lemon/graph_adaptor.h
author klao
Wed, 16 Nov 2005 04:22:49 +0000
changeset 1797 91b8b9cea2f7
parent 1755 bf267b301a5e
child 1839 b2dfd32b4895
permissions -rw-r--r--
lp_test.cc:

* bugfix in cplex part: check compiling and running on two different instances
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@1401
    17
#ifndef LEMON_GRAPH_ADAPTOR_H
alpar@1401
    18
#define LEMON_GRAPH_ADAPTOR_H
marci@556
    19
alpar@1401
    20
///\ingroup graph_adaptors
marci@556
    21
///\file
alpar@1401
    22
///\brief Several graph adaptors.
marci@556
    23
///
alpar@1401
    24
///This file contains several useful graph adaptor functions.
marci@556
    25
///
marci@556
    26
///\author Marton Makai
marci@556
    27
alpar@921
    28
#include <lemon/invalid.h>
alpar@921
    29
#include <lemon/maps.h>
deba@1472
    30
#include <lemon/bits/erasable_graph_extender.h>
deba@1472
    31
#include <lemon/bits/clearable_graph_extender.h>
deba@1472
    32
#include <lemon/bits/extendable_graph_extender.h>
deba@1307
    33
#include <lemon/bits/iterable_graph_extender.h>
deba@1472
    34
#include <lemon/bits/alteration_notifier.h>
deba@1472
    35
#include <lemon/bits/default_map.h>
deba@1791
    36
#include <lemon/bits/graph_extender.h>
alpar@774
    37
#include <iostream>
marci@556
    38
alpar@921
    39
namespace lemon {
marci@556
    40
alpar@1401
    41
  // Graph adaptors
marci@556
    42
marci@1172
    43
  /*!
alpar@1401
    44
    \addtogroup graph_adaptors
marci@1004
    45
    @{
marci@1172
    46
   */
marci@556
    47
marci@1172
    48
  /*! 
alpar@1401
    49
    Base type for the Graph Adaptors
marci@1242
    50
    
alpar@1401
    51
    \warning Graph adaptors are in even more experimental state than the other
marci@1004
    52
    parts of the lib. Use them at you own risk.
marci@1242
    53
    
alpar@1401
    54
    This is the base type for most of LEMON graph adaptors. 
alpar@1401
    55
    This class implements a trivial graph adaptor i.e. it only wraps the 
marci@1004
    56
    functions and types of the graph. The purpose of this class is to 
alpar@1401
    57
    make easier implementing graph adaptors. E.g. if an adaptor is 
marci@1004
    58
    considered which differs from the wrapped graph only in some of its 
alpar@1401
    59
    functions or types, then it can be derived from GraphAdaptor, and only the 
marci@1004
    60
    differences should be implemented.
marci@1004
    61
  
marci@1004
    62
    \author Marton Makai 
marci@1004
    63
  */
marci@970
    64
  template<typename _Graph>
alpar@1401
    65
  class GraphAdaptorBase {
marci@970
    66
  public:
marci@970
    67
    typedef _Graph Graph;
marci@970
    68
    typedef Graph ParentGraph;
marci@970
    69
marci@556
    70
  protected:
marci@556
    71
    Graph* graph;
alpar@1401
    72
    GraphAdaptorBase() : graph(0) { }
marci@556
    73
    void setGraph(Graph& _graph) { graph=&_graph; }
marci@556
    74
marci@556
    75
  public:
alpar@1401
    76
    GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
marci@556
    77
 
alpar@774
    78
    typedef typename Graph::Node Node;
alpar@774
    79
    typedef typename Graph::Edge Edge;
marci@556
    80
   
marci@970
    81
    void first(Node& i) const { graph->first(i); }
marci@970
    82
    void first(Edge& i) const { graph->first(i); }
marci@970
    83
    void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
marci@970
    84
    void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
marci@556
    85
marci@970
    86
    void next(Node& i) const { graph->next(i); }
marci@970
    87
    void next(Edge& i) const { graph->next(i); }
marci@970
    88
    void nextIn(Edge& i) const { graph->nextIn(i); }
marci@970
    89
    void nextOut(Edge& i) const { graph->nextOut(i); }
marci@970
    90
alpar@986
    91
    Node source(const Edge& e) const { return graph->source(e); }
alpar@986
    92
    Node target(const Edge& e) const { return graph->target(e); }
marci@556
    93
deba@1697
    94
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
marci@556
    95
    int nodeNum() const { return graph->nodeNum(); }
deba@1697
    96
    
deba@1697
    97
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
marci@556
    98
    int edgeNum() const { return graph->edgeNum(); }
deba@1697
    99
deba@1697
   100
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@1697
   101
    Edge findEdge(const Node& source, const Node& target, 
deba@1697
   102
		  const Edge& prev = INVALID) {
deba@1697
   103
      return graph->findEdge(source, target, prev);
deba@1697
   104
    }
marci@556
   105
  
deba@1697
   106
    Node addNode() const { 
deba@1697
   107
      return Node(graph->addNode()); 
deba@1697
   108
    }
deba@1697
   109
alpar@986
   110
    Edge addEdge(const Node& source, const Node& target) const { 
deba@1697
   111
      return Edge(graph->addEdge(source, target)); 
deba@1697
   112
    }
marci@556
   113
marci@556
   114
    void erase(const Node& i) const { graph->erase(i); }
marci@556
   115
    void erase(const Edge& i) const { graph->erase(i); }
marci@556
   116
  
marci@556
   117
    void clear() const { graph->clear(); }
marci@556
   118
    
marci@739
   119
    int id(const Node& v) const { return graph->id(v); }
marci@739
   120
    int id(const Edge& e) const { return graph->id(e); }
marci@650
   121
    
deba@1627
   122
    Edge oppositeNode(const Edge& e) const { 
deba@1627
   123
      return Edge(graph->opposite(e)); 
deba@1627
   124
    }
marci@650
   125
marci@970
   126
    template <typename _Value>
marci@970
   127
    class NodeMap : public _Graph::template NodeMap<_Value> {
marci@970
   128
    public:
marci@970
   129
      typedef typename _Graph::template NodeMap<_Value> Parent;
deba@1755
   130
      explicit NodeMap(const GraphAdaptorBase<_Graph>& gw) 
deba@1755
   131
	: Parent(*gw.graph) { }
alpar@1401
   132
      NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
deba@1755
   133
	: Parent(*gw.graph, value) { }
marci@970
   134
    };
marci@556
   135
marci@970
   136
    template <typename _Value>
marci@970
   137
    class EdgeMap : public _Graph::template EdgeMap<_Value> {
marci@970
   138
    public:
marci@970
   139
      typedef typename _Graph::template EdgeMap<_Value> Parent;
deba@1755
   140
      explicit EdgeMap(const GraphAdaptorBase<_Graph>& gw) 
deba@1755
   141
	: Parent(*gw.graph) { }
alpar@1401
   142
      EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
deba@1755
   143
	: Parent(*gw.graph, value) { }
marci@970
   144
    };
deba@877
   145
marci@556
   146
  };
marci@556
   147
marci@970
   148
  template <typename _Graph>
alpar@1401
   149
  class GraphAdaptor :
alpar@1401
   150
    public IterableGraphExtender<GraphAdaptorBase<_Graph> > { 
marci@970
   151
  public:
marci@970
   152
    typedef _Graph Graph;
alpar@1401
   153
    typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
marci@970
   154
  protected:
alpar@1401
   155
    GraphAdaptor() : Parent() { }
marci@569
   156
marci@970
   157
  public:
deba@1755
   158
    explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
marci@970
   159
  };
marci@569
   160
marci@997
   161
  template <typename _Graph>
alpar@1401
   162
  class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@997
   163
  public:
marci@997
   164
    typedef _Graph Graph;
alpar@1401
   165
    typedef GraphAdaptorBase<_Graph> Parent;
marci@997
   166
  protected:
alpar@1401
   167
    RevGraphAdaptorBase() : Parent() { }
marci@997
   168
  public:
marci@997
   169
    typedef typename Parent::Node Node;
marci@997
   170
    typedef typename Parent::Edge Edge;
marci@997
   171
marci@997
   172
    void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
marci@997
   173
    void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
marci@997
   174
marci@997
   175
    void nextIn(Edge& i) const { Parent::nextOut(i); }
marci@997
   176
    void nextOut(Edge& i) const { Parent::nextIn(i); }
marci@997
   177
marci@997
   178
    Node source(const Edge& e) const { return Parent::target(e); }
marci@997
   179
    Node target(const Edge& e) const { return Parent::source(e); }
marci@997
   180
  };
marci@997
   181
    
marci@997
   182
alpar@1401
   183
  /// A graph adaptor which reverses the orientation of the edges.
marci@556
   184
alpar@1401
   185
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
   186
  ///parts of the lib. Use them at you own risk.
alpar@879
   187
  ///
marci@923
   188
  /// Let \f$G=(V, A)\f$ be a directed graph and 
marci@923
   189
  /// suppose that a graph instange \c g of type 
marci@923
   190
  /// \c ListGraph implements \f$G\f$.
marci@923
   191
  /// \code
marci@923
   192
  /// ListGraph g;
marci@923
   193
  /// \endcode
marci@923
   194
  /// For each directed edge 
marci@923
   195
  /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
marci@923
   196
  /// reversing its orientation. 
alpar@1401
   197
  /// Then RevGraphAdaptor implements the graph structure with node-set 
marci@923
   198
  /// \f$V\f$ and edge-set 
marci@923
   199
  /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
marci@923
   200
  /// reversing the orientation of its edges. The following code shows how 
marci@923
   201
  /// such an instance can be constructed.
marci@923
   202
  /// \code
alpar@1401
   203
  /// RevGraphAdaptor<ListGraph> gw(g);
marci@923
   204
  /// \endcode
marci@556
   205
  ///\author Marton Makai
marci@997
   206
  template<typename _Graph>
alpar@1401
   207
  class RevGraphAdaptor : 
alpar@1401
   208
    public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
marci@650
   209
  public:
marci@997
   210
    typedef _Graph Graph;
marci@997
   211
    typedef IterableGraphExtender<
alpar@1401
   212
      RevGraphAdaptorBase<_Graph> > Parent;
marci@556
   213
  protected:
alpar@1401
   214
    RevGraphAdaptor() { }
marci@556
   215
  public:
deba@1755
   216
    explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
marci@997
   217
  };
marci@556
   218
marci@992
   219
  
deba@1681
   220
  template <typename _Graph, typename NodeFilterMap, 
deba@1681
   221
	    typename EdgeFilterMap, bool checked = true>
alpar@1401
   222
  class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@992
   223
  public:
marci@992
   224
    typedef _Graph Graph;
alpar@1401
   225
    typedef GraphAdaptorBase<_Graph> Parent;
marci@992
   226
  protected:
marci@992
   227
    NodeFilterMap* node_filter_map;
marci@992
   228
    EdgeFilterMap* edge_filter_map;
alpar@1401
   229
    SubGraphAdaptorBase() : Parent(), 
marci@992
   230
			    node_filter_map(0), edge_filter_map(0) { }
marci@775
   231
marci@992
   232
    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
marci@992
   233
      node_filter_map=&_node_filter_map;
marci@992
   234
    }
marci@992
   235
    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
marci@992
   236
      edge_filter_map=&_edge_filter_map;
marci@992
   237
    }
marci@992
   238
marci@992
   239
  public:
marci@992
   240
marci@992
   241
    typedef typename Parent::Node Node;
marci@992
   242
    typedef typename Parent::Edge Edge;
marci@992
   243
marci@992
   244
    void first(Node& i) const { 
marci@992
   245
      Parent::first(i); 
marci@992
   246
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
marci@992
   247
    }
deba@1681
   248
deba@1681
   249
    void first(Edge& i) const { 
deba@1681
   250
      Parent::first(i); 
deba@1681
   251
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   252
	     || !(*node_filter_map)[Parent::source(i)]
deba@1681
   253
	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
deba@1681
   254
    }
deba@1681
   255
deba@1681
   256
    void firstIn(Edge& i, const Node& n) const { 
deba@1681
   257
      Parent::firstIn(i, n); 
deba@1681
   258
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   259
	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
deba@1681
   260
    }
deba@1681
   261
deba@1681
   262
    void firstOut(Edge& i, const Node& n) const { 
deba@1681
   263
      Parent::firstOut(i, n); 
deba@1681
   264
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   265
	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
deba@1681
   266
    }
deba@1681
   267
deba@1681
   268
    void next(Node& i) const { 
deba@1681
   269
      Parent::next(i); 
deba@1681
   270
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
deba@1681
   271
    }
deba@1681
   272
deba@1681
   273
    void next(Edge& i) const { 
deba@1681
   274
      Parent::next(i); 
deba@1681
   275
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   276
	     || !(*node_filter_map)[Parent::source(i)]
deba@1681
   277
	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
deba@1681
   278
    }
deba@1681
   279
deba@1681
   280
    void nextIn(Edge& i) const { 
deba@1681
   281
      Parent::nextIn(i); 
deba@1681
   282
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   283
	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
deba@1681
   284
    }
deba@1681
   285
deba@1681
   286
    void nextOut(Edge& i) const { 
deba@1681
   287
      Parent::nextOut(i); 
deba@1681
   288
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   289
	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
deba@1681
   290
    }
deba@1681
   291
deba@1681
   292
    /// This function hides \c n in the graph, i.e. the iteration 
deba@1681
   293
    /// jumps over it. This is done by simply setting the value of \c n  
deba@1681
   294
    /// to be false in the corresponding node-map.
deba@1681
   295
    void hide(const Node& n) const { node_filter_map->set(n, false); }
deba@1681
   296
deba@1681
   297
    /// This function hides \c e in the graph, i.e. the iteration 
deba@1681
   298
    /// jumps over it. This is done by simply setting the value of \c e  
deba@1681
   299
    /// to be false in the corresponding edge-map.
deba@1681
   300
    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
deba@1681
   301
deba@1681
   302
    /// The value of \c n is set to be true in the node-map which stores 
deba@1681
   303
    /// hide information. If \c n was hidden previuosly, then it is shown 
deba@1681
   304
    /// again
deba@1681
   305
     void unHide(const Node& n) const { node_filter_map->set(n, true); }
deba@1681
   306
deba@1681
   307
    /// The value of \c e is set to be true in the edge-map which stores 
deba@1681
   308
    /// hide information. If \c e was hidden previuosly, then it is shown 
deba@1681
   309
    /// again
deba@1681
   310
    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
deba@1681
   311
deba@1681
   312
    /// Returns true if \c n is hidden.
deba@1681
   313
    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
deba@1681
   314
deba@1681
   315
    /// Returns true if \c n is hidden.
deba@1681
   316
    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
deba@1681
   317
deba@1697
   318
    typedef False NodeNumTag;
deba@1697
   319
    typedef False EdgeNumTag;
deba@1681
   320
  };
deba@1681
   321
deba@1681
   322
  template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
deba@1681
   323
  class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
deba@1681
   324
    : public GraphAdaptorBase<_Graph> {
deba@1681
   325
  public:
deba@1681
   326
    typedef _Graph Graph;
deba@1681
   327
    typedef GraphAdaptorBase<_Graph> Parent;
deba@1681
   328
  protected:
deba@1681
   329
    NodeFilterMap* node_filter_map;
deba@1681
   330
    EdgeFilterMap* edge_filter_map;
deba@1681
   331
    SubGraphAdaptorBase() : Parent(), 
deba@1681
   332
			    node_filter_map(0), edge_filter_map(0) { }
deba@1681
   333
deba@1681
   334
    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
deba@1681
   335
      node_filter_map=&_node_filter_map;
deba@1681
   336
    }
deba@1681
   337
    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
deba@1681
   338
      edge_filter_map=&_edge_filter_map;
deba@1681
   339
    }
deba@1681
   340
deba@1681
   341
  public:
deba@1681
   342
deba@1681
   343
    typedef typename Parent::Node Node;
deba@1681
   344
    typedef typename Parent::Edge Edge;
deba@1681
   345
deba@1681
   346
    void first(Node& i) const { 
deba@1681
   347
      Parent::first(i); 
deba@1681
   348
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
deba@1681
   349
    }
deba@1681
   350
marci@992
   351
    void first(Edge& i) const { 
marci@992
   352
      Parent::first(i); 
marci@992
   353
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
marci@992
   354
    }
deba@1681
   355
marci@992
   356
    void firstIn(Edge& i, const Node& n) const { 
marci@992
   357
      Parent::firstIn(i, n); 
marci@992
   358
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
marci@992
   359
    }
deba@1681
   360
marci@992
   361
    void firstOut(Edge& i, const Node& n) const { 
marci@992
   362
      Parent::firstOut(i, n); 
marci@992
   363
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
marci@992
   364
    }
marci@992
   365
marci@992
   366
    void next(Node& i) const { 
marci@992
   367
      Parent::next(i); 
marci@992
   368
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
marci@992
   369
    }
marci@992
   370
    void next(Edge& i) const { 
marci@992
   371
      Parent::next(i); 
marci@992
   372
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
marci@992
   373
    }
marci@992
   374
    void nextIn(Edge& i) const { 
marci@992
   375
      Parent::nextIn(i); 
marci@992
   376
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
marci@992
   377
    }
deba@1681
   378
marci@992
   379
    void nextOut(Edge& i) const { 
marci@992
   380
      Parent::nextOut(i); 
marci@992
   381
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
marci@992
   382
    }
marci@992
   383
marci@992
   384
    /// This function hides \c n in the graph, i.e. the iteration 
marci@992
   385
    /// jumps over it. This is done by simply setting the value of \c n  
marci@992
   386
    /// to be false in the corresponding node-map.
marci@992
   387
    void hide(const Node& n) const { node_filter_map->set(n, false); }
marci@992
   388
marci@992
   389
    /// This function hides \c e in the graph, i.e. the iteration 
marci@992
   390
    /// jumps over it. This is done by simply setting the value of \c e  
marci@992
   391
    /// to be false in the corresponding edge-map.
marci@992
   392
    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
marci@992
   393
marci@992
   394
    /// The value of \c n is set to be true in the node-map which stores 
marci@992
   395
    /// hide information. If \c n was hidden previuosly, then it is shown 
marci@992
   396
    /// again
marci@992
   397
     void unHide(const Node& n) const { node_filter_map->set(n, true); }
marci@992
   398
marci@992
   399
    /// The value of \c e is set to be true in the edge-map which stores 
marci@992
   400
    /// hide information. If \c e was hidden previuosly, then it is shown 
marci@992
   401
    /// again
marci@992
   402
    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
marci@992
   403
marci@992
   404
    /// Returns true if \c n is hidden.
marci@992
   405
    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
marci@992
   406
marci@992
   407
    /// Returns true if \c n is hidden.
marci@992
   408
    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
marci@992
   409
deba@1697
   410
    typedef False NodeNumTag;
deba@1697
   411
    typedef False EdgeNumTag;
marci@992
   412
  };
marci@775
   413
alpar@1401
   414
  /*! \brief A graph adaptor for hiding nodes and edges from a graph.
marci@1242
   415
    
alpar@1401
   416
  \warning Graph adaptors are in even more experimental state than the other
marci@930
   417
  parts of the lib. Use them at you own risk.
marci@930
   418
  
alpar@1401
   419
  SubGraphAdaptor shows the graph with filtered node-set and 
deba@1697
   420
  edge-set. If the \c checked parameter is true then it filters the edgeset
deba@1697
   421
  to do not get invalid edges without source or target.
marci@1242
   422
  Let \f$G=(V, A)\f$ be a directed graph 
marci@1242
   423
  and suppose that the graph instance \c g of type ListGraph implements 
marci@1242
   424
  \f$G\f$. 
marci@1242
   425
  Let moreover \f$b_V\f$ and 
marci@1242
   426
  \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
alpar@1401
   427
  SubGraphAdaptor<...>::NodeIt iterates 
marci@1242
   428
  on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
alpar@1401
   429
  SubGraphAdaptor<...>::EdgeIt iterates 
marci@1242
   430
  on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
alpar@1401
   431
  SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates 
marci@1242
   432
  only on edges leaving and entering a specific node which have true value.
marci@1242
   433
deba@1697
   434
  If the \c checked template parameter is false then we have to note that 
deba@1697
   435
  the node-iterator cares only the filter on the node-set, and the 
deba@1697
   436
  edge-iterator cares only the filter on the edge-set. This way the edge-map
deba@1697
   437
  should filter all edges which's source or target is filtered by the 
deba@1697
   438
  node-filter.
marci@930
   439
  \code
marci@1242
   440
  typedef ListGraph Graph;
marci@930
   441
  Graph g;
marci@930
   442
  typedef Graph::Node Node;
marci@930
   443
  typedef Graph::Edge Edge;
marci@930
   444
  Node u=g.addNode(); //node of id 0
marci@930
   445
  Node v=g.addNode(); //node of id 1
marci@930
   446
  Node e=g.addEdge(u, v); //edge of id 0
marci@930
   447
  Node f=g.addEdge(v, u); //edge of id 1
marci@930
   448
  Graph::NodeMap<bool> nm(g, true);
marci@930
   449
  nm.set(u, false);
marci@930
   450
  Graph::EdgeMap<bool> em(g, true);
marci@930
   451
  em.set(e, false);
alpar@1401
   452
  typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
marci@930
   453
  SubGW gw(g, nm, em);
marci@930
   454
  for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
marci@930
   455
  std::cout << ":-)" << std::endl;
marci@930
   456
  for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
marci@930
   457
  \endcode
marci@930
   458
  The output of the above code is the following.
marci@930
   459
  \code
marci@930
   460
  1
marci@930
   461
  :-)
marci@930
   462
  1
marci@930
   463
  \endcode
marci@930
   464
  Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
marci@930
   465
  \c Graph::Node that is why \c g.id(n) can be applied.
marci@930
   466
alpar@1401
   467
  For other examples see also the documentation of NodeSubGraphAdaptor and 
alpar@1401
   468
  EdgeSubGraphAdaptor.
marci@930
   469
marci@930
   470
  \author Marton Makai
marci@930
   471
  */
marci@992
   472
  template<typename _Graph, typename NodeFilterMap, 
deba@1681
   473
	   typename EdgeFilterMap, bool checked = true>
alpar@1401
   474
  class SubGraphAdaptor : 
marci@992
   475
    public IterableGraphExtender<
deba@1681
   476
    SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
marci@650
   477
  public:
marci@992
   478
    typedef _Graph Graph;
marci@992
   479
    typedef IterableGraphExtender<
alpar@1401
   480
      SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
marci@556
   481
  protected:
alpar@1401
   482
    SubGraphAdaptor() { }
marci@992
   483
  public:
alpar@1401
   484
    SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
marci@992
   485
		    EdgeFilterMap& _edge_filter_map) { 
marci@992
   486
      setGraph(_graph);
marci@992
   487
      setNodeFilterMap(_node_filter_map);
marci@992
   488
      setEdgeFilterMap(_edge_filter_map);
marci@992
   489
    }
marci@992
   490
  };
marci@556
   491
marci@556
   492
marci@569
   493
alpar@1401
   494
  /*! \brief An adaptor for hiding nodes from a graph.
marci@933
   495
alpar@1401
   496
  \warning Graph adaptors are in even more experimental state than the other
marci@933
   497
  parts of the lib. Use them at you own risk.
marci@933
   498
  
alpar@1401
   499
  An adaptor for hiding nodes from a graph.
alpar@1401
   500
  This adaptor specializes SubGraphAdaptor in the way that only the node-set 
deba@1697
   501
  can be filtered. In usual case the checked parameter is true, we get the
deba@1697
   502
  induced subgraph. But if the checked parameter is false then we can only
deba@1697
   503
  filter only isolated nodes.
marci@933
   504
  \author Marton Makai
marci@933
   505
  */
deba@1681
   506
  template<typename Graph, typename NodeFilterMap, bool checked = true>
alpar@1401
   507
  class NodeSubGraphAdaptor : 
alpar@1401
   508
    public SubGraphAdaptor<Graph, NodeFilterMap, 
deba@1681
   509
			   ConstMap<typename Graph::Edge,bool>, checked> {
marci@933
   510
  public:
alpar@1401
   511
    typedef SubGraphAdaptor<Graph, NodeFilterMap, 
marci@933
   512
			    ConstMap<typename Graph::Edge,bool> > Parent;
marci@933
   513
  protected:
marci@933
   514
    ConstMap<typename Graph::Edge, bool> const_true_map;
marci@933
   515
  public:
alpar@1401
   516
    NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
marci@933
   517
      Parent(), const_true_map(true) { 
marci@933
   518
      Parent::setGraph(_graph);
marci@933
   519
      Parent::setNodeFilterMap(_node_filter_map);
marci@933
   520
      Parent::setEdgeFilterMap(const_true_map);
marci@933
   521
    }
marci@933
   522
  };
marci@933
   523
marci@933
   524
alpar@1401
   525
  /*! \brief An adaptor for hiding edges from a graph.
marci@932
   526
alpar@1401
   527
  \warning Graph adaptors are in even more experimental state than the other
marci@932
   528
  parts of the lib. Use them at you own risk.
marci@932
   529
  
alpar@1401
   530
  An adaptor for hiding edges from a graph.
alpar@1401
   531
  This adaptor specializes SubGraphAdaptor in the way that only the edge-set 
alpar@1401
   532
  can be filtered. The usefulness of this adaptor is demonstrated in the 
marci@933
   533
  problem of searching a maximum number of edge-disjoint shortest paths 
marci@933
   534
  between 
marci@933
   535
  two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
marci@933
   536
  non-negative edge-lengths. Note that 
marci@933
   537
  the comprehension of the presented solution 
marci@1252
   538
  need's some elementary knowledge from combinatorial optimization. 
marci@933
   539
marci@933
   540
  If a single shortest path is to be 
marci@1252
   541
  searched between \c s and \c t, then this can be done easily by 
marci@1252
   542
  applying the Dijkstra algorithm. What happens, if a maximum number of 
marci@933
   543
  edge-disjoint shortest paths is to be computed. It can be proved that an 
marci@933
   544
  edge can be in a shortest path if and only if it is tight with respect to 
marci@933
   545
  the potential function computed by Dijkstra. Moreover, any path containing 
marci@933
   546
  only such edges is a shortest one. Thus we have to compute a maximum number 
marci@933
   547
  of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
marci@933
   548
  all the tight edges. The computation will be demonstrated on the following 
alpar@1536
   549
  graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
marci@1425
   550
  The full source code is available in \ref sub_graph_adaptor_demo.cc. 
marci@1425
   551
  If you are interested in more demo programs, you can use 
marci@1425
   552
  \ref dim_to_dot.cc to generate .dot files from dimacs files. 
athos@1576
   553
  The .dot file of the following figure was generated by  
marci@1425
   554
  the demo program \ref dim_to_dot.cc.
marci@1425
   555
marci@933
   556
  \dot
marci@933
   557
  digraph lemon_dot_example {
marci@933
   558
  node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
marci@933
   559
  n0 [ label="0 (s)" ];
marci@933
   560
  n1 [ label="1" ];
marci@933
   561
  n2 [ label="2" ];
marci@933
   562
  n3 [ label="3" ];
marci@933
   563
  n4 [ label="4" ];
marci@933
   564
  n5 [ label="5" ];
marci@933
   565
  n6 [ label="6 (t)" ];
marci@933
   566
  edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
marci@933
   567
  n5 ->  n6 [ label="9, length:4" ];
marci@933
   568
  n4 ->  n6 [ label="8, length:2" ];
marci@933
   569
  n3 ->  n5 [ label="7, length:1" ];
marci@933
   570
  n2 ->  n5 [ label="6, length:3" ];
marci@933
   571
  n2 ->  n6 [ label="5, length:5" ];
marci@933
   572
  n2 ->  n4 [ label="4, length:2" ];
marci@933
   573
  n1 ->  n4 [ label="3, length:3" ];
marci@933
   574
  n0 ->  n3 [ label="2, length:1" ];
marci@933
   575
  n0 ->  n2 [ label="1, length:2" ];
marci@933
   576
  n0 ->  n1 [ label="0, length:3" ];
marci@933
   577
  }
marci@933
   578
  \enddot
marci@933
   579
marci@933
   580
  \code
marci@933
   581
  Graph g;
marci@933
   582
  Node s, t;
marci@933
   583
  LengthMap length(g);
marci@933
   584
marci@933
   585
  readDimacs(std::cin, g, length, s, t);
marci@933
   586
alpar@986
   587
  cout << "edges with lengths (of form id, source--length->target): " << endl;
marci@933
   588
  for(EdgeIt e(g); e!=INVALID; ++e) 
alpar@986
   589
    cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
alpar@986
   590
         << length[e] << "->" << g.id(g.target(e)) << endl;
marci@933
   591
marci@933
   592
  cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
marci@933
   593
  \endcode
marci@933
   594
  Next, the potential function is computed with Dijkstra.
marci@933
   595
  \code
marci@933
   596
  typedef Dijkstra<Graph, LengthMap> Dijkstra;
marci@933
   597
  Dijkstra dijkstra(g, length);
marci@933
   598
  dijkstra.run(s);
marci@933
   599
  \endcode
marci@933
   600
  Next, we consrtruct a map which filters the edge-set to the tight edges.
marci@933
   601
  \code
marci@933
   602
  typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
marci@933
   603
    TightEdgeFilter;
marci@933
   604
  TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
marci@933
   605
  
alpar@1401
   606
  typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
marci@933
   607
  SubGW gw(g, tight_edge_filter);
marci@933
   608
  \endcode
marci@933
   609
  Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
marci@933
   610
  with a max flow algorithm Preflow.
marci@933
   611
  \code
marci@933
   612
  ConstMap<Edge, int> const_1_map(1);
marci@933
   613
  Graph::EdgeMap<int> flow(g, 0);
marci@933
   614
marci@933
   615
  Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
marci@933
   616
    preflow(gw, s, t, const_1_map, flow);
marci@933
   617
  preflow.run();
marci@933
   618
  \endcode
marci@933
   619
  Last, the output is:
marci@933
   620
  \code  
marci@933
   621
  cout << "maximum number of edge-disjoint shortest path: " 
marci@933
   622
       << preflow.flowValue() << endl;
marci@933
   623
  cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
marci@933
   624
       << endl;
marci@933
   625
  for(EdgeIt e(g); e!=INVALID; ++e) 
marci@933
   626
    if (flow[e])
alpar@986
   627
      cout << " " << g.id(g.source(e)) << "--" 
alpar@986
   628
	   << length[e] << "->" << g.id(g.target(e)) << endl;
marci@933
   629
  \endcode
marci@933
   630
  The program has the following (expected :-)) output:
marci@933
   631
  \code
alpar@986
   632
  edges with lengths (of form id, source--length->target):
marci@933
   633
   9, 5--4->6
marci@933
   634
   8, 4--2->6
marci@933
   635
   7, 3--1->5
marci@933
   636
   6, 2--3->5
marci@933
   637
   5, 2--5->6
marci@933
   638
   4, 2--2->4
marci@933
   639
   3, 1--3->4
marci@933
   640
   2, 0--1->3
marci@933
   641
   1, 0--2->2
marci@933
   642
   0, 0--3->1
marci@933
   643
  s: 0 t: 6
marci@933
   644
  maximum number of edge-disjoint shortest path: 2
marci@933
   645
  edges of the maximum number of edge-disjoint shortest s-t paths:
marci@933
   646
   9, 5--4->6
marci@933
   647
   8, 4--2->6
marci@933
   648
   7, 3--1->5
marci@933
   649
   4, 2--2->4
marci@933
   650
   2, 0--1->3
marci@933
   651
   1, 0--2->2
marci@933
   652
  \endcode
marci@933
   653
marci@932
   654
  \author Marton Makai
marci@932
   655
  */
marci@932
   656
  template<typename Graph, typename EdgeFilterMap>
alpar@1401
   657
  class EdgeSubGraphAdaptor : 
alpar@1401
   658
    public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
deba@1681
   659
			   EdgeFilterMap, false> {
marci@932
   660
  public:
alpar@1401
   661
    typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
deba@1685
   662
			    EdgeFilterMap, false> Parent;
marci@932
   663
  protected:
marci@932
   664
    ConstMap<typename Graph::Node, bool> const_true_map;
marci@932
   665
  public:
alpar@1401
   666
    EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
marci@932
   667
      Parent(), const_true_map(true) { 
marci@932
   668
      Parent::setGraph(_graph);
marci@932
   669
      Parent::setNodeFilterMap(const_true_map);
marci@932
   670
      Parent::setEdgeFilterMap(_edge_filter_map);
marci@932
   671
    }
marci@932
   672
  };
marci@932
   673
marci@1383
   674
  template <typename _Graph>
alpar@1401
   675
  class UndirGraphAdaptorBase : 
alpar@1401
   676
    public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
marci@1383
   677
  public:
marci@1383
   678
    typedef _Graph Graph;
alpar@1401
   679
    typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
marci@1383
   680
  protected:
alpar@1401
   681
    UndirGraphAdaptorBase() : Parent() { }
marci@1383
   682
  public:
marci@1383
   683
    typedef typename Parent::UndirEdge UndirEdge;
marci@1383
   684
    typedef typename Parent::Edge Edge;
marci@1383
   685
    
marci@1383
   686
    template <typename T>
marci@1383
   687
    class EdgeMap {
marci@1383
   688
    protected:
alpar@1401
   689
      const UndirGraphAdaptorBase<_Graph>* g;
marci@1383
   690
      template <typename TT> friend class EdgeMap;
marci@1383
   691
      typename _Graph::template EdgeMap<T> forward_map, backward_map; 
marci@1383
   692
    public:
marci@1383
   693
      typedef T Value;
marci@1383
   694
      typedef Edge Key;
marci@1383
   695
      
alpar@1401
   696
      EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), 
marci@1383
   697
	forward_map(*(g->graph)), backward_map(*(g->graph)) { }
marci@569
   698
alpar@1401
   699
      EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), 
marci@1383
   700
	forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
marci@1383
   701
      
marci@1383
   702
      void set(Edge e, T a) { 
deba@1627
   703
	if (g->direction(e)) 
marci@1383
   704
	  forward_map.set(e, a); 
marci@1383
   705
	else 
marci@1383
   706
	  backward_map.set(e, a); 
marci@1383
   707
      }
marci@556
   708
marci@1383
   709
      T operator[](Edge e) const { 
deba@1627
   710
	if (g->direction(e)) 
marci@1383
   711
	  return forward_map[e]; 
marci@1383
   712
	else 
marci@1383
   713
	  return backward_map[e]; 
marci@556
   714
      }
marci@556
   715
    };
marci@1383
   716
        
marci@1383
   717
    template <typename T>
marci@1383
   718
    class UndirEdgeMap {
marci@1383
   719
      template <typename TT> friend class UndirEdgeMap;
marci@1383
   720
      typename _Graph::template EdgeMap<T> map; 
marci@1383
   721
    public:
marci@1383
   722
      typedef T Value;
marci@1383
   723
      typedef UndirEdge Key;
marci@1383
   724
      
alpar@1401
   725
      UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : 
marci@1383
   726
	map(*(g.graph)) { }
marci@556
   727
alpar@1401
   728
      UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : 
marci@1383
   729
	map(*(g.graph), a) { }
marci@1383
   730
      
marci@1383
   731
      void set(UndirEdge e, T a) { 
marci@1383
   732
	map.set(e, a); 
marci@1383
   733
      }
marci@556
   734
marci@1383
   735
      T operator[](UndirEdge e) const { 
marci@1383
   736
	return map[e]; 
marci@1383
   737
      }
marci@1383
   738
    };
marci@1383
   739
      
marci@1383
   740
  };
marci@1383
   741
alpar@1401
   742
  /// \brief An undirected graph is made from a directed graph by an adaptor
marci@1383
   743
  ///
marci@1383
   744
  /// Undocumented, untested!!!
marci@1383
   745
  /// If somebody knows nice demo application, let's polulate it.
marci@1383
   746
  /// 
marci@1383
   747
  /// \author Marton Makai
marci@1383
   748
  template<typename _Graph>
alpar@1401
   749
  class UndirGraphAdaptor : 
marci@1383
   750
    public IterableUndirGraphExtender<
alpar@1401
   751
    UndirGraphAdaptorBase<_Graph> > {
marci@1383
   752
  public:
marci@1383
   753
    typedef _Graph Graph;
marci@1383
   754
    typedef IterableUndirGraphExtender<
alpar@1401
   755
      UndirGraphAdaptorBase<_Graph> > Parent;
marci@1383
   756
  protected:
alpar@1401
   757
    UndirGraphAdaptor() { }
marci@1383
   758
  public:
alpar@1401
   759
    UndirGraphAdaptor(_Graph& _graph) { 
marci@1383
   760
      setGraph(_graph);
marci@556
   761
    }
marci@556
   762
  };
marci@556
   763
marci@992
   764
  
marci@992
   765
  template <typename _Graph, 
marci@992
   766
	    typename ForwardFilterMap, typename BackwardFilterMap>
alpar@1401
   767
  class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@992
   768
  public:
marci@992
   769
    typedef _Graph Graph;
alpar@1401
   770
    typedef GraphAdaptorBase<_Graph> Parent;
marci@992
   771
  protected:
marci@992
   772
    ForwardFilterMap* forward_filter;
marci@992
   773
    BackwardFilterMap* backward_filter;
alpar@1401
   774
    SubBidirGraphAdaptorBase() : Parent(), 
marci@992
   775
				 forward_filter(0), backward_filter(0) { }
marci@992
   776
marci@992
   777
    void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
marci@992
   778
      forward_filter=&_forward_filter;
marci@992
   779
    }
marci@992
   780
    void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
marci@992
   781
      backward_filter=&_backward_filter;
marci@992
   782
    }
marci@992
   783
marci@992
   784
  public:
alpar@1401
   785
//     SubGraphAdaptorBase(Graph& _graph, 
marci@992
   786
// 			NodeFilterMap& _node_filter_map, 
marci@992
   787
// 			EdgeFilterMap& _edge_filter_map) : 
marci@992
   788
//       Parent(&_graph), 
marci@992
   789
//       node_filter_map(&node_filter_map), 
marci@992
   790
//       edge_filter_map(&edge_filter_map) { }
marci@992
   791
marci@992
   792
    typedef typename Parent::Node Node;
marci@992
   793
    typedef typename _Graph::Edge GraphEdge;
marci@992
   794
    template <typename T> class EdgeMap;
alpar@1401
   795
    /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from 
marci@992
   796
    /// _Graph::Edge. It contains an extra bool flag which is true 
marci@992
   797
    /// if and only if the 
marci@992
   798
    /// edge is the backward version of the original edge.
marci@992
   799
    class Edge : public _Graph::Edge {
alpar@1401
   800
      friend class SubBidirGraphAdaptorBase<
marci@992
   801
	Graph, ForwardFilterMap, BackwardFilterMap>;
marci@992
   802
      template<typename T> friend class EdgeMap;
marci@992
   803
    protected:
marci@992
   804
      bool backward; //true, iff backward
marci@992
   805
    public:
marci@992
   806
      Edge() { }
marci@992
   807
      /// \todo =false is needed, or causes problems?
marci@992
   808
      /// If \c _backward is false, then we get an edge corresponding to the 
marci@992
   809
      /// original one, otherwise its oppositely directed pair is obtained.
marci@992
   810
      Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
marci@992
   811
	_Graph::Edge(e), backward(_backward) { }
marci@992
   812
      Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
marci@992
   813
      bool operator==(const Edge& v) const { 
marci@992
   814
	return (this->backward==v.backward && 
marci@992
   815
		static_cast<typename _Graph::Edge>(*this)==
marci@992
   816
		static_cast<typename _Graph::Edge>(v));
marci@992
   817
      } 
marci@992
   818
      bool operator!=(const Edge& v) const { 
marci@992
   819
	return (this->backward!=v.backward || 
marci@992
   820
		static_cast<typename _Graph::Edge>(*this)!=
marci@992
   821
		static_cast<typename _Graph::Edge>(v));
marci@992
   822
      }
marci@992
   823
    };
marci@992
   824
marci@992
   825
    void first(Node& i) const { 
marci@992
   826
      Parent::first(i); 
marci@992
   827
    }
marci@992
   828
marci@992
   829
    void first(Edge& i) const { 
marci@992
   830
      Parent::first(i); 
marci@992
   831
      i.backward=false;
marci@992
   832
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   833
	     !(*forward_filter)[i]) Parent::next(i);
marci@992
   834
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   835
	Parent::first(i); 
marci@992
   836
	i.backward=true;
marci@992
   837
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   838
	       !(*backward_filter)[i]) Parent::next(i);
marci@992
   839
      }
marci@992
   840
    }
marci@992
   841
marci@992
   842
    void firstIn(Edge& i, const Node& n) const { 
marci@992
   843
      Parent::firstIn(i, n); 
marci@992
   844
      i.backward=false;
marci@992
   845
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@1269
   846
	     !(*forward_filter)[i]) Parent::nextIn(i);
marci@992
   847
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   848
	Parent::firstOut(i, n); 
marci@992
   849
	i.backward=true;
marci@992
   850
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   851
	       !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   852
      }
marci@992
   853
    }
marci@992
   854
marci@992
   855
    void firstOut(Edge& i, const Node& n) const { 
marci@992
   856
      Parent::firstOut(i, n); 
marci@992
   857
      i.backward=false;
marci@992
   858
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   859
	     !(*forward_filter)[i]) Parent::nextOut(i);
marci@992
   860
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   861
	Parent::firstIn(i, n); 
marci@992
   862
	i.backward=true;
marci@992
   863
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   864
	       !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   865
      }
marci@992
   866
    }
marci@992
   867
marci@992
   868
    void next(Node& i) const { 
marci@992
   869
      Parent::next(i); 
marci@992
   870
    }
marci@992
   871
marci@992
   872
    void next(Edge& i) const { 
marci@992
   873
      if (!(i.backward)) {
marci@992
   874
	Parent::next(i);
marci@992
   875
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   876
	       !(*forward_filter)[i]) Parent::next(i);
marci@992
   877
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   878
	  Parent::first(i); 
marci@992
   879
	  i.backward=true;
marci@992
   880
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   881
		 !(*backward_filter)[i]) Parent::next(i);
marci@992
   882
	}
marci@992
   883
      } else {
marci@992
   884
	Parent::next(i);
marci@992
   885
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   886
	       !(*backward_filter)[i]) Parent::next(i);
marci@992
   887
      }
marci@992
   888
    }
marci@992
   889
marci@992
   890
    void nextIn(Edge& i) const { 
marci@992
   891
      if (!(i.backward)) {
marci@992
   892
	Node n=Parent::target(i);
marci@992
   893
	Parent::nextIn(i);
marci@992
   894
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   895
	       !(*forward_filter)[i]) Parent::nextIn(i);
marci@992
   896
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   897
	  Parent::firstOut(i, n); 
marci@992
   898
	  i.backward=true;
marci@992
   899
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   900
		 !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   901
	}
marci@992
   902
      } else {
marci@992
   903
	Parent::nextOut(i);
marci@992
   904
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   905
	       !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   906
      }
marci@992
   907
    }
marci@992
   908
marci@992
   909
    void nextOut(Edge& i) const { 
marci@992
   910
      if (!(i.backward)) {
marci@992
   911
	Node n=Parent::source(i);
marci@992
   912
	Parent::nextOut(i);
marci@992
   913
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   914
	       !(*forward_filter)[i]) Parent::nextOut(i);
marci@992
   915
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   916
	  Parent::firstIn(i, n); 
marci@992
   917
	  i.backward=true;
marci@992
   918
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   919
		 !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   920
	}
marci@992
   921
      } else {
marci@992
   922
	Parent::nextIn(i);
marci@992
   923
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   924
	       !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   925
      }
marci@992
   926
    }
marci@992
   927
marci@992
   928
    Node source(Edge e) const { 
marci@992
   929
      return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
marci@992
   930
    Node target(Edge e) const { 
marci@992
   931
      return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
marci@992
   932
marci@992
   933
    /// Gives back the opposite edge.
marci@992
   934
    Edge opposite(const Edge& e) const { 
marci@992
   935
      Edge f=e;
marci@992
   936
      f.backward=!f.backward;
marci@992
   937
      return f;
marci@992
   938
    }
marci@992
   939
marci@992
   940
    /// \warning This is a linear time operation and works only if 
marci@992
   941
    /// \c Graph::EdgeIt is defined.
marci@992
   942
    /// \todo hmm
marci@992
   943
    int edgeNum() const { 
marci@992
   944
      int i=0;
marci@992
   945
      Edge e;
marci@992
   946
      for (first(e); e!=INVALID; next(e)) ++i;
marci@992
   947
      return i; 
marci@992
   948
    }
marci@992
   949
marci@992
   950
    bool forward(const Edge& e) const { return !e.backward; }
marci@992
   951
    bool backward(const Edge& e) const { return e.backward; }
marci@992
   952
marci@992
   953
    template <typename T>
alpar@1401
   954
    /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
marci@992
   955
    /// _Graph::EdgeMap one for the forward edges and 
marci@992
   956
    /// one for the backward edges.
marci@992
   957
    class EdgeMap {
marci@992
   958
      template <typename TT> friend class EdgeMap;
marci@992
   959
      typename _Graph::template EdgeMap<T> forward_map, backward_map; 
marci@992
   960
    public:
marci@992
   961
      typedef T Value;
marci@992
   962
      typedef Edge Key;
marci@992
   963
alpar@1401
   964
      EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
marci@992
   965
	      ForwardFilterMap, BackwardFilterMap>& g) : 
marci@992
   966
	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
marci@992
   967
alpar@1401
   968
      EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
marci@992
   969
	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
marci@992
   970
	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
marci@992
   971
      
marci@992
   972
      void set(Edge e, T a) { 
marci@992
   973
	if (!e.backward) 
marci@992
   974
	  forward_map.set(e, a); 
marci@992
   975
	else 
marci@992
   976
	  backward_map.set(e, a); 
marci@992
   977
      }
marci@992
   978
marci@992
   979
//       typename _Graph::template EdgeMap<T>::ConstReference 
marci@992
   980
//       operator[](Edge e) const { 
marci@992
   981
// 	if (!e.backward) 
marci@992
   982
// 	  return forward_map[e]; 
marci@992
   983
// 	else 
marci@992
   984
// 	  return backward_map[e]; 
marci@992
   985
//       }
marci@992
   986
marci@992
   987
//      typename _Graph::template EdgeMap<T>::Reference 
marci@1016
   988
      T operator[](Edge e) const { 
marci@992
   989
	if (!e.backward) 
marci@992
   990
	  return forward_map[e]; 
marci@992
   991
	else 
marci@992
   992
	  return backward_map[e]; 
marci@992
   993
      }
marci@992
   994
marci@992
   995
      void update() { 
marci@992
   996
	forward_map.update(); 
marci@992
   997
	backward_map.update();
marci@992
   998
      }
marci@992
   999
    };
marci@992
  1000
marci@992
  1001
  };
marci@569
  1002
marci@650
  1003
alpar@1401
  1004
  ///\brief An adaptor for composing a subgraph of a 
marci@792
  1005
  /// bidirected graph made from a directed one. 
marci@612
  1006
  ///
alpar@1401
  1007
  /// An adaptor for composing a subgraph of a 
alpar@911
  1008
  /// bidirected graph made from a directed one. 
alpar@911
  1009
  ///
alpar@1401
  1010
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
  1011
  ///parts of the lib. Use them at you own risk.
alpar@879
  1012
  ///
marci@923
  1013
  /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
marci@923
  1014
  /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
marci@923
  1015
  /// reversing its orientation. We are given moreover two bool valued 
marci@923
  1016
  /// maps on the edge-set, 
marci@923
  1017
  /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
alpar@1401
  1018
  /// SubBidirGraphAdaptor implements the graph structure with node-set 
marci@923
  1019
  /// \f$V\f$ and edge-set 
marci@923
  1020
  /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
marci@792
  1021
  /// The purpose of writing + instead of union is because parallel 
marci@923
  1022
  /// edges can arise. (Similarly, antiparallel edges also can arise).
marci@792
  1023
  /// In other words, a subgraph of the bidirected graph obtained, which 
marci@792
  1024
  /// is given by orienting the edges of the original graph in both directions.
marci@923
  1025
  /// As the oppositely directed edges are logically different, 
marci@923
  1026
  /// the maps are able to attach different values for them. 
marci@923
  1027
  ///
alpar@1401
  1028
  /// An example for such a construction is \c RevGraphAdaptor where the 
marci@792
  1029
  /// forward_filter is everywhere false and the backward_filter is 
marci@792
  1030
  /// everywhere true. We note that for sake of efficiency, 
alpar@1401
  1031
  /// \c RevGraphAdaptor is implemented in a different way. 
alpar@1401
  1032
  /// But BidirGraphAdaptor is obtained from 
alpar@1401
  1033
  /// SubBidirGraphAdaptor by considering everywhere true 
marci@910
  1034
  /// valued maps both for forward_filter and backward_filter. 
marci@1252
  1035
  ///
alpar@1401
  1036
  /// The most important application of SubBidirGraphAdaptor 
alpar@1401
  1037
  /// is ResGraphAdaptor, which stands for the residual graph in directed 
marci@792
  1038
  /// flow and circulation problems. 
alpar@1401
  1039
  /// As adaptors usually, the SubBidirGraphAdaptor implements the 
marci@792
  1040
  /// above mentioned graph structure without its physical storage, 
marci@923
  1041
  /// that is the whole stuff is stored in constant memory. 
marci@992
  1042
  template<typename _Graph, 
marci@650
  1043
	   typename ForwardFilterMap, typename BackwardFilterMap>
alpar@1401
  1044
  class SubBidirGraphAdaptor : 
marci@992
  1045
    public IterableGraphExtender<
alpar@1401
  1046
    SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
marci@650
  1047
  public:
marci@992
  1048
    typedef _Graph Graph;
marci@992
  1049
    typedef IterableGraphExtender<
alpar@1401
  1050
      SubBidirGraphAdaptorBase<
marci@992
  1051
      _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
marci@569
  1052
  protected:
alpar@1401
  1053
    SubBidirGraphAdaptor() { }
marci@992
  1054
  public:
alpar@1401
  1055
    SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, 
marci@992
  1056
			 BackwardFilterMap& _backward_filter) { 
marci@992
  1057
      setGraph(_graph);
marci@992
  1058
      setForwardFilterMap(_forward_filter);
marci@992
  1059
      setBackwardFilterMap(_backward_filter);
marci@992
  1060
    }
marci@992
  1061
  };
marci@650
  1062
marci@569
  1063
marci@650
  1064
alpar@1401
  1065
  ///\brief An adaptor for composing bidirected graph from a directed one. 
marci@650
  1066
  ///
alpar@1401
  1067
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
  1068
  ///parts of the lib. Use them at you own risk.
alpar@879
  1069
  ///
alpar@1401
  1070
  /// An adaptor for composing bidirected graph from a directed one. 
marci@650
  1071
  /// A bidirected graph is composed over the directed one without physical 
marci@650
  1072
  /// storage. As the oppositely directed edges are logically different ones 
marci@650
  1073
  /// the maps are able to attach different values for them.
marci@650
  1074
  template<typename Graph>
alpar@1401
  1075
  class BidirGraphAdaptor : 
alpar@1401
  1076
    public SubBidirGraphAdaptor<
marci@650
  1077
    Graph, 
marci@650
  1078
    ConstMap<typename Graph::Edge, bool>, 
marci@650
  1079
    ConstMap<typename Graph::Edge, bool> > {
marci@650
  1080
  public:
alpar@1401
  1081
    typedef  SubBidirGraphAdaptor<
marci@650
  1082
      Graph, 
marci@650
  1083
      ConstMap<typename Graph::Edge, bool>, 
marci@650
  1084
      ConstMap<typename Graph::Edge, bool> > Parent; 
marci@650
  1085
  protected:
marci@650
  1086
    ConstMap<typename Graph::Edge, bool> cm;
marci@650
  1087
alpar@1401
  1088
    BidirGraphAdaptor() : Parent(), cm(true) { 
marci@655
  1089
      Parent::setForwardFilterMap(cm);
marci@655
  1090
      Parent::setBackwardFilterMap(cm);
marci@655
  1091
    }
marci@650
  1092
  public:
alpar@1401
  1093
    BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { 
marci@650
  1094
      Parent::setGraph(_graph);
marci@650
  1095
      Parent::setForwardFilterMap(cm);
marci@650
  1096
      Parent::setBackwardFilterMap(cm);
marci@650
  1097
    }
marci@738
  1098
marci@738
  1099
    int edgeNum() const { 
marci@738
  1100
      return 2*this->graph->edgeNum();
marci@738
  1101
    }
marci@650
  1102
  };
marci@650
  1103
marci@650
  1104
marci@650
  1105
  template<typename Graph, typename Number,
marci@650
  1106
	   typename CapacityMap, typename FlowMap>
marci@658
  1107
  class ResForwardFilter {
marci@658
  1108
    //    const Graph* graph;
marci@650
  1109
    const CapacityMap* capacity;
marci@650
  1110
    const FlowMap* flow;
marci@650
  1111
  public:
marci@658
  1112
    ResForwardFilter(/*const Graph& _graph, */
marci@658
  1113
		     const CapacityMap& _capacity, const FlowMap& _flow) :
marci@658
  1114
      /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
marci@658
  1115
    ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
marci@656
  1116
    void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
marci@656
  1117
    void setFlow(const FlowMap& _flow) { flow=&_flow; }
marci@650
  1118
    bool operator[](const typename Graph::Edge& e) const {
marci@738
  1119
      return (Number((*flow)[e]) < Number((*capacity)[e]));
marci@650
  1120
    }
marci@650
  1121
  };
marci@650
  1122
marci@650
  1123
  template<typename Graph, typename Number,
marci@650
  1124
	   typename CapacityMap, typename FlowMap>
marci@658
  1125
  class ResBackwardFilter {
marci@650
  1126
    const CapacityMap* capacity;
marci@650
  1127
    const FlowMap* flow;
marci@650
  1128
  public:
marci@658
  1129
    ResBackwardFilter(/*const Graph& _graph,*/ 
marci@658
  1130
		      const CapacityMap& _capacity, const FlowMap& _flow) :
marci@658
  1131
      /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
marci@658
  1132
    ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
marci@656
  1133
    void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
marci@656
  1134
    void setFlow(const FlowMap& _flow) { flow=&_flow; }
marci@650
  1135
    bool operator[](const typename Graph::Edge& e) const {
marci@738
  1136
      return (Number(0) < Number((*flow)[e]));
marci@650
  1137
    }
marci@650
  1138
  };
marci@650
  1139
marci@653
  1140
  
alpar@1401
  1141
  /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
marci@650
  1142
alpar@1401
  1143
  An adaptor for composing the residual graph for directed flow and circulation problems. 
marci@1242
  1144
  Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
marci@1242
  1145
  number type. Let moreover 
marci@1242
  1146
  \f$f,c:A\to F\f$, be functions on the edge-set. 
alpar@1401
  1147
  In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow 
marci@1242
  1148
  and \f$c\f$ for a capacity function.   
marci@1242
  1149
  Suppose that a graph instange \c g of type 
marci@1242
  1150
  \c ListGraph implements \f$G\f$.
marci@1242
  1151
  \code
marci@1242
  1152
  ListGraph g;
marci@1242
  1153
  \endcode
alpar@1401
  1154
  Then RevGraphAdaptor implements the graph structure with node-set 
marci@1242
  1155
  \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
marci@1242
  1156
  \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
marci@1242
  1157
  \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
marci@1242
  1158
  i.e. the so called residual graph. 
marci@1242
  1159
  When we take the union \f$A_{forward}\cup A_{backward}\f$, 
marci@1242
  1160
  multilicities are counted, i.e. if an edge is in both 
alpar@1401
  1161
  \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it 
marci@1242
  1162
  appears twice. 
marci@1242
  1163
  The following code shows how 
marci@1242
  1164
  such an instance can be constructed.
marci@1242
  1165
  \code
marci@1242
  1166
  typedef ListGraph Graph;
marci@1242
  1167
  Graph::EdgeMap<int> f(g);
marci@1242
  1168
  Graph::EdgeMap<int> c(g);
alpar@1401
  1169
  ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
marci@1242
  1170
  \endcode
marci@1242
  1171
  \author Marton Makai
marci@1242
  1172
  */
marci@650
  1173
  template<typename Graph, typename Number, 
marci@650
  1174
	   typename CapacityMap, typename FlowMap>
alpar@1401
  1175
  class ResGraphAdaptor : 
alpar@1401
  1176
    public SubBidirGraphAdaptor< 
marci@650
  1177
    Graph, 
marci@658
  1178
    ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
marci@658
  1179
    ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
marci@650
  1180
  public:
alpar@1401
  1181
    typedef SubBidirGraphAdaptor< 
marci@650
  1182
      Graph, 
marci@658
  1183
      ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
marci@658
  1184
      ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
marci@650
  1185
  protected:
marci@650
  1186
    const CapacityMap* capacity;
marci@650
  1187
    FlowMap* flow;
marci@658
  1188
    ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
marci@658
  1189
    ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
alpar@1401
  1190
    ResGraphAdaptor() : Parent(), 
marci@658
  1191
 			capacity(0), flow(0) { }
marci@658
  1192
    void setCapacityMap(const CapacityMap& _capacity) {
marci@658
  1193
      capacity=&_capacity;
marci@658
  1194
      forward_filter.setCapacity(_capacity);
marci@658
  1195
      backward_filter.setCapacity(_capacity);
marci@658
  1196
    }
marci@658
  1197
    void setFlowMap(FlowMap& _flow) {
marci@658
  1198
      flow=&_flow;
marci@658
  1199
      forward_filter.setFlow(_flow);
marci@658
  1200
      backward_filter.setFlow(_flow);
marci@658
  1201
    }
marci@650
  1202
  public:
alpar@1401
  1203
    ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, 
marci@650
  1204
		       FlowMap& _flow) : 
marci@650
  1205
      Parent(), capacity(&_capacity), flow(&_flow), 
marci@658
  1206
      forward_filter(/*_graph,*/ _capacity, _flow), 
marci@658
  1207
      backward_filter(/*_graph,*/ _capacity, _flow) {
marci@650
  1208
      Parent::setGraph(_graph);
marci@650
  1209
      Parent::setForwardFilterMap(forward_filter);
marci@650
  1210
      Parent::setBackwardFilterMap(backward_filter);
marci@650
  1211
    }
marci@650
  1212
marci@660
  1213
    typedef typename Parent::Edge Edge;
marci@660
  1214
marci@660
  1215
    void augment(const Edge& e, Number a) const {
marci@650
  1216
      if (Parent::forward(e))  
marci@650
  1217
	flow->set(e, (*flow)[e]+a);
marci@650
  1218
      else  
marci@650
  1219
	flow->set(e, (*flow)[e]-a);
marci@650
  1220
    }
marci@650
  1221
marci@660
  1222
    /// \brief Residual capacity map.
marci@660
  1223
    ///
marci@910
  1224
    /// In generic residual graphs the residual capacity can be obtained 
marci@910
  1225
    /// as a map. 
marci@660
  1226
    class ResCap {
marci@660
  1227
    protected:
alpar@1401
  1228
      const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
marci@660
  1229
    public:
alpar@987
  1230
      typedef Number Value;
alpar@987
  1231
      typedef Edge Key;
alpar@1401
  1232
      ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& 
marci@888
  1233
	     _res_graph) : res_graph(&_res_graph) { }
marci@660
  1234
      Number operator[](const Edge& e) const { 
marci@660
  1235
	if (res_graph->forward(e)) 
marci@660
  1236
	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
marci@660
  1237
	else 
marci@660
  1238
	  return (*(res_graph->flow))[e]; 
marci@660
  1239
      }
marci@660
  1240
    };
marci@660
  1241
alpar@1401
  1242
    //    KEEP_MAPS(Parent, ResGraphAdaptor);
marci@650
  1243
  };
marci@650
  1244
marci@650
  1245
marci@998
  1246
marci@998
  1247
  template <typename _Graph, typename FirstOutEdgesMap>
alpar@1401
  1248
  class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@998
  1249
  public:
marci@998
  1250
    typedef _Graph Graph;
alpar@1401
  1251
    typedef GraphAdaptorBase<_Graph> Parent;
marci@998
  1252
  protected:
marci@998
  1253
    FirstOutEdgesMap* first_out_edges;
alpar@1401
  1254
    ErasingFirstGraphAdaptorBase() : Parent(), 
marci@998
  1255
				     first_out_edges(0) { }
marci@998
  1256
marci@998
  1257
    void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
marci@998
  1258
      first_out_edges=&_first_out_edges;
marci@998
  1259
    }
marci@998
  1260
marci@998
  1261
  public:
marci@998
  1262
marci@998
  1263
    typedef typename Parent::Node Node;
marci@998
  1264
    typedef typename Parent::Edge Edge;
marci@998
  1265
marci@998
  1266
    void firstOut(Edge& i, const Node& n) const { 
marci@998
  1267
      i=(*first_out_edges)[n];
marci@998
  1268
    }
marci@998
  1269
marci@998
  1270
    void erase(const Edge& e) const {
marci@998
  1271
      Node n=source(e);
marci@998
  1272
      Edge f=e;
marci@998
  1273
      Parent::nextOut(f);
marci@998
  1274
      first_out_edges->set(n, f);
marci@998
  1275
    }    
marci@998
  1276
  };
marci@998
  1277
marci@998
  1278
marci@612
  1279
  /// For blocking flows.
marci@556
  1280
alpar@1401
  1281
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
  1282
  ///parts of the lib. Use them at you own risk.
alpar@879
  1283
  ///
alpar@1401
  1284
  /// This graph adaptor is used for on-the-fly 
marci@792
  1285
  /// Dinits blocking flow computations.
marci@612
  1286
  /// For each node, an out-edge is stored which is used when the 
marci@612
  1287
  /// \code 
marci@612
  1288
  /// OutEdgeIt& first(OutEdgeIt&, const Node&)
marci@612
  1289
  /// \endcode
marci@612
  1290
  /// is called. 
marci@556
  1291
  ///
marci@792
  1292
  /// \author Marton Makai
marci@998
  1293
  template <typename _Graph, typename FirstOutEdgesMap>
alpar@1401
  1294
  class ErasingFirstGraphAdaptor : 
marci@998
  1295
    public IterableGraphExtender<
alpar@1401
  1296
    ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
marci@650
  1297
  public:
marci@998
  1298
    typedef _Graph Graph;
marci@998
  1299
    typedef IterableGraphExtender<
alpar@1401
  1300
      ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
alpar@1401
  1301
    ErasingFirstGraphAdaptor(Graph& _graph, 
marci@998
  1302
			     FirstOutEdgesMap& _first_out_edges) { 
marci@998
  1303
      setGraph(_graph);
marci@998
  1304
      setFirstOutEdgesMap(_first_out_edges);
marci@998
  1305
    } 
marci@1019
  1306
marci@998
  1307
  };
marci@556
  1308
deba@1472
  1309
  template <typename _Graph>
deba@1697
  1310
  class SplitGraphAdaptorBase 
deba@1697
  1311
    : public GraphAdaptorBase<_Graph> {
deba@1697
  1312
  public:
deba@1697
  1313
    typedef GraphAdaptorBase<_Graph> Parent;
deba@1697
  1314
deba@1697
  1315
    class Node;
deba@1697
  1316
    class Edge;
deba@1697
  1317
    template <typename T> class NodeMap;
deba@1697
  1318
    template <typename T> class EdgeMap;
deba@1697
  1319
    
deba@1697
  1320
deba@1697
  1321
    class Node : public Parent::Node {
deba@1697
  1322
      friend class SplitGraphAdaptorBase;
deba@1697
  1323
      template <typename T> friend class NodeMap;
deba@1697
  1324
      typedef typename Parent::Node NodeParent;
deba@1697
  1325
    private:
deba@1697
  1326
deba@1697
  1327
      bool entry;
deba@1697
  1328
      Node(typename Parent::Node _node, bool _entry)
deba@1697
  1329
	: Parent::Node(_node), entry(_entry) {}
deba@1697
  1330
      
deba@1697
  1331
    public:
deba@1697
  1332
      Node() {}
deba@1697
  1333
      Node(Invalid) : NodeParent(INVALID), entry(true) {}
deba@1697
  1334
deba@1697
  1335
      bool operator==(const Node& node) const {
deba@1697
  1336
	return NodeParent::operator==(node) && entry == node.entry;
deba@1697
  1337
      }
deba@1697
  1338
      
deba@1697
  1339
      bool operator!=(const Node& node) const {
deba@1697
  1340
	return !(*this == node);
deba@1697
  1341
      }
deba@1697
  1342
      
deba@1697
  1343
      bool operator<(const Node& node) const {
deba@1697
  1344
	return NodeParent::operator<(node) || 
deba@1697
  1345
	  (NodeParent::operator==(node) && entry < node.entry);
deba@1697
  1346
      }
deba@1697
  1347
    };
deba@1697
  1348
deba@1697
  1349
    /// \todo May we want VARIANT/union type
deba@1697
  1350
    class Edge : public Parent::Edge {
deba@1697
  1351
      friend class SplitGraphAdaptorBase;
deba@1697
  1352
      template <typename T> friend class EdgeMap;
deba@1697
  1353
    private:
deba@1697
  1354
      typedef typename Parent::Edge EdgeParent;
deba@1697
  1355
      typedef typename Parent::Node NodeParent;
deba@1697
  1356
      NodeParent bind;
deba@1697
  1357
deba@1697
  1358
      Edge(const EdgeParent& edge, const NodeParent& node)
deba@1697
  1359
	: EdgeParent(edge), bind(node) {}
deba@1697
  1360
    public:
deba@1697
  1361
      Edge() {}
deba@1697
  1362
      Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {}
deba@1697
  1363
deba@1697
  1364
      bool operator==(const Edge& edge) const {
deba@1697
  1365
	return EdgeParent::operator==(edge) && bind == edge.bind;
deba@1697
  1366
      }
deba@1697
  1367
      
deba@1697
  1368
      bool operator!=(const Edge& edge) const {
deba@1697
  1369
	return !(*this == edge);
deba@1697
  1370
      }
deba@1697
  1371
      
deba@1697
  1372
      bool operator<(const Edge& edge) const {
deba@1697
  1373
	return EdgeParent::operator<(edge) || 
deba@1697
  1374
	  (EdgeParent::operator==(edge) && bind < edge.bind);
deba@1697
  1375
      }
deba@1697
  1376
    };
deba@1697
  1377
deba@1697
  1378
    void first(Node& node) const {
deba@1697
  1379
      Parent::first(node);
deba@1697
  1380
      node.entry = true;
deba@1697
  1381
    } 
deba@1697
  1382
deba@1697
  1383
    void next(Node& node) const {
deba@1697
  1384
      if (node.entry) {
deba@1697
  1385
	node.entry = false;
deba@1697
  1386
      } else {
deba@1697
  1387
	node.entry = true;
deba@1697
  1388
	Parent::next(node);
deba@1697
  1389
      }
deba@1697
  1390
    }
deba@1697
  1391
deba@1697
  1392
    void first(Edge& edge) const {
deba@1697
  1393
      Parent::first(edge);
deba@1697
  1394
      if ((typename Parent::Edge&)edge == INVALID) {
deba@1697
  1395
	Parent::first(edge.bind);
deba@1697
  1396
      } else {
deba@1697
  1397
	edge.bind = INVALID;
deba@1697
  1398
      }
deba@1697
  1399
    }
deba@1697
  1400
deba@1697
  1401
    void next(Edge& edge) const {
deba@1697
  1402
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1403
	Parent::next(edge);
deba@1697
  1404
	if ((typename Parent::Edge&)edge == INVALID) {
deba@1697
  1405
	  Parent::first(edge.bind);
deba@1697
  1406
	}
deba@1697
  1407
      } else {
deba@1697
  1408
	Parent::next(edge.bind);
deba@1697
  1409
      }      
deba@1697
  1410
    }
deba@1697
  1411
deba@1697
  1412
    void firstIn(Edge& edge, const Node& node) const {
deba@1697
  1413
      if (node.entry) {
deba@1697
  1414
	Parent::firstIn(edge, node);
deba@1697
  1415
	edge.bind = INVALID;
deba@1697
  1416
      } else {
deba@1697
  1417
	(typename Parent::Edge&)edge = INVALID;
deba@1697
  1418
	edge.bind = node;
deba@1697
  1419
      }
deba@1697
  1420
    }
deba@1697
  1421
deba@1697
  1422
    void nextIn(Edge& edge) const {
deba@1697
  1423
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1424
	Parent::nextIn(edge);
deba@1697
  1425
      } else {
deba@1697
  1426
	edge.bind = INVALID;
deba@1697
  1427
      }      
deba@1697
  1428
    }
deba@1697
  1429
deba@1697
  1430
    void firstOut(Edge& edge, const Node& node) const {
deba@1697
  1431
      if (!node.entry) {
deba@1697
  1432
	Parent::firstOut(edge, node);
deba@1697
  1433
	edge.bind = INVALID;
deba@1697
  1434
      } else {
deba@1697
  1435
	(typename Parent::Edge&)edge = INVALID;
deba@1697
  1436
	edge.bind = node;
deba@1697
  1437
      }
deba@1697
  1438
    }
deba@1697
  1439
deba@1697
  1440
    void nextOut(Edge& edge) const {
deba@1697
  1441
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1442
	Parent::nextOut(edge);
deba@1697
  1443
      } else {
deba@1697
  1444
	edge.bind = INVALID;
deba@1697
  1445
      }
deba@1697
  1446
    }
deba@1697
  1447
deba@1697
  1448
    Node source(const Edge& edge) const {
deba@1697
  1449
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1450
	return Node(Parent::source(edge), false);
deba@1697
  1451
      } else {
deba@1697
  1452
	return Node(edge.bind, true);
deba@1697
  1453
      }
deba@1697
  1454
    }
deba@1697
  1455
deba@1697
  1456
    Node target(const Edge& edge) const {
deba@1697
  1457
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1458
	return Node(Parent::target(edge), true);
deba@1697
  1459
      } else {
deba@1697
  1460
	return Node(edge.bind, false);
deba@1697
  1461
      }
deba@1697
  1462
    }
deba@1697
  1463
deba@1697
  1464
    static bool entryNode(const Node& node) {
deba@1697
  1465
      return node.entry;
deba@1697
  1466
    }
deba@1697
  1467
deba@1697
  1468
    static bool exitNode(const Node& node) {
deba@1697
  1469
      return !node.entry;
deba@1697
  1470
    }
deba@1697
  1471
deba@1697
  1472
    static Node getEntry(const typename Parent::Node& node) {
deba@1697
  1473
      return Node(node, true);
deba@1697
  1474
    }
deba@1697
  1475
deba@1697
  1476
    static Node getExit(const typename Parent::Node& node) {
deba@1697
  1477
      return Node(node, false);
deba@1697
  1478
    }
deba@1697
  1479
deba@1697
  1480
    static bool originalEdge(const Edge& edge) {
deba@1697
  1481
      return (typename Parent::Edge&)edge != INVALID;
deba@1697
  1482
    }
deba@1697
  1483
deba@1697
  1484
    static bool bindingEdge(const Edge& edge) {
deba@1697
  1485
      return edge.bind != INVALID;
deba@1697
  1486
    }
deba@1697
  1487
deba@1697
  1488
    static Node getBindedNode(const Edge& edge) {
deba@1697
  1489
      return edge.bind;
deba@1697
  1490
    }
deba@1697
  1491
deba@1697
  1492
    int nodeNum() const {
deba@1697
  1493
      return Parent::nodeNum() * 2;
deba@1697
  1494
    }
deba@1697
  1495
deba@1697
  1496
    typedef CompileTimeAnd<typename Parent::NodeNumTag, 
deba@1697
  1497
    			   typename Parent::EdgeNumTag> EdgeNumTag;
deba@1697
  1498
    
deba@1697
  1499
    int edgeNum() const {
deba@1697
  1500
      return Parent::edgeNum() + Parent::nodeNum();
deba@1697
  1501
    }
deba@1697
  1502
deba@1697
  1503
    Edge findEdge(const Node& source, const Node& target, 
deba@1697
  1504
		  const Edge& prev = INVALID) const {
deba@1697
  1505
      if (exitNode(source) && entryNode(target)) {
deba@1697
  1506
	return Parent::findEdge(source, target, prev);
deba@1697
  1507
      } else {
deba@1697
  1508
	if (prev == INVALID && entryNode(source) && exitNode(target) && 
deba@1697
  1509
	    (typename Parent::Node&)source == (typename Parent::Node&)target) {
deba@1697
  1510
	  return Edge(INVALID, source);
deba@1697
  1511
	} else {
deba@1697
  1512
	  return INVALID;
deba@1697
  1513
	}
deba@1697
  1514
      }
deba@1697
  1515
    }
deba@1697
  1516
    
deba@1697
  1517
    template <typename T>
deba@1697
  1518
    class NodeMap : public MapBase<Node, T> {
deba@1697
  1519
      typedef typename Parent::template NodeMap<T> NodeImpl;
deba@1697
  1520
    public:
deba@1697
  1521
      NodeMap(const SplitGraphAdaptorBase& _graph) 
deba@1697
  1522
	: entry(_graph), exit(_graph) {}
deba@1697
  1523
      NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
deba@1697
  1524
	: entry(_graph, t), exit(_graph, t) {}
deba@1697
  1525
      
deba@1697
  1526
      void set(const Node& key, const T& val) {
deba@1697
  1527
	if (key.entry) { entry.set(key, val); }
deba@1697
  1528
	else {exit.set(key, val); }
deba@1697
  1529
      }
deba@1697
  1530
      
deba@1725
  1531
      typename MapTraits<NodeImpl>::ReturnValue 
deba@1697
  1532
      operator[](const Node& key) {
deba@1697
  1533
	if (key.entry) { return entry[key]; }
deba@1697
  1534
	else { return exit[key]; }
deba@1697
  1535
      }
deba@1697
  1536
deba@1725
  1537
      typename MapTraits<NodeImpl>::ConstReturnValue
deba@1725
  1538
      operator[](const Node& key) const {
deba@1697
  1539
	if (key.entry) { return entry[key]; }
deba@1697
  1540
	else { return exit[key]; }
deba@1697
  1541
      }
deba@1697
  1542
deba@1697
  1543
    private:
deba@1697
  1544
      NodeImpl entry, exit;
deba@1697
  1545
    };
deba@1697
  1546
deba@1697
  1547
    template <typename T>
deba@1697
  1548
    class EdgeMap : public MapBase<Edge, T> {
deba@1697
  1549
      typedef typename Parent::template NodeMap<T> NodeImpl;
deba@1697
  1550
      typedef typename Parent::template EdgeMap<T> EdgeImpl;
deba@1697
  1551
    public:
deba@1697
  1552
      EdgeMap(const SplitGraphAdaptorBase& _graph) 
deba@1697
  1553
	: bind(_graph), orig(_graph) {}
deba@1697
  1554
      EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
deba@1697
  1555
	: bind(_graph, t), orig(_graph, t) {}
deba@1697
  1556
      
deba@1697
  1557
      void set(const Edge& key, const T& val) {
deba@1697
  1558
	if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); }
deba@1697
  1559
	else {bind.set(key.bind, val); }
deba@1697
  1560
      }
deba@1697
  1561
      
deba@1725
  1562
      typename MapTraits<EdgeImpl>::ReturnValue
deba@1697
  1563
      operator[](const Edge& key) {
deba@1697
  1564
	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
deba@1697
  1565
	else {return bind[key.bind]; }
deba@1697
  1566
      }
deba@1697
  1567
deba@1725
  1568
      typename MapTraits<EdgeImpl>::ConstReturnValue
deba@1725
  1569
      operator[](const Edge& key) const {
deba@1697
  1570
	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
deba@1697
  1571
	else {return bind[key.bind]; }
deba@1697
  1572
      }
deba@1697
  1573
deba@1697
  1574
    private:
deba@1697
  1575
      typename Parent::template NodeMap<T> bind;
deba@1697
  1576
      typename Parent::template EdgeMap<T> orig;
deba@1697
  1577
    };
deba@1697
  1578
deba@1697
  1579
    template <typename EntryMap, typename ExitMap>
deba@1697
  1580
    class CombinedNodeMap : public MapBase<Node, typename EntryMap::Value> {
deba@1697
  1581
    public:
deba@1697
  1582
      typedef MapBase<Node, typename EntryMap::Value> Parent;
deba@1697
  1583
deba@1697
  1584
      typedef typename Parent::Key Key;
deba@1697
  1585
      typedef typename Parent::Value Value;
deba@1697
  1586
deba@1697
  1587
      CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) 
deba@1697
  1588
	: entryMap(_entryMap), exitMap(_exitMap) {}
deba@1697
  1589
deba@1697
  1590
      Value& operator[](const Key& key) {
deba@1697
  1591
	if (key.entry) {
deba@1697
  1592
	  return entryMap[key];
deba@1697
  1593
	} else {
deba@1697
  1594
	  return exitMap[key];
deba@1697
  1595
	}
deba@1697
  1596
      }
deba@1697
  1597
deba@1697
  1598
      Value operator[](const Key& key) const {
deba@1697
  1599
	if (key.entry) {
deba@1697
  1600
	  return entryMap[key];
deba@1697
  1601
	} else {
deba@1697
  1602
	  return exitMap[key];
deba@1697
  1603
	}
deba@1697
  1604
      }
deba@1697
  1605
deba@1697
  1606
      void set(const Key& key, const Value& value) {
deba@1697
  1607
	if (key.entry) {
deba@1697
  1608
	  entryMap.set(key, value);
deba@1697
  1609
	} else {
deba@1697
  1610
	  exitMap.set(key, value);
deba@1697
  1611
	}
deba@1697
  1612
      }
deba@1697
  1613
      
deba@1697
  1614
    private:
deba@1697
  1615
      
deba@1697
  1616
      EntryMap& entryMap;
deba@1697
  1617
      ExitMap& exitMap;
deba@1697
  1618
      
deba@1697
  1619
    };
deba@1697
  1620
deba@1697
  1621
    template <typename EdgeMap, typename NodeMap>
deba@1697
  1622
    class CombinedEdgeMap : public MapBase<Edge, typename EdgeMap::Value> {
deba@1697
  1623
    public:
deba@1697
  1624
      typedef MapBase<Edge, typename EdgeMap::Value> Parent;
deba@1697
  1625
deba@1697
  1626
      typedef typename Parent::Key Key;
deba@1697
  1627
      typedef typename Parent::Value Value;
deba@1697
  1628
deba@1697
  1629
      CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) 
deba@1697
  1630
	: edgeMap(_edgeMap), nodeMap(_nodeMap) {}
deba@1697
  1631
deba@1697
  1632
      void set(const Edge& edge, const Value& val) {
deba@1697
  1633
	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1697
  1634
	  edgeMap.set(edge, val);
deba@1697
  1635
	} else {
deba@1697
  1636
	  nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val);
deba@1697
  1637
	}
deba@1697
  1638
      }
deba@1697
  1639
deba@1697
  1640
      Value operator[](const Key& edge) const {
deba@1697
  1641
	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1697
  1642
	  return edgeMap[edge];
deba@1697
  1643
	} else {
deba@1697
  1644
	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
deba@1697
  1645
	}
deba@1697
  1646
      }      
deba@1697
  1647
deba@1697
  1648
      Value& operator[](const Key& edge) {
deba@1697
  1649
	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1697
  1650
	  return edgeMap[edge];
deba@1697
  1651
	} else {
deba@1697
  1652
	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
deba@1697
  1653
	}
deba@1697
  1654
      }      
deba@1697
  1655
      
deba@1697
  1656
    private:
deba@1697
  1657
      EdgeMap& edgeMap;
deba@1697
  1658
      NodeMap& nodeMap;
deba@1697
  1659
    };
deba@1697
  1660
deba@1697
  1661
  };
deba@1697
  1662
deba@1697
  1663
  template <typename _Graph>
deba@1697
  1664
  class SplitGraphAdaptor 
deba@1697
  1665
    : public IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > {
deba@1697
  1666
  public:
deba@1697
  1667
    typedef IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > Parent;
deba@1697
  1668
deba@1697
  1669
    SplitGraphAdaptor(_Graph& graph) {
deba@1697
  1670
      Parent::setGraph(graph);
deba@1697
  1671
    }
deba@1697
  1672
deba@1697
  1673
deba@1697
  1674
  };
deba@1697
  1675
deba@1697
  1676
  template <typename _Graph>
deba@1472
  1677
  class NewEdgeSetAdaptorBase {
deba@1472
  1678
  public:
deba@1472
  1679
deba@1472
  1680
    typedef _Graph Graph;
deba@1472
  1681
    typedef typename Graph::Node Node;
deba@1472
  1682
    typedef typename Graph::NodeIt NodeIt;
deba@1472
  1683
deba@1472
  1684
  protected:
deba@1472
  1685
deba@1472
  1686
    struct NodeT {
deba@1472
  1687
      int first_out, first_in;
deba@1472
  1688
      NodeT() : first_out(-1), first_in(-1) {}
deba@1472
  1689
    };
deba@1472
  1690
    
deba@1472
  1691
    class NodesImpl : protected Graph::template NodeMap<NodeT> {
deba@1472
  1692
deba@1472
  1693
      typedef typename Graph::template NodeMap<NodeT> Parent;
deba@1472
  1694
      typedef NewEdgeSetAdaptorBase<Graph> Adaptor;
deba@1472
  1695
deba@1472
  1696
      Adaptor& adaptor;
deba@1472
  1697
deba@1472
  1698
    public:
deba@1472
  1699
deba@1472
  1700
      NodesImpl(Adaptor& _adaptor, const Graph& _graph) 
deba@1472
  1701
	: Parent(_graph), adaptor(_adaptor) {}
deba@1472
  1702
deba@1472
  1703
      virtual ~NodesImpl() {}
deba@1472
  1704
deba@1472
  1705
      virtual void build() {
deba@1472
  1706
	Parent::build();
deba@1472
  1707
      }
deba@1472
  1708
deba@1472
  1709
      virtual void clear() {
deba@1472
  1710
	adaptor._clear();
deba@1472
  1711
	Parent::clear();
deba@1472
  1712
      }
deba@1472
  1713
      
deba@1472
  1714
      virtual void add(const Node& node) {
deba@1472
  1715
	Parent::add(node);
deba@1472
  1716
	adaptor._add(node);
deba@1472
  1717
      }
deba@1472
  1718
      
deba@1472
  1719
      virtual void erase(const Node& node) {
deba@1472
  1720
	adaptor._erase(node);
deba@1472
  1721
	Parent::erase(node);
deba@1472
  1722
      }
deba@1472
  1723
deba@1472
  1724
      NodeT& operator[](const Node& node) {
deba@1472
  1725
	return Parent::operator[](node);
deba@1472
  1726
      }
deba@1472
  1727
deba@1472
  1728
      const NodeT& operator[](const Node& node) const {
deba@1472
  1729
	return Parent::operator[](node);
deba@1472
  1730
      }
deba@1472
  1731
      
deba@1472
  1732
    };
deba@1472
  1733
deba@1472
  1734
    NodesImpl* nodes;
deba@1472
  1735
deba@1472
  1736
    struct EdgeT {
deba@1472
  1737
      Node source, target;
deba@1472
  1738
      int next_out, next_in;
deba@1472
  1739
      int prev_out, prev_in;
deba@1472
  1740
      EdgeT() : prev_out(-1), prev_in(-1) {}
deba@1472
  1741
    };
deba@1472
  1742
deba@1472
  1743
    std::vector<EdgeT> edges;
deba@1472
  1744
deba@1472
  1745
    int first_edge;
deba@1472
  1746
    int first_free_edge;
deba@1472
  1747
deba@1472
  1748
    virtual void _clear() = 0;
deba@1472
  1749
    virtual void _add(const Node& node) = 0;
deba@1472
  1750
    virtual void _erase(const Node& node) = 0;
deba@1472
  1751
    
deba@1472
  1752
    const Graph* graph;
deba@1472
  1753
deba@1472
  1754
    void initalize(const Graph& _graph, NodesImpl& _nodes) {
deba@1472
  1755
      graph = &_graph;
deba@1472
  1756
      nodes = &_nodes;
deba@1472
  1757
    }
deba@1472
  1758
    
deba@1472
  1759
  public:
deba@1472
  1760
deba@1472
  1761
    class Edge {
deba@1472
  1762
      friend class NewEdgeSetAdaptorBase<Graph>;
deba@1472
  1763
    protected:
deba@1472
  1764
      Edge(int _id) : id(_id) {}
deba@1472
  1765
      int id;
deba@1472
  1766
    public:
deba@1472
  1767
      Edge() {}
deba@1472
  1768
      Edge(Invalid) : id(-1) {}
deba@1472
  1769
      bool operator==(const Edge& edge) const { return id == edge.id; }
deba@1472
  1770
      bool operator!=(const Edge& edge) const { return id != edge.id; }
deba@1472
  1771
      bool operator<(const Edge& edge) const { return id < edge.id; }
deba@1472
  1772
    };
deba@1472
  1773
deba@1472
  1774
    NewEdgeSetAdaptorBase() : first_edge(-1), first_free_edge(-1) {} 
deba@1472
  1775
    virtual ~NewEdgeSetAdaptorBase() {}
deba@1472
  1776
deba@1472
  1777
    Edge addEdge(const Node& source, const Node& target) {
deba@1472
  1778
      int n;
deba@1472
  1779
      if (first_free_edge == -1) {
deba@1472
  1780
	n = edges.size();
deba@1472
  1781
	edges.push_back(EdgeT());
deba@1472
  1782
      } else {
deba@1472
  1783
	n = first_free_edge;
deba@1472
  1784
	first_free_edge = edges[first_free_edge].next_in;
deba@1472
  1785
      }
deba@1472
  1786
      edges[n].next_in = (*nodes)[target].first_in;
deba@1472
  1787
      (*nodes)[target].first_in = n;
deba@1472
  1788
      edges[n].next_out = (*nodes)[source].first_out;
deba@1472
  1789
      (*nodes)[source].first_out = n;
deba@1472
  1790
      edges[n].source = source;
deba@1472
  1791
      edges[n].target = target;
deba@1472
  1792
      return Edge(n);
deba@1472
  1793
    }
deba@1472
  1794
deba@1472
  1795
    void erase(const Edge& edge) {
deba@1472
  1796
      int n = edge.id;
deba@1472
  1797
      if (edges[n].prev_in != -1) {
deba@1472
  1798
	edges[edges[n].prev_in].next_in = edges[n].next_in;
deba@1472
  1799
      } else {
deba@1472
  1800
	(*nodes)[edges[n].target].first_in = edges[n].next_in;
deba@1472
  1801
      }
deba@1472
  1802
      if (edges[n].next_in != -1) {
deba@1472
  1803
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
deba@1472
  1804
      }
deba@1472
  1805
deba@1472
  1806
      if (edges[n].prev_out != -1) {
deba@1472
  1807
	edges[edges[n].prev_out].next_out = edges[n].next_out;
deba@1472
  1808
      } else {
deba@1472
  1809
	(*nodes)[edges[n].source].first_out = edges[n].next_out;
deba@1472
  1810
      }
deba@1472
  1811
      if (edges[n].next_out != -1) {
deba@1472
  1812
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
deba@1472
  1813
      }
deba@1472
  1814
           
deba@1472
  1815
    }
deba@1472
  1816
deba@1472
  1817
    void first(Node& node) const {
deba@1472
  1818
      graph->first(node);
deba@1472
  1819
    }
deba@1472
  1820
deba@1472
  1821
    void next(Node& node) const {
deba@1472
  1822
      graph->next(node);
deba@1472
  1823
    }
deba@1472
  1824
deba@1472
  1825
    void first(Edge& edge) const {
deba@1472
  1826
      Node node;
deba@1472
  1827
      for (first(node); node != INVALID && (*nodes)[node].first_in == -1; 
deba@1472
  1828
	   next(node));
deba@1472
  1829
      edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
deba@1472
  1830
    }
deba@1472
  1831
deba@1472
  1832
    void next(Edge& edge) const {
deba@1472
  1833
      if (edges[edge.id].next_in != -1) {
deba@1472
  1834
	edge.id = edges[edge.id].next_in;
deba@1472
  1835
      } else {
deba@1472
  1836
	Node node = edges[edge.id].target;
deba@1472
  1837
	for (next(node); node != INVALID && (*nodes)[node].first_in == -1; 
deba@1472
  1838
	     next(node));
deba@1472
  1839
	edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
deba@1472
  1840
      }      
deba@1472
  1841
    }
deba@1472
  1842
deba@1472
  1843
    void firstOut(Edge& edge, const Node& node) const {
deba@1472
  1844
      edge.id = (*nodes)[node].first_out;    
deba@1472
  1845
    }
deba@1472
  1846
    
deba@1472
  1847
    void nextOut(Edge& edge) const {
deba@1472
  1848
      edge.id = edges[edge.id].next_out;        
deba@1472
  1849
    }
deba@1472
  1850
deba@1472
  1851
    void firstIn(Edge& edge, const Node& node) const {
deba@1472
  1852
      edge.id = (*nodes)[node].first_in;          
deba@1472
  1853
    }
deba@1472
  1854
deba@1472
  1855
    void nextIn(Edge& edge) const {
deba@1472
  1856
      edge.id = edges[edge.id].next_in;    
deba@1472
  1857
    }
deba@1472
  1858
deba@1472
  1859
    int id(const Node& node) const { return graph->id(node); }
deba@1472
  1860
    int id(const Edge& edge) const { return edge.id; }
deba@1472
  1861
deba@1791
  1862
    Node nodeFromId(int id) const { return graph->fromId(id, Node()); }
deba@1791
  1863
    Edge edgeFromId(int id) const { return Edge(id); }
deba@1472
  1864
deba@1791
  1865
    int maxNodeId() const { return graph->maxId(Node()); };
deba@1791
  1866
    int maxEdgeId() const { return edges.size() - 1; }
deba@1472
  1867
deba@1472
  1868
    Node source(const Edge& edge) const { return edges[edge.id].source;}
deba@1472
  1869
    Node target(const Edge& edge) const { return edges[edge.id].target;}
deba@1472
  1870
deba@1472
  1871
  };
deba@1472
  1872
deba@1538
  1873
deba@1538
  1874
  /// \brief Graph adaptor using a node set of another graph and an
deba@1538
  1875
  /// own edge set.
deba@1538
  1876
  ///
deba@1538
  1877
  /// This structure can be used to establish another graph over a node set
deba@1538
  1878
  /// of an existing one. The node iterator will go through the nodes of the
deba@1538
  1879
  /// original graph.
deba@1538
  1880
  ///
deba@1538
  1881
  /// \param _Graph The type of the graph which shares its node set with 
alpar@1631
  1882
  /// this class. Its interface must conform to the \ref concept::StaticGraph
deba@1538
  1883
  /// "StaticGraph" concept.
deba@1538
  1884
  ///
deba@1538
  1885
  /// In the edge extension and removing it conforms to the 
alpar@1631
  1886
  /// \ref concept::ExtendableGraph "ExtendableGraph" concept.
deba@1472
  1887
  template <typename _Graph>
deba@1472
  1888
  class NewEdgeSetAdaptor :
deba@1472
  1889
    public ErasableGraphExtender<
deba@1472
  1890
    ClearableGraphExtender<
deba@1472
  1891
    ExtendableGraphExtender<
deba@1669
  1892
    MappableGraphExtender<
deba@1472
  1893
    IterableGraphExtender<
deba@1472
  1894
    AlterableGraphExtender<
deba@1472
  1895
    NewEdgeSetAdaptorBase<_Graph> > > > > > > {
deba@1472
  1896
deba@1472
  1897
  public:
deba@1472
  1898
deba@1472
  1899
    typedef ErasableGraphExtender<
deba@1472
  1900
      ClearableGraphExtender<
deba@1472
  1901
      ExtendableGraphExtender<
deba@1669
  1902
      MappableGraphExtender<
deba@1472
  1903
      IterableGraphExtender<
deba@1472
  1904
      AlterableGraphExtender<
deba@1472
  1905
      NewEdgeSetAdaptorBase<_Graph> > > > > > > Parent;
deba@1472
  1906
    
deba@1472
  1907
deba@1472
  1908
    typedef typename Parent::Node Node;
deba@1472
  1909
    typedef typename Parent::Edge Edge;
deba@1472
  1910
deba@1472
  1911
  private:
deba@1472
  1912
deba@1472
  1913
    virtual void _clear() {
deba@1472
  1914
      Parent::edges.clear();
deba@1472
  1915
      Parent::first_edge = -1;
deba@1472
  1916
      Parent::first_free_edge = -1;
deba@1472
  1917
      Parent::getNotifier(Edge()).clear();
deba@1472
  1918
      Parent::getNotifier(Node()).clear();
deba@1472
  1919
    }
deba@1472
  1920
deba@1472
  1921
    virtual void _add(const Node& node) {
deba@1472
  1922
      Parent::getNotifier(Node()).add(node);
deba@1472
  1923
    }
deba@1472
  1924
deba@1472
  1925
    virtual void _erase(const Node& node) {
deba@1472
  1926
      Edge edge;
deba@1472
  1927
      Parent::firstOut(edge, node);
deba@1472
  1928
      while (edge != INVALID) {
deba@1472
  1929
	Parent::erase(edge);
deba@1472
  1930
	Parent::firstOut(edge, node);
deba@1472
  1931
      }
deba@1472
  1932
deba@1472
  1933
      Parent::firstIn(edge, node);
deba@1472
  1934
      while (edge != INVALID) {
deba@1472
  1935
	Parent::erase(edge);
deba@1472
  1936
	Parent::firstIn(edge, node);
deba@1472
  1937
      }
deba@1472
  1938
      
deba@1472
  1939
      Parent::getNotifier(Node()).erase(node);
deba@1472
  1940
    }
deba@1472
  1941
deba@1472
  1942
deba@1472
  1943
    typedef typename Parent::NodesImpl NodesImpl;
deba@1472
  1944
deba@1472
  1945
    NodesImpl nodes;
deba@1472
  1946
    
deba@1472
  1947
  public:
deba@1472
  1948
deba@1538
  1949
    /// \brief Constructor of the adaptor.
deba@1538
  1950
    /// 
deba@1538
  1951
    /// Constructor of the adaptor.
deba@1472
  1952
    NewEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
deba@1472
  1953
      Parent::initalize(_graph, nodes);
deba@1472
  1954
    }
deba@1472
  1955
deba@1472
  1956
    void clear() {
deba@1538
  1957
      Parent::getNotifier(Edge()).clear();      
deba@1538
  1958
deba@1472
  1959
      Parent::edges.clear();
deba@1472
  1960
      Parent::first_edge = -1;
deba@1472
  1961
      Parent::first_free_edge = -1;
deba@1538
  1962
    }
deba@1538
  1963
    
deba@1538
  1964
  };
deba@1472
  1965
deba@1538
  1966
  /// \brief Graph adaptor using a node set of another graph and an
deba@1538
  1967
  /// own undir edge set.
deba@1538
  1968
  ///
deba@1538
  1969
  /// This structure can be used to establish another undirected graph over 
deba@1538
  1970
  /// a node set of an existing one. The node iterator will go through the 
deba@1538
  1971
  /// nodes of the original graph.
deba@1538
  1972
  ///
deba@1538
  1973
  /// \param _Graph The type of the graph which shares its node set with 
alpar@1631
  1974
  /// this class. Its interface must conform to the \ref concept::StaticGraph
deba@1538
  1975
  /// "StaticGraph" concept.
deba@1538
  1976
  ///
deba@1538
  1977
  /// In the edge extension and removing it conforms to the 
alpar@1631
  1978
  /// \ref concept::ExtendableGraph "ExtendableGraph" concept.
deba@1538
  1979
  template <typename _Graph>
deba@1538
  1980
  class NewUndirEdgeSetAdaptor :
deba@1538
  1981
    public ErasableUndirGraphExtender<
deba@1538
  1982
    ClearableUndirGraphExtender<
deba@1538
  1983
    ExtendableUndirGraphExtender<
deba@1538
  1984
    MappableUndirGraphExtender<
deba@1538
  1985
    IterableUndirGraphExtender<
deba@1538
  1986
    AlterableUndirGraphExtender<
deba@1538
  1987
    UndirGraphExtender<
deba@1538
  1988
    NewEdgeSetAdaptorBase<_Graph> > > > > > > > {
deba@1538
  1989
deba@1538
  1990
  public:
deba@1538
  1991
deba@1538
  1992
    typedef ErasableUndirGraphExtender<
deba@1538
  1993
      ClearableUndirGraphExtender<
deba@1538
  1994
      ExtendableUndirGraphExtender<
deba@1538
  1995
      MappableUndirGraphExtender<
deba@1538
  1996
      IterableUndirGraphExtender<
deba@1538
  1997
      AlterableUndirGraphExtender<
deba@1538
  1998
      UndirGraphExtender<
deba@1538
  1999
      NewEdgeSetAdaptorBase<_Graph> > > > > > > > Parent;
deba@1538
  2000
    
deba@1538
  2001
deba@1538
  2002
    typedef typename Parent::Node Node;
deba@1538
  2003
    typedef typename Parent::Edge Edge;
deba@1538
  2004
    typedef typename Parent::UndirEdge UndirEdge;
deba@1538
  2005
deba@1538
  2006
  private:
deba@1538
  2007
deba@1538
  2008
    virtual void _clear() {
deba@1538
  2009
      Parent::edges.clear();
deba@1538
  2010
      Parent::first_edge = -1;
deba@1538
  2011
      Parent::first_free_edge = -1;
deba@1538
  2012
      Parent::getNotifier(Edge()).clear();
deba@1538
  2013
      Parent::getNotifier(Node()).clear();
deba@1538
  2014
    }
deba@1538
  2015
deba@1538
  2016
    virtual void _add(const Node& node) {
deba@1538
  2017
      Parent::getNotifier(Node()).add(node);
deba@1538
  2018
    }
deba@1538
  2019
deba@1538
  2020
    virtual void _erase(const Node& node) {
deba@1538
  2021
      Edge edge;
deba@1538
  2022
      Parent::firstOut(edge, node);
deba@1538
  2023
      while (edge != INVALID) {
deba@1538
  2024
	Parent::erase(edge);
deba@1538
  2025
	Parent::firstOut(edge, node);
deba@1538
  2026
      }
deba@1538
  2027
deba@1538
  2028
      Parent::firstIn(edge, node);
deba@1538
  2029
      while (edge != INVALID) {
deba@1538
  2030
	Parent::erase(edge);
deba@1538
  2031
	Parent::firstIn(edge, node);
deba@1538
  2032
      }
deba@1538
  2033
      
deba@1538
  2034
      Parent::getNotifier(Node()).erase(node);
deba@1538
  2035
    }
deba@1538
  2036
deba@1538
  2037
    typedef typename Parent::NodesImpl NodesImpl;
deba@1538
  2038
deba@1538
  2039
    NodesImpl nodes;
deba@1538
  2040
    
deba@1538
  2041
  public:
deba@1538
  2042
deba@1538
  2043
deba@1538
  2044
    /// \brief Constructor of the adaptor.
deba@1538
  2045
    /// 
deba@1538
  2046
    /// Constructor of the adaptor.
deba@1538
  2047
    NewUndirEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
deba@1538
  2048
      Parent::initalize(_graph, nodes);
deba@1538
  2049
    }
deba@1538
  2050
deba@1538
  2051
    void clear() {
deba@1472
  2052
      Parent::getNotifier(Edge()).clear();      
deba@1538
  2053
      Parent::getNotifier(UndirEdge()).clear();      
deba@1538
  2054
deba@1538
  2055
      Parent::edges.clear();
deba@1538
  2056
      Parent::first_edge = -1;
deba@1538
  2057
      Parent::first_free_edge = -1;
deba@1472
  2058
    }
deba@1472
  2059
    
deba@1472
  2060
  };
deba@1472
  2061
marci@556
  2062
  ///@}
marci@556
  2063
alpar@921
  2064
} //namespace lemon
marci@556
  2065
alpar@1401
  2066
#endif //LEMON_GRAPH_ADAPTOR_H
marci@556
  2067