lemon/bin_heap.h
author deba
Fri, 31 Mar 2006 11:10:44 +0000
changeset 2025 93fcadf94ab0
parent 1906 7fa90b66ca9e
child 2050 d9a221218ea4
permissions -rw-r--r--
Bugfix in the minimum cost arborescence algorithm
Dual solution computation and interface for algorithm
Optimality test on random graph
alpar@906
     1
/* -*- C++ -*-
klao@39
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
klao@39
     8
 *
alpar@906
     9
 * Permission to use, modify and distribute this software is granted
alpar@906
    10
 * provided that this copyright notice appears in all copies. For
alpar@906
    11
 * precise terms see the accompanying LICENSE file.
klao@39
    12
 *
alpar@906
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    14
 * express or implied, and with no claim as to its suitability for any
alpar@906
    15
 * purpose.
klao@39
    16
 *
klao@39
    17
 */
klao@39
    18
alpar@921
    19
#ifndef LEMON_BIN_HEAP_H
alpar@921
    20
#define LEMON_BIN_HEAP_H
klao@37
    21
klao@491
    22
///\ingroup auxdat
klao@274
    23
///\file
klao@274
    24
///\brief Binary Heap implementation.
klao@274
    25
klao@37
    26
#include <vector>
klao@37
    27
#include <utility>
klao@37
    28
#include <functional>
klao@37
    29
alpar@921
    30
namespace lemon {
klao@37
    31
deba@1834
    32
  /// \ingroup auxdat
alpar@430
    33
jacint@1270
    34
  /// A Binary Heap implementation.
alpar@967
    35
  
jacint@1270
    36
  ///This class implements the \e binary \e heap data structure. A \e heap
jacint@1270
    37
  ///is a data structure for storing items with specified values called \e
jacint@1270
    38
  ///priorities in such a way that finding the item with minimum priority is
jacint@1270
    39
  ///efficient. \c Compare specifies the ordering of the priorities. In a heap
jacint@1270
    40
  ///one can change the priority of an item, add or erase an item, etc.
jacint@1270
    41
  ///
jacint@1270
    42
  ///\param Item Type of the items to be stored.  
jacint@1270
    43
  ///\param Prio Type of the priority of the items.
jacint@1270
    44
  ///\param ItemIntMap A read and writable Item int map, used internally
jacint@1270
    45
  ///to handle the cross references.
jacint@1270
    46
  ///\param Compare A class for the ordering of the priorities. The
jacint@1270
    47
  ///default is \c std::less<Prio>.
alpar@967
    48
  ///
alpar@967
    49
  ///\sa FibHeap
alpar@967
    50
  ///\sa Dijkstra
klao@172
    51
  template <typename Item, typename Prio, typename ItemIntMap,
klao@172
    52
	    typename Compare = std::less<Prio> >
klao@37
    53
  class BinHeap {
klao@37
    54
klao@37
    55
  public:
klao@172
    56
    typedef Item                             ItemType;
klao@37
    57
    // FIXME: stl-ben nem ezt hivjak value_type -nak, hanem a kovetkezot...
klao@172
    58
    typedef Prio                             PrioType;
klao@172
    59
    typedef std::pair<ItemType,PrioType>     PairType;
klao@172
    60
    typedef ItemIntMap                       ItemIntMapType;
klao@172
    61
    typedef Compare                          PrioCompare;
klao@37
    62
deba@1331
    63
    /// \brief Type to represent the items states.
klao@274
    64
    ///
deba@1331
    65
    /// Each Item element have a state associated to it. It may be "in heap",
alpar@1336
    66
    /// "pre heap" or "post heap". The latter two are indifferent from the
deba@1331
    67
    /// heap's point of view, but may be useful to the user.
deba@1331
    68
    ///
alpar@1336
    69
    /// The ItemIntMap \e should be initialized in such way that it maps
deba@1331
    70
    /// PRE_HEAP (-1) to any element to be put in the heap...
klao@39
    71
    enum state_enum {
klao@37
    72
      IN_HEAP = 0,
klao@37
    73
      PRE_HEAP = -1,
klao@37
    74
      POST_HEAP = -2
klao@37
    75
    };
klao@37
    76
klao@37
    77
  private:
klao@37
    78
    std::vector<PairType> data;
klao@37
    79
    Compare comp;
klao@172
    80
    ItemIntMap &iim;
klao@37
    81
klao@37
    82
  public:
deba@1331
    83
    /// \brief The constructor.
deba@1331
    84
    ///
deba@1331
    85
    /// The constructor.
deba@1331
    86
    /// \param _iim should be given to the constructor, since it is used
deba@1331
    87
    /// internally to handle the cross references. The value of the map
deba@1331
    88
    /// should be PRE_HEAP (-1) for each element.
deba@1185
    89
    explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
jacint@1270
    90
    
deba@1331
    91
    /// \brief The constructor.
deba@1331
    92
    ///
deba@1331
    93
    /// The constructor.
deba@1331
    94
    /// \param _iim should be given to the constructor, since it is used
deba@1331
    95
    /// internally to handle the cross references. The value of the map
deba@1331
    96
    /// should be PRE_HEAP (-1) for each element.
deba@1331
    97
    ///
deba@1331
    98
    /// \param _comp The comparator function object.
deba@1191
    99
    BinHeap(ItemIntMap &_iim, const Compare &_comp) 
deba@1185
   100
      : iim(_iim), comp(_comp) {}
klao@37
   101
klao@37
   102
deba@1331
   103
    /// The number of items stored in the heap.
deba@1331
   104
    ///
deba@1331
   105
    /// \brief Returns the number of items stored in the heap.
klao@37
   106
    int size() const { return data.size(); }
jacint@1270
   107
    
deba@1331
   108
    /// \brief Checks if the heap stores no items.
deba@1331
   109
    ///
deba@1331
   110
    /// Returns \c true if and only if the heap stores no items.
klao@41
   111
    bool empty() const { return data.empty(); }
klao@37
   112
deba@1717
   113
    /// \brief Make empty this heap.
deba@1717
   114
    /// 
deba@1717
   115
    /// Make empty this heap.
deba@1717
   116
    void clear() { 
deba@1717
   117
      for (int i = 0; i < (int)data.size(); ++i) {
deba@1717
   118
	iim.set(data[i].first, POST_HEAP);
deba@1717
   119
      }
deba@1717
   120
      data.clear(); 
deba@1717
   121
    }
deba@1717
   122
klao@37
   123
  private:
klao@37
   124
    static int parent(int i) { return (i-1)/2; }
klao@37
   125
    static int second_child(int i) { return 2*i+2; }
klao@214
   126
    bool less(const PairType &p1, const PairType &p2) const {
klao@37
   127
      return comp(p1.second, p2.second);
klao@37
   128
    }
klao@37
   129
klao@37
   130
    int bubble_up(int hole, PairType p);
klao@37
   131
    int bubble_down(int hole, PairType p, int length);
klao@37
   132
klao@37
   133
    void move(const PairType &p, int i) {
klao@37
   134
      data[i] = p;
klao@172
   135
      iim.set(p.first, i);
klao@37
   136
    }
klao@37
   137
klao@41
   138
    void rmidx(int h) {
klao@41
   139
      int n = data.size()-1;
klao@41
   140
      if( h>=0 && h<=n ) {
klao@172
   141
	iim.set(data[h].first, POST_HEAP);
klao@41
   142
	if ( h<n ) {
klao@41
   143
	  bubble_down(h, data[n], n);
klao@41
   144
	}
klao@41
   145
	data.pop_back();
klao@41
   146
      }
klao@41
   147
    }
klao@41
   148
klao@37
   149
  public:
deba@1331
   150
    /// \brief Insert a pair of item and priority into the heap.
deba@1331
   151
    ///
deba@1331
   152
    /// Adds \c p.first to the heap with priority \c p.second.
deba@1331
   153
    /// \param p The pair to insert.
klao@37
   154
    void push(const PairType &p) {
klao@37
   155
      int n = data.size();
klao@37
   156
      data.resize(n+1);
klao@37
   157
      bubble_up(n, p);
klao@37
   158
    }
jacint@1270
   159
deba@1331
   160
    /// \brief Insert an item into the heap with the given heap.
deba@1331
   161
    ///    
deba@1331
   162
    /// Adds \c i to the heap with priority \c p. 
deba@1331
   163
    /// \param i The item to insert.
deba@1331
   164
    /// \param p The priority of the item.
klao@172
   165
    void push(const Item &i, const Prio &p) { push(PairType(i,p)); }
klao@37
   166
deba@1331
   167
    /// \brief Returns the item with minimum priority relative to \c Compare.
deba@1331
   168
    ///
deba@1331
   169
    /// This method returns the item with minimum priority relative to \c
deba@1331
   170
    /// Compare.  
deba@1331
   171
    /// \pre The heap must be nonempty.  
klao@172
   172
    Item top() const {
klao@37
   173
      return data[0].first;
klao@37
   174
    }
jacint@1270
   175
deba@1331
   176
    /// \brief Returns the minimum priority relative to \c Compare.
deba@1331
   177
    ///
deba@1331
   178
    /// It returns the minimum priority relative to \c Compare.
deba@1331
   179
    /// \pre The heap must be nonempty.
klao@274
   180
    Prio prio() const {
klao@37
   181
      return data[0].second;
klao@37
   182
    }
klao@37
   183
deba@1331
   184
    /// \brief Deletes the item with minimum priority relative to \c Compare.
deba@1331
   185
    ///
deba@1331
   186
    /// This method deletes the item with minimum priority relative to \c
deba@1331
   187
    /// Compare from the heap.  
deba@1331
   188
    /// \pre The heap must be non-empty.  
klao@37
   189
    void pop() {
klao@41
   190
      rmidx(0);
klao@41
   191
    }
klao@41
   192
deba@1331
   193
    /// \brief Deletes \c i from the heap.
deba@1331
   194
    ///
deba@1331
   195
    /// This method deletes item \c i from the heap, if \c i was
deba@1331
   196
    /// already stored in the heap.
deba@1331
   197
    /// \param i The item to erase. 
klao@172
   198
    void erase(const Item &i) {
jacint@221
   199
      rmidx(iim[i]);
klao@37
   200
    }
klao@37
   201
jacint@1270
   202
    
deba@1331
   203
    /// \brief Returns the priority of \c i.
deba@1331
   204
    ///
deba@1331
   205
    /// This function returns the priority of item \c i.  
deba@1331
   206
    /// \pre \c i must be in the heap.
deba@1331
   207
    /// \param i The item.
klao@274
   208
    Prio operator[](const Item &i) const {
jacint@221
   209
      int idx = iim[i];
klao@37
   210
      return data[idx].second;
klao@37
   211
    }
klao@274
   212
deba@1331
   213
    /// \brief \c i gets to the heap with priority \c p independently 
deba@1331
   214
    /// if \c i was already there.
deba@1331
   215
    ///
deba@1331
   216
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
deba@1331
   217
    /// in the heap and sets the priority of \c i to \c p otherwise.
deba@1331
   218
    /// \param i The item.
deba@1331
   219
    /// \param p The priority.
klao@172
   220
    void set(const Item &i, const Prio &p) {
jacint@221
   221
      int idx = iim[i];
klao@37
   222
      if( idx < 0 ) {
klao@172
   223
	push(i,p);
klao@37
   224
      }
klao@172
   225
      else if( comp(p, data[idx].second) ) {
klao@172
   226
	bubble_up(idx, PairType(i,p));
klao@37
   227
      }
klao@37
   228
      else {
klao@172
   229
	bubble_down(idx, PairType(i,p), data.size());
klao@37
   230
      }
klao@37
   231
    }
klao@37
   232
deba@1331
   233
    /// \brief Decreases the priority of \c i to \c p.
jacint@1270
   234
deba@1331
   235
    /// This method decreases the priority of item \c i to \c p.
deba@1331
   236
    /// \pre \c i must be stored in the heap with priority at least \c
deba@1331
   237
    /// p relative to \c Compare.
deba@1331
   238
    /// \param i The item.
deba@1331
   239
    /// \param p The priority.
klao@172
   240
    void decrease(const Item &i, const Prio &p) {
jacint@221
   241
      int idx = iim[i];
klao@172
   242
      bubble_up(idx, PairType(i,p));
klao@37
   243
    }
jacint@1270
   244
    
deba@1331
   245
    /// \brief Increases the priority of \c i to \c p.
deba@1331
   246
    ///
deba@1331
   247
    /// This method sets the priority of item \c i to \c p. 
deba@1331
   248
    /// \pre \c i must be stored in the heap with priority at most \c
deba@1331
   249
    /// p relative to \c Compare.
deba@1331
   250
    /// \param i The item.
deba@1331
   251
    /// \param p The priority.
klao@172
   252
    void increase(const Item &i, const Prio &p) {
jacint@221
   253
      int idx = iim[i];
klao@172
   254
      bubble_down(idx, PairType(i,p), data.size());
klao@37
   255
    }
klao@37
   256
deba@1331
   257
    /// \brief Returns if \c item is in, has already been in, or has 
deba@1331
   258
    /// never been in the heap.
deba@1331
   259
    ///
deba@1331
   260
    /// This method returns PRE_HEAP if \c item has never been in the
deba@1331
   261
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
deba@1331
   262
    /// otherwise. In the latter case it is possible that \c item will
deba@1331
   263
    /// get back to the heap again.
deba@1331
   264
    /// \param i The item.
klao@172
   265
    state_enum state(const Item &i) const {
jacint@221
   266
      int s = iim[i];
klao@39
   267
      if( s>=0 )
klao@39
   268
	s=0;
klao@39
   269
      return state_enum(s);
klao@39
   270
    }
klao@39
   271
deba@1902
   272
    /// \brief Sets the state of the \c item in the heap.
deba@1902
   273
    ///
deba@1902
   274
    /// Sets the state of the \c item in the heap. It can be used to
deba@1902
   275
    /// manually clear the heap when it is important to achive the
deba@1902
   276
    /// better time complexity.
deba@1902
   277
    /// \param i The item.
deba@1902
   278
    /// \param st The state. It should not be \c IN_HEAP. 
deba@1902
   279
    void state(const Item& i, state_enum st) {
deba@1902
   280
      switch (st) {
deba@1902
   281
      case POST_HEAP:
deba@1902
   282
      case PRE_HEAP:
deba@1902
   283
        if (state(i) == IN_HEAP) {
deba@1902
   284
          erase(i);
deba@1902
   285
        }
deba@1903
   286
        iim[i] = st;
deba@1902
   287
        break;
deba@1906
   288
      case IN_HEAP:
deba@1906
   289
        break;
deba@1902
   290
      }
deba@1902
   291
    }
deba@1902
   292
klao@37
   293
  }; // class BinHeap
klao@37
   294
klao@37
   295
  
klao@37
   296
  template <typename K, typename V, typename M, typename C>
klao@37
   297
  int BinHeap<K,V,M,C>::bubble_up(int hole, PairType p) {
klao@37
   298
    int par = parent(hole);
klao@37
   299
    while( hole>0 && less(p,data[par]) ) {
klao@37
   300
      move(data[par],hole);
klao@37
   301
      hole = par;
klao@37
   302
      par = parent(hole);
klao@37
   303
    }
klao@37
   304
    move(p, hole);
klao@37
   305
    return hole;
klao@37
   306
  }
klao@37
   307
klao@37
   308
  template <typename K, typename V, typename M, typename C>
klao@37
   309
  int BinHeap<K,V,M,C>::bubble_down(int hole, PairType p, int length) {
klao@37
   310
    int child = second_child(hole);
klao@37
   311
    while(child < length) {
klao@37
   312
      if( less(data[child-1], data[child]) ) {
klao@37
   313
	--child;
klao@37
   314
      }
klao@37
   315
      if( !less(data[child], p) )
klao@37
   316
	goto ok;
klao@37
   317
      move(data[child], hole);
klao@37
   318
      hole = child;
klao@37
   319
      child = second_child(hole);
klao@37
   320
    }
klao@37
   321
    child--;
klao@37
   322
    if( child<length && less(data[child], p) ) {
klao@37
   323
      move(data[child], hole);
klao@37
   324
      hole=child;
klao@37
   325
    }
klao@37
   326
  ok:
klao@37
   327
    move(p, hole);
klao@37
   328
    return hole;
klao@37
   329
  }
klao@37
   330
alpar@430
   331
alpar@921
   332
} // namespace lemon
klao@37
   333
alpar@921
   334
#endif // LEMON_BIN_HEAP_H