpeter@2555
|
262 |
return _cycle_size;
|
alpar@2409
|
263 |
}
|
deba@2437
|
264 |
|
deba@2413
|
265 |
/// \brief Returns the mean length of the found cycle.
|
alpar@2409
|
266 |
///
|
deba@2413
|
267 |
/// Returns the mean length of the found cycle.
|
alpar@2409
|
268 |
///
|
kpeter@2517
|
269 |
/// \pre \ref run() or \ref findMinMean() must be called before
|
kpeter@2517
|
270 |
/// using this function.
|
alpar@2409
|
271 |
///
|
kpeter@2555
|
272 |
/// \note <tt>mmc.cycleMean()</tt> is just a shortcut of the
|
kpeter@2555
|
273 |
/// following code.
|
deba@2413
|
274 |
/// \code
|
kpeter@2555
|
275 |
/// return double(mmc.cycleLength()) / mmc.cycleEdgeNum();
|
deba@2413
|
276 |
/// \endcode
|
kpeter@2555
|
277 |
double cycleMean() const {
|
kpeter@2583
|
278 |
return double(_cycle_length) / _cycle_size;
|
alpar@2409
|
279 |
}
|
alpar@2409
|
280 |
|
kpeter@2555
|
281 |
/// \brief Returns a const reference to the \ref Path "path"
|
kpeter@2555
|
282 |
/// structure storing the found cycle.
|
alpar@2409
|
283 |
///
|
kpeter@2555
|
284 |
/// Returns a const reference to the \ref Path "path"
|
kpeter@2555
|
285 |
/// structure storing the found cycle.
|
alpar@2409
|
286 |
///
|
kpeter@2555
|
287 |
/// \pre \ref run() or \ref findCycle() must be called before using
|
kpeter@2555
|
288 |
/// this function.
|
alpar@2409
|
289 |
///
|
kpeter@2555
|
290 |
/// \sa cyclePath()
|
deba@2437
|
291 |
const Path& cycle() const {
|
kpeter@2555
|
292 |
return *_cycle_path;
|
alpar@2409
|
293 |
}
|
kpeter@2583
|
294 |
|
kpeter@2583
|
295 |
///@}
|
kpeter@2583
|
296 |
|
kpeter@2583
|
297 |
private:
|
deba@2437
|
298 |
|
kpeter@2583
|
299 |
// Initializes the internal data structures for the current strongly
|
kpeter@2583
|
300 |
// connected component and creating the policy graph.
|
kpeter@2583
|
301 |
// The policy graph can be represented by the _policy map because
|
kpeter@2583
|
302 |
// the out degree of every node is 1.
|
kpeter@2583
|
303 |
bool initCurrentComponent(int comp) {
|
kpeter@2583
|
304 |
// Finding the nodes of the current component
|
kpeter@2583
|
305 |
_nodes.clear();
|
kpeter@2583
|
306 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@2583
|
307 |
if (_component[n] == comp) _nodes.push_back(n);
|
alpar@2409
|
308 |
}
|
kpeter@2583
|
309 |
if (_nodes.size() <= 1) return false;
|
kpeter@2583
|
310 |
// Finding the edges of the current component
|
kpeter@2583
|
311 |
_edges.clear();
|
kpeter@2583
|
312 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
kpeter@2583
|
313 |
if ( _component[_graph.source(e)] == comp &&
|
kpeter@2583
|
314 |
_component[_graph.target(e)] == comp )
|
kpeter@2583
|
315 |
_edges.push_back(e);
|
kpeter@2583
|
316 |
}
|
kpeter@2583
|
317 |
// Initializing _reached, _dist, _policy maps
|
kpeter@2583
|
318 |
for (int i = 0; i < int(_nodes.size()); ++i) {
|
kpeter@2583
|
319 |
_reached[_nodes[i]] = false;
|
kpeter@2583
|
320 |
_policy[_nodes[i]] = INVALID;
|
kpeter@2583
|
321 |
}
|
kpeter@2583
|
322 |
Node u; Edge e;
|
kpeter@2583
|
323 |
for (int j = 0; j < int(_edges.size()); ++j) {
|
kpeter@2583
|
324 |
e = _edges[j];
|
kpeter@2583
|
325 |
u = _graph.source(e);
|
kpeter@2583
|
326 |
if (!_reached[u] || _length[e] < _dist[u]) {
|
kpeter@2583
|
327 |
_dist[u] = _length[e];
|
kpeter@2583
|
328 |
_policy[u] = e;
|
kpeter@2583
|
329 |
_reached[u] = true;
|
kpeter@2583
|
330 |
}
|
kpeter@2583
|
331 |
}
|
kpeter@2583
|
332 |
return true;
|
kpeter@2583
|
333 |
}
|
kpeter@2583
|
334 |
|
kpeter@2583
|
335 |
// Finds all cycles in the policy graph.
|
kpeter@2583
|
336 |
// Sets _cycle_found to true if a cycle is found and sets
|
kpeter@2583
|
337 |
// _cycle_length, _cycle_size, _cycle_node to represent the minimum
|
kpeter@2583
|
338 |
// mean cycle in the policy graph.
|
kpeter@2583
|
339 |
bool findPolicyCycles() {
|
kpeter@2583
|
340 |
typename Graph::template NodeMap<int> level(_graph, -1);
|
kpeter@2583
|
341 |
bool curr_cycle_found = false;
|
kpeter@2583
|
342 |
Length clength;
|
kpeter@2583
|
343 |
int csize;
|
kpeter@2583
|
344 |
int path_cnt = 0;
|
kpeter@2583
|
345 |
Node u, v;
|
kpeter@2583
|
346 |
// Searching for cycles
|
kpeter@2583
|
347 |
for (int i = 0; i < int(_nodes.size()); ++i) {
|
kpeter@2583
|
348 |
if (level[_nodes[i]] < 0) {
|
kpeter@2583
|
349 |
u = _nodes[i];
|
kpeter@2583
|
350 |
level[u] = path_cnt;
|
kpeter@2583
|
351 |
while (level[u = _graph.target(_policy[u])] < 0)
|
kpeter@2583
|
352 |
level[u] = path_cnt;
|
kpeter@2583
|
353 |
if (level[u] == path_cnt) {
|
kpeter@2583
|
354 |
// A cycle is found
|
kpeter@2583
|
355 |
curr_cycle_found = true;
|
kpeter@2583
|
356 |
clength = _length[_policy[u]];
|
kpeter@2583
|
357 |
csize = 1;
|
kpeter@2583
|
358 |
for (v = u; (v = _graph.target(_policy[v])) != u; ) {
|
kpeter@2583
|
359 |
clength += _length[_policy[v]];
|
kpeter@2583
|
360 |
++csize;
|
kpeter@2583
|
361 |
}
|
kpeter@2583
|
362 |
if ( !_cycle_found ||
|
kpeter@2583
|
363 |
clength * _cycle_size < _cycle_length * csize ) {
|
kpeter@2583
|
364 |
_cycle_found = true;
|
kpeter@2583
|
365 |
_cycle_length = clength;
|
kpeter@2583
|
366 |
_cycle_size = csize;
|
kpeter@2583
|
367 |
_cycle_node = u;
|
kpeter@2583
|
368 |
}
|
kpeter@2583
|
369 |
}
|
kpeter@2583
|
370 |
++path_cnt;
|
kpeter@2583
|
371 |
}
|
kpeter@2583
|
372 |
}
|
kpeter@2583
|
373 |
return curr_cycle_found;
|
kpeter@2583
|
374 |
}
|
kpeter@2583
|
375 |
|
kpeter@2583
|
376 |
// Contracts the policy graph to be connected by cutting all cycles
|
kpeter@2583
|
377 |
// except for the main cycle (i.e. the minimum mean cycle).
|
kpeter@2583
|
378 |
void contractPolicyGraph(int comp) {
|
kpeter@2583
|
379 |
// Finding the component of the main cycle using
|
kpeter@2583
|
380 |
// reverse BFS search
|
kpeter@2583
|
381 |
typename Graph::template NodeMap<int> found(_graph, false);
|
kpeter@2583
|
382 |
std::deque<Node> queue;
|
kpeter@2583
|
383 |
queue.push_back(_cycle_node);
|
kpeter@2583
|
384 |
found[_cycle_node] = true;
|
kpeter@2583
|
385 |
Node u, v;
|
kpeter@2583
|
386 |
while (!queue.empty()) {
|
kpeter@2583
|
387 |
v = queue.front(); queue.pop_front();
|
kpeter@2583
|
388 |
for (InEdgeIt e(_graph, v); e != INVALID; ++e) {
|
kpeter@2583
|
389 |
u = _graph.source(e);
|
kpeter@2583
|
390 |
if (_component[u] == comp && !found[u] && _policy[u] == e) {
|
kpeter@2583
|
391 |
found[u] = true;
|
kpeter@2583
|
392 |
queue.push_back(u);
|
kpeter@2583
|
393 |
}
|
kpeter@2583
|
394 |
}
|
kpeter@2583
|
395 |
}
|
kpeter@2583
|
396 |
// Connecting all other nodes to this component using
|
kpeter@2583
|
397 |
// reverse BFS search
|
kpeter@2583
|
398 |
queue.clear();
|
kpeter@2583
|
399 |
for (int i = 0; i < int(_nodes.size()); ++i)
|
kpeter@2583
|
400 |
if (found[_nodes[i]]) queue.push_back(_nodes[i]);
|
kpeter@2583
|
401 |
int found_cnt = queue.size();
|
kpeter@2583
|
402 |
while (found_cnt < int(_nodes.size()) && !queue.empty()) {
|
kpeter@2583
|
403 |
v = queue.front(); queue.pop_front();
|
kpeter@2583
|
404 |
for (InEdgeIt e(_graph, v); e != INVALID; ++e) {
|
kpeter@2583
|
405 |
u = _graph.source(e);
|
kpeter@2583
|
406 |
if (_component[u] == comp && !found[u]) {
|
kpeter@2583
|
407 |
found[u] = true;
|
kpeter@2583
|
408 |
++found_cnt;
|
kpeter@2583
|
409 |
_policy[u] = e;
|
kpeter@2583
|
410 |
queue.push_back(u);
|
kpeter@2583
|
411 |
}
|
kpeter@2583
|
412 |
}
|
kpeter@2583
|
413 |
}
|
kpeter@2583
|
414 |
}
|
kpeter@2583
|
415 |
|
kpeter@2583
|
416 |
// Computes node distances in the policy graph and updates the
|
kpeter@2583
|
417 |
// policy graph if the node distances can be improved.
|
kpeter@2583
|
418 |
bool computeNodeDistances(int comp) {
|
kpeter@2583
|
419 |
// Computing node distances using reverse BFS search
|
kpeter@2583
|
420 |
double cycle_mean = double(_cycle_length) / _cycle_size;
|
kpeter@2583
|
421 |
typename Graph::template NodeMap<int> found(_graph, false);
|
kpeter@2583
|
422 |
std::deque<Node> queue;
|
kpeter@2583
|
423 |
queue.push_back(_cycle_node);
|
kpeter@2583
|
424 |
found[_cycle_node] = true;
|
kpeter@2583
|
425 |
_dist[_cycle_node] = 0;
|
kpeter@2583
|
426 |
Node u, v;
|
kpeter@2583
|
427 |
while (!queue.empty()) {
|
kpeter@2583
|
428 |
v = queue.front(); queue.pop_front();
|
kpeter@2583
|
429 |
for (InEdgeIt e(_graph, v); e != INVALID; ++e) {
|
kpeter@2583
|
430 |
u = _graph.source(e);
|
kpeter@2583
|
431 |
if (_component[u] == comp && !found[u] && _policy[u] == e) {
|
kpeter@2583
|
432 |
found[u] = true;
|
kpeter@2583
|
433 |
_dist[u] = _dist[v] + _length[e] - cycle_mean;
|
kpeter@2583
|
434 |
queue.push_back(u);
|
kpeter@2583
|
435 |
}
|
kpeter@2583
|
436 |
}
|
kpeter@2583
|
437 |
}
|
kpeter@2583
|
438 |
// Improving node distances
|
kpeter@2583
|
439 |
bool improved = false;
|
kpeter@2583
|
440 |
for (int j = 0; j < int(_edges.size()); ++j) {
|
kpeter@2583
|
441 |
Edge e = _edges[j];
|
kpeter@2583
|
442 |
u = _graph.source(e); v = _graph.target(e);
|
kpeter@2583
|
443 |
double delta = _dist[v] + _length[e] - cycle_mean;
|
kpeter@2583
|
444 |
if (_tolerance.less(delta, _dist[u])) {
|
kpeter@2583
|
445 |
improved = true;
|
kpeter@2583
|
446 |
_dist[u] = delta;
|
kpeter@2583
|
447 |
_policy[u] = e;
|
kpeter@2583
|
448 |
}
|
kpeter@2583
|
449 |
}
|
kpeter@2583
|
450 |
return improved;
|
alpar@2409
|
451 |
}
|
alpar@2409
|
452 |
|
alpar@2409
|
453 |
}; //class MinMeanCycle
|
alpar@2409
|
454 |
|
alpar@2409
|
455 |
///@}
|
alpar@2409
|
456 |
|
alpar@2409
|
457 |
} //namespace lemon
|
alpar@2409
|
458 |
|
alpar@2409
|
459 |
#endif //LEMON_MIN_MEAN_CYCLE_H
|