alpar@2353
|
1 |
/* -*- C++ -*-
|
alpar@2353
|
2 |
*
|
alpar@2391
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@2391
|
4 |
*
|
alpar@2391
|
5 |
* Copyright (C) 2003-2007
|
alpar@2391
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@2353
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@2353
|
8 |
*
|
alpar@2353
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@2353
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@2353
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@2353
|
12 |
*
|
alpar@2353
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@2353
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@2353
|
15 |
* purpose.
|
alpar@2353
|
16 |
*
|
alpar@2353
|
17 |
*/
|
alpar@2353
|
18 |
|
alpar@2353
|
19 |
#ifndef LEMON_BP_MATCHING
|
alpar@2353
|
20 |
#define LEMON_BP_MATCHING
|
alpar@2353
|
21 |
|
alpar@2353
|
22 |
#include <lemon/graph_utils.h>
|
alpar@2353
|
23 |
#include <lemon/iterable_maps.h>
|
alpar@2353
|
24 |
#include <iostream>
|
alpar@2353
|
25 |
#include <queue>
|
alpar@2353
|
26 |
#include <lemon/counter.h>
|
alpar@2353
|
27 |
#include <lemon/elevator.h>
|
alpar@2353
|
28 |
|
alpar@2353
|
29 |
///\ingroup matching
|
alpar@2353
|
30 |
///\file
|
alpar@2353
|
31 |
///\brief Push-prelabel maximum matching algorithms in bipartite graphs.
|
alpar@2353
|
32 |
///
|
alpar@2353
|
33 |
///\todo This file slightly conflicts with \ref lemon/bipartite_matching.h
|
alpar@2353
|
34 |
///\todo (Re)move the XYZ_TYPEDEFS macros
|
alpar@2353
|
35 |
namespace lemon {
|
alpar@2353
|
36 |
|
alpar@2353
|
37 |
#define BIPARTITE_TYPEDEFS(Graph) \
|
alpar@2353
|
38 |
GRAPH_TYPEDEFS(Graph) \
|
alpar@2353
|
39 |
typedef Graph::ANodeIt ANodeIt; \
|
alpar@2353
|
40 |
typedef Graph::BNodeIt BNodeIt;
|
alpar@2353
|
41 |
|
alpar@2353
|
42 |
#define UNDIRBIPARTITE_TYPEDEFS(Graph) \
|
alpar@2353
|
43 |
UNDIRGRAPH_TYPEDEFS(Graph) \
|
alpar@2353
|
44 |
typedef Graph::ANodeIt ANodeIt; \
|
alpar@2353
|
45 |
typedef Graph::BNodeIt BNodeIt;
|
alpar@2353
|
46 |
|
alpar@2353
|
47 |
template<class Graph,
|
alpar@2353
|
48 |
class MT=typename Graph::template ANodeMap<typename Graph::UEdge> >
|
alpar@2353
|
49 |
class BpMatching {
|
alpar@2353
|
50 |
typedef typename Graph::Node Node;
|
alpar@2353
|
51 |
typedef typename Graph::ANodeIt ANodeIt;
|
alpar@2353
|
52 |
typedef typename Graph::BNodeIt BNodeIt;
|
alpar@2353
|
53 |
typedef typename Graph::UEdge UEdge;
|
alpar@2353
|
54 |
typedef typename Graph::IncEdgeIt IncEdgeIt;
|
alpar@2353
|
55 |
|
alpar@2353
|
56 |
const Graph &_g;
|
alpar@2353
|
57 |
int _node_num;
|
alpar@2353
|
58 |
MT &_matching;
|
alpar@2353
|
59 |
Elevator<Graph,typename Graph::BNode> _levels;
|
alpar@2353
|
60 |
typename Graph::template BNodeMap<int> _cov;
|
alpar@2353
|
61 |
|
alpar@2353
|
62 |
public:
|
alpar@2353
|
63 |
BpMatching(const Graph &g, MT &matching) :
|
alpar@2353
|
64 |
_g(g),
|
alpar@2353
|
65 |
_node_num(countBNodes(g)),
|
alpar@2353
|
66 |
_matching(matching),
|
alpar@2353
|
67 |
_levels(g,_node_num),
|
alpar@2353
|
68 |
_cov(g,0)
|
alpar@2353
|
69 |
{
|
alpar@2353
|
70 |
}
|
alpar@2353
|
71 |
|
alpar@2353
|
72 |
private:
|
alpar@2353
|
73 |
void init()
|
alpar@2353
|
74 |
{
|
alpar@2353
|
75 |
// for(BNodeIt n(g);n!=INVALID;++n) cov[n]=0;
|
alpar@2353
|
76 |
for(ANodeIt n(_g);n!=INVALID;++n)
|
alpar@2353
|
77 |
if((_matching[n]=IncEdgeIt(_g,n))!=INVALID)
|
alpar@2353
|
78 |
++_cov[_g.oppositeNode(n,_matching[n])];
|
alpar@2353
|
79 |
|
alpar@2353
|
80 |
std::queue<Node> q;
|
alpar@2353
|
81 |
_levels.initStart();
|
alpar@2353
|
82 |
for(BNodeIt n(_g);n!=INVALID;++n)
|
alpar@2353
|
83 |
if(_cov[n]>1) {
|
alpar@2353
|
84 |
_levels.initAddItem(n);
|
alpar@2353
|
85 |
q.push(n);
|
alpar@2353
|
86 |
}
|
alpar@2353
|
87 |
int hlev=0;
|
alpar@2353
|
88 |
while(!q.empty()) {
|
alpar@2353
|
89 |
Node n=q.front();
|
alpar@2353
|
90 |
q.pop();
|
alpar@2353
|
91 |
int nlev=_levels[n]+1;
|
alpar@2353
|
92 |
for(IncEdgeIt e(_g,n);e!=INVALID;++e) {
|
alpar@2353
|
93 |
Node m=_g.runningNode(e);
|
alpar@2353
|
94 |
if(e==_matching[m]) {
|
alpar@2353
|
95 |
for(IncEdgeIt f(_g,m);f!=INVALID;++f) {
|
alpar@2353
|
96 |
Node r=_g.runningNode(f);
|
alpar@2353
|
97 |
if(_levels[r]>nlev) {
|
alpar@2353
|
98 |
for(;nlev>hlev;hlev++)
|
alpar@2353
|
99 |
_levels.initNewLevel();
|
alpar@2353
|
100 |
_levels.initAddItem(r);
|
alpar@2353
|
101 |
q.push(r);
|
alpar@2353
|
102 |
}
|
alpar@2353
|
103 |
}
|
alpar@2353
|
104 |
}
|
alpar@2353
|
105 |
}
|
alpar@2353
|
106 |
}
|
alpar@2353
|
107 |
_levels.initFinish();
|
alpar@2353
|
108 |
for(BNodeIt n(_g);n!=INVALID;++n)
|
alpar@2353
|
109 |
if(_cov[n]<1&&_levels[n]<_node_num)
|
alpar@2353
|
110 |
_levels.activate(n);
|
alpar@2353
|
111 |
}
|
alpar@2353
|
112 |
public:
|
alpar@2353
|
113 |
int run()
|
alpar@2353
|
114 |
{
|
alpar@2353
|
115 |
init();
|
alpar@2353
|
116 |
|
alpar@2353
|
117 |
Node act;
|
alpar@2353
|
118 |
Node bact=INVALID;
|
alpar@2353
|
119 |
Node last_activated=INVALID;
|
alpar@2353
|
120 |
// while((act=last_activated!=INVALID?
|
alpar@2353
|
121 |
// last_activated:_levels.highestActive())
|
alpar@2353
|
122 |
// !=INVALID)
|
alpar@2353
|
123 |
while((act=_levels.highestActive())!=INVALID) {
|
alpar@2353
|
124 |
last_activated=INVALID;
|
alpar@2353
|
125 |
int actlevel=_levels[act];
|
alpar@2353
|
126 |
|
alpar@2353
|
127 |
UEdge bedge=INVALID;
|
alpar@2353
|
128 |
int nlevel=_node_num;
|
alpar@2353
|
129 |
{
|
alpar@2353
|
130 |
int nnlevel;
|
alpar@2353
|
131 |
for(IncEdgeIt tbedge(_g,act);
|
alpar@2353
|
132 |
tbedge!=INVALID && nlevel>=actlevel;
|
alpar@2353
|
133 |
++tbedge)
|
alpar@2353
|
134 |
if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
|
alpar@2353
|
135 |
nlevel)
|
alpar@2353
|
136 |
{
|
alpar@2353
|
137 |
nlevel=nnlevel;
|
alpar@2353
|
138 |
bedge=tbedge;
|
alpar@2353
|
139 |
}
|
alpar@2353
|
140 |
}
|
alpar@2353
|
141 |
if(nlevel<_node_num) {
|
alpar@2353
|
142 |
if(nlevel>=actlevel)
|
alpar@2353
|
143 |
_levels.liftHighestActiveTo(nlevel+1);
|
alpar@2353
|
144 |
// _levels.liftTo(act,nlevel+1);
|
alpar@2353
|
145 |
bact=_g.bNode(_matching[_g.aNode(bedge)]);
|
alpar@2353
|
146 |
if(--_cov[bact]<1) {
|
alpar@2353
|
147 |
_levels.activate(bact);
|
alpar@2353
|
148 |
last_activated=bact;
|
alpar@2353
|
149 |
}
|
alpar@2353
|
150 |
_matching[_g.aNode(bedge)]=bedge;
|
alpar@2353
|
151 |
_cov[act]=1;
|
alpar@2353
|
152 |
_levels.deactivate(act);
|
alpar@2353
|
153 |
}
|
alpar@2353
|
154 |
else {
|
alpar@2353
|
155 |
if(_node_num>actlevel)
|
alpar@2353
|
156 |
_levels.liftHighestActiveTo(_node_num);
|
alpar@2353
|
157 |
// _levels.liftTo(act,_node_num);
|
alpar@2353
|
158 |
_levels.deactivate(act);
|
alpar@2353
|
159 |
}
|
alpar@2353
|
160 |
|
alpar@2353
|
161 |
if(_levels.onLevel(actlevel)==0)
|
alpar@2353
|
162 |
_levels.liftToTop(actlevel);
|
alpar@2353
|
163 |
}
|
alpar@2353
|
164 |
|
alpar@2353
|
165 |
int ret=_node_num;
|
alpar@2353
|
166 |
for(ANodeIt n(_g);n!=INVALID;++n)
|
alpar@2353
|
167 |
if(_matching[n]==INVALID) ret--;
|
alpar@2353
|
168 |
else if (_cov[_g.bNode(_matching[n])]>1) {
|
alpar@2353
|
169 |
_cov[_g.bNode(_matching[n])]--;
|
alpar@2353
|
170 |
ret--;
|
alpar@2353
|
171 |
_matching[n]=INVALID;
|
alpar@2353
|
172 |
}
|
alpar@2353
|
173 |
return ret;
|
alpar@2353
|
174 |
}
|
alpar@2353
|
175 |
|
alpar@2353
|
176 |
///\returns -1 if there is a perfect matching, or an empty level
|
alpar@2353
|
177 |
///if it doesn't exists
|
alpar@2353
|
178 |
int runPerfect()
|
alpar@2353
|
179 |
{
|
alpar@2353
|
180 |
init();
|
alpar@2353
|
181 |
|
alpar@2353
|
182 |
Node act;
|
alpar@2353
|
183 |
Node bact=INVALID;
|
alpar@2353
|
184 |
Node last_activated=INVALID;
|
alpar@2353
|
185 |
while((act=_levels.highestActive())!=INVALID) {
|
alpar@2353
|
186 |
last_activated=INVALID;
|
alpar@2353
|
187 |
int actlevel=_levels[act];
|
alpar@2353
|
188 |
|
alpar@2353
|
189 |
UEdge bedge=INVALID;
|
alpar@2353
|
190 |
int nlevel=_node_num;
|
alpar@2353
|
191 |
{
|
alpar@2353
|
192 |
int nnlevel;
|
alpar@2353
|
193 |
for(IncEdgeIt tbedge(_g,act);
|
alpar@2353
|
194 |
tbedge!=INVALID && nlevel>=actlevel;
|
alpar@2353
|
195 |
++tbedge)
|
alpar@2353
|
196 |
if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
|
alpar@2353
|
197 |
nlevel)
|
alpar@2353
|
198 |
{
|
alpar@2353
|
199 |
nlevel=nnlevel;
|
alpar@2353
|
200 |
bedge=tbedge;
|
alpar@2353
|
201 |
}
|
alpar@2353
|
202 |
}
|
alpar@2353
|
203 |
if(nlevel<_node_num) {
|
alpar@2353
|
204 |
if(nlevel>=actlevel)
|
alpar@2353
|
205 |
_levels.liftHighestActiveTo(nlevel+1);
|
alpar@2353
|
206 |
bact=_g.bNode(_matching[_g.aNode(bedge)]);
|
alpar@2353
|
207 |
if(--_cov[bact]<1) {
|
alpar@2353
|
208 |
_levels.activate(bact);
|
alpar@2353
|
209 |
last_activated=bact;
|
alpar@2353
|
210 |
}
|
alpar@2353
|
211 |
_matching[_g.aNode(bedge)]=bedge;
|
alpar@2353
|
212 |
_cov[act]=1;
|
alpar@2353
|
213 |
_levels.deactivate(act);
|
alpar@2353
|
214 |
}
|
alpar@2353
|
215 |
else {
|
alpar@2353
|
216 |
if(_node_num>actlevel)
|
alpar@2353
|
217 |
_levels.liftHighestActiveTo(_node_num);
|
alpar@2353
|
218 |
_levels.deactivate(act);
|
alpar@2353
|
219 |
}
|
alpar@2353
|
220 |
|
alpar@2353
|
221 |
if(_levels.onLevel(actlevel)==0)
|
alpar@2353
|
222 |
return actlevel;
|
alpar@2353
|
223 |
}
|
alpar@2353
|
224 |
return -1;
|
alpar@2353
|
225 |
}
|
alpar@2353
|
226 |
|
alpar@2353
|
227 |
template<class GT>
|
alpar@2353
|
228 |
void aBarrier(GT &bar,int empty_level=-1)
|
alpar@2353
|
229 |
{
|
alpar@2353
|
230 |
if(empty_level==-1)
|
alpar@2353
|
231 |
for(empty_level=0;_levels.onLevel(empty_level);empty_level++) ;
|
alpar@2353
|
232 |
for(ANodeIt n(_g);n!=INVALID;++n)
|
alpar@2353
|
233 |
bar[n] = _matching[n]==INVALID ||
|
alpar@2353
|
234 |
_levels[_g.bNode(_matching[n])]<empty_level;
|
alpar@2353
|
235 |
}
|
alpar@2353
|
236 |
template<class GT>
|
alpar@2353
|
237 |
void bBarrier(GT &bar, int empty_level=-1)
|
alpar@2353
|
238 |
{
|
alpar@2353
|
239 |
if(empty_level==-1)
|
alpar@2353
|
240 |
for(empty_level=0;_levels.onLevel(empty_level);empty_level++) ;
|
alpar@2353
|
241 |
for(BNodeIt n(_g);n!=INVALID;++n) bar[n]=(_levels[n]>empty_level);
|
alpar@2353
|
242 |
}
|
alpar@2353
|
243 |
|
alpar@2353
|
244 |
};
|
alpar@2353
|
245 |
|
alpar@2353
|
246 |
|
alpar@2353
|
247 |
///Maximum cardinality of the matchings in a bipartite graph
|
alpar@2353
|
248 |
|
alpar@2353
|
249 |
///\ingroup matching
|
alpar@2353
|
250 |
///This function finds the maximum cardinality of the matchings
|
alpar@2353
|
251 |
///in a bipartite graph \c g.
|
alpar@2353
|
252 |
///\param g An undirected bipartite graph.
|
alpar@2353
|
253 |
///\return The cardinality of the maximum matching.
|
alpar@2353
|
254 |
///
|
alpar@2353
|
255 |
///\note The the implementation is based
|
alpar@2353
|
256 |
///on the push-relabel principle.
|
alpar@2353
|
257 |
template<class Graph>
|
alpar@2353
|
258 |
int maxBpMatching(const Graph &g)
|
alpar@2353
|
259 |
{
|
alpar@2353
|
260 |
typename Graph::template ANodeMap<typename Graph::UEdge> matching(g);
|
alpar@2353
|
261 |
return maxBpMatching(g,matching);
|
alpar@2353
|
262 |
}
|
alpar@2353
|
263 |
|
alpar@2353
|
264 |
///Maximum cardinality matching in a bipartite graph
|
alpar@2353
|
265 |
|
alpar@2353
|
266 |
///\ingroup matching
|
alpar@2353
|
267 |
///This function finds a maximum cardinality matching
|
alpar@2353
|
268 |
///in a bipartite graph \c g.
|
alpar@2353
|
269 |
///\param g An undirected bipartite graph.
|
alpar@2353
|
270 |
///\retval matching A readwrite ANodeMap of value type \c Edge.
|
alpar@2353
|
271 |
/// The found edges will be returned in this map,
|
alpar@2353
|
272 |
/// i.e. for an \c ANode \c n,
|
alpar@2353
|
273 |
/// the edge <tt>matching[n]</tt> is the one that covers the node \c n, or
|
alpar@2353
|
274 |
/// \ref INVALID if it is uncovered.
|
alpar@2353
|
275 |
///\return The cardinality of the maximum matching.
|
alpar@2353
|
276 |
///
|
alpar@2353
|
277 |
///\note The the implementation is based
|
alpar@2353
|
278 |
///on the push-relabel principle.
|
alpar@2353
|
279 |
template<class Graph,class MT>
|
alpar@2353
|
280 |
int maxBpMatching(const Graph &g,MT &matching)
|
alpar@2353
|
281 |
{
|
alpar@2353
|
282 |
return BpMatching<Graph,MT>(g,matching).run();
|
alpar@2353
|
283 |
}
|
alpar@2353
|
284 |
|
alpar@2353
|
285 |
///Maximum cardinality matching in a bipartite graph
|
alpar@2353
|
286 |
|
alpar@2353
|
287 |
///\ingroup matching
|
alpar@2353
|
288 |
///This function finds a maximum cardinality matching
|
alpar@2353
|
289 |
///in a bipartite graph \c g.
|
alpar@2353
|
290 |
///\param g An undirected bipartite graph.
|
alpar@2353
|
291 |
///\retval matching A readwrite ANodeMap of value type \c Edge.
|
alpar@2353
|
292 |
/// The found edges will be returned in this map,
|
alpar@2353
|
293 |
/// i.e. for an \c ANode \c n,
|
alpar@2353
|
294 |
/// the edge <tt>matching[n]</tt> is the one that covers the node \c n, or
|
alpar@2353
|
295 |
/// \ref INVALID if it is uncovered.
|
alpar@2353
|
296 |
///\retval barrier A \c bool WriteMap on the BNodes. The map will be set
|
alpar@2353
|
297 |
/// exactly once for each BNode. The nodes with \c true value represent
|
alpar@2353
|
298 |
/// a barrier \e B, i.e. the cardinality of \e B minus the number of its
|
alpar@2353
|
299 |
/// neighbor is equal to the number of the <tt>BNode</tt>s minus the
|
alpar@2353
|
300 |
/// cardinality of the maximum matching.
|
alpar@2353
|
301 |
///\return The cardinality of the maximum matching.
|
alpar@2353
|
302 |
///
|
alpar@2353
|
303 |
///\note The the implementation is based
|
alpar@2353
|
304 |
///on the push-relabel principle.
|
alpar@2353
|
305 |
template<class Graph,class MT, class GT>
|
alpar@2353
|
306 |
int maxBpMatching(const Graph &g,MT &matching,GT &barrier)
|
alpar@2353
|
307 |
{
|
alpar@2353
|
308 |
BpMatching<Graph,MT> bpm(g,matching);
|
alpar@2353
|
309 |
int ret=bpm.run();
|
alpar@2353
|
310 |
bpm.barrier(barrier);
|
alpar@2353
|
311 |
return ret;
|
alpar@2353
|
312 |
}
|
alpar@2353
|
313 |
|
alpar@2353
|
314 |
///Perfect matching in a bipartite graph
|
alpar@2353
|
315 |
|
alpar@2353
|
316 |
///\ingroup matching
|
alpar@2353
|
317 |
///This function checks whether the bipartite graph \c g
|
alpar@2353
|
318 |
///has a perfect matching.
|
alpar@2353
|
319 |
///\param g An undirected bipartite graph.
|
alpar@2353
|
320 |
///\return \c true iff \c g has a perfect matching.
|
alpar@2353
|
321 |
///
|
alpar@2353
|
322 |
///\note The the implementation is based
|
alpar@2353
|
323 |
///on the push-relabel principle.
|
alpar@2353
|
324 |
template<class Graph>
|
alpar@2353
|
325 |
bool perfectBpMatching(const Graph &g)
|
alpar@2353
|
326 |
{
|
alpar@2353
|
327 |
typename Graph::template ANodeMap<typename Graph::UEdge> matching(g);
|
alpar@2353
|
328 |
return perfectBpMatching(g,matching);
|
alpar@2353
|
329 |
}
|
alpar@2353
|
330 |
|
alpar@2353
|
331 |
///Perfect matching in a bipartite graph
|
alpar@2353
|
332 |
|
alpar@2353
|
333 |
///\ingroup matching
|
alpar@2353
|
334 |
///This function finds a perfect matching in a bipartite graph \c g.
|
alpar@2353
|
335 |
///\param g An undirected bipartite graph.
|
alpar@2353
|
336 |
///\retval matching A readwrite ANodeMap of value type \c Edge.
|
alpar@2353
|
337 |
/// The found edges will be returned in this map,
|
alpar@2353
|
338 |
/// i.e. for an \c ANode \c n,
|
alpar@2353
|
339 |
/// the edge <tt>matching[n]</tt> is the one that covers the node \c n.
|
alpar@2353
|
340 |
/// The values are unspecified if the graph
|
alpar@2353
|
341 |
/// has no perfect matching.
|
alpar@2353
|
342 |
///\return \c true iff \c g has a perfect matching.
|
alpar@2353
|
343 |
///
|
alpar@2353
|
344 |
///\note The the implementation is based
|
alpar@2353
|
345 |
///on the push-relabel principle.
|
alpar@2353
|
346 |
template<class Graph,class MT>
|
alpar@2353
|
347 |
bool perfectBpMatching(const Graph &g,MT &matching)
|
alpar@2353
|
348 |
{
|
alpar@2353
|
349 |
return BpMatching<Graph,MT>(g,matching).runPerfect()<0;
|
alpar@2353
|
350 |
}
|
alpar@2353
|
351 |
|
alpar@2353
|
352 |
///Perfect matching in a bipartite graph
|
alpar@2353
|
353 |
|
alpar@2353
|
354 |
///\ingroup matching
|
alpar@2353
|
355 |
///This function finds a perfect matching in a bipartite graph \c g.
|
alpar@2353
|
356 |
///\param g An undirected bipartite graph.
|
alpar@2353
|
357 |
///\retval matching A readwrite ANodeMap of value type \c Edge.
|
alpar@2353
|
358 |
/// The found edges will be returned in this map,
|
alpar@2353
|
359 |
/// i.e. for an \c ANode \c n,
|
alpar@2353
|
360 |
/// the edge <tt>matching[n]</tt> is the one that covers the node \c n.
|
alpar@2353
|
361 |
/// The values are unspecified if the graph
|
alpar@2353
|
362 |
/// has no perfect matching.
|
alpar@2353
|
363 |
///\retval barrier A \c bool WriteMap on the BNodes. The map will only
|
alpar@2353
|
364 |
/// be set if \c g has no perfect matching. In this case it is set
|
alpar@2353
|
365 |
/// exactly once for each BNode. The nodes with \c true value represent
|
alpar@2353
|
366 |
/// a barrier, i.e. a subset \e B a of BNodes with the property that
|
alpar@2353
|
367 |
/// the cardinality of \e B is greater than the numner of its neighbors.
|
alpar@2353
|
368 |
///\return \c true iff \c g has a perfect matching.
|
alpar@2353
|
369 |
///
|
alpar@2353
|
370 |
///\note The the implementation is based
|
alpar@2353
|
371 |
///on the push-relabel principle.
|
alpar@2353
|
372 |
template<class Graph,class MT, class GT>
|
alpar@2353
|
373 |
int perfectBpMatching(const Graph &g,MT &matching,GT &barrier)
|
alpar@2353
|
374 |
{
|
alpar@2353
|
375 |
BpMatching<Graph,MT> bpm(g,matching);
|
alpar@2353
|
376 |
int ret=bpm.run();
|
alpar@2353
|
377 |
if(ret>=0)
|
alpar@2353
|
378 |
bpm.barrier(barrier,ret);
|
alpar@2353
|
379 |
return ret<0;
|
alpar@2353
|
380 |
}
|
alpar@2353
|
381 |
}
|
alpar@2353
|
382 |
|
alpar@2353
|
383 |
#endif
|