lemon/graph_adaptor.h
author ladanyi
Tue, 18 Apr 2006 22:59:33 +0000
changeset 2063 9535436aaa9f
parent 2037 32e4bebee616
child 2079 7fe378247fea
permissions -rw-r--r--
id->label
alpar@906
     1
/* -*- C++ -*-
alpar@906
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     8
 *
alpar@906
     9
 * Permission to use, modify and distribute this software is granted
alpar@906
    10
 * provided that this copyright notice appears in all copies. For
alpar@906
    11
 * precise terms see the accompanying LICENSE file.
alpar@906
    12
 *
alpar@906
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    14
 * express or implied, and with no claim as to its suitability for any
alpar@906
    15
 * purpose.
alpar@906
    16
 *
alpar@906
    17
 */
alpar@906
    18
alpar@1401
    19
#ifndef LEMON_GRAPH_ADAPTOR_H
alpar@1401
    20
#define LEMON_GRAPH_ADAPTOR_H
marci@556
    21
deba@2037
    22
///\ingroup graph_adaptors
deba@2037
    23
///\file
deba@2037
    24
///\brief Several graph adaptors.
marci@556
    25
///
deba@2037
    26
///This file contains several useful graph adaptor functions.
marci@556
    27
///
deba@2037
    28
///\author Marton Makai and Balazs Dezso
marci@556
    29
deba@1993
    30
#include <lemon/bits/invalid.h>
alpar@921
    31
#include <lemon/maps.h>
deba@1979
    32
deba@1999
    33
#include <lemon/bits/base_extender.h>
deba@1979
    34
#include <lemon/bits/graph_adaptor_extender.h>
deba@1791
    35
#include <lemon/bits/graph_extender.h>
deba@1979
    36
deba@2034
    37
#include <lemon/tolerance.h>
deba@2034
    38
alpar@774
    39
#include <iostream>
marci@556
    40
alpar@921
    41
namespace lemon {
marci@556
    42
klao@1951
    43
  ///\brief Base type for the Graph Adaptors
klao@1951
    44
  ///\ingroup graph_adaptors
klao@1951
    45
  ///
klao@1951
    46
  ///Base type for the Graph Adaptors
klao@1951
    47
  ///
klao@1951
    48
  ///This is the base type for most of LEMON graph adaptors. 
klao@1951
    49
  ///This class implements a trivial graph adaptor i.e. it only wraps the 
klao@1951
    50
  ///functions and types of the graph. The purpose of this class is to 
klao@1951
    51
  ///make easier implementing graph adaptors. E.g. if an adaptor is 
klao@1951
    52
  ///considered which differs from the wrapped graph only in some of its 
klao@1951
    53
  ///functions or types, then it can be derived from GraphAdaptor,
klao@1951
    54
  ///and only the 
klao@1951
    55
  ///differences should be implemented.
klao@1951
    56
  ///
klao@1951
    57
  ///author Marton Makai 
marci@970
    58
  template<typename _Graph>
alpar@1401
    59
  class GraphAdaptorBase {
marci@970
    60
  public:
marci@970
    61
    typedef _Graph Graph;
deba@2031
    62
    typedef GraphAdaptorBase Adaptor;
marci@970
    63
    typedef Graph ParentGraph;
marci@970
    64
marci@556
    65
  protected:
marci@556
    66
    Graph* graph;
alpar@1401
    67
    GraphAdaptorBase() : graph(0) { }
marci@556
    68
    void setGraph(Graph& _graph) { graph=&_graph; }
marci@556
    69
marci@556
    70
  public:
alpar@1401
    71
    GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
deba@2034
    72
alpar@774
    73
    typedef typename Graph::Node Node;
alpar@774
    74
    typedef typename Graph::Edge Edge;
marci@556
    75
   
marci@970
    76
    void first(Node& i) const { graph->first(i); }
marci@970
    77
    void first(Edge& i) const { graph->first(i); }
marci@970
    78
    void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
marci@970
    79
    void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
marci@556
    80
marci@970
    81
    void next(Node& i) const { graph->next(i); }
marci@970
    82
    void next(Edge& i) const { graph->next(i); }
marci@970
    83
    void nextIn(Edge& i) const { graph->nextIn(i); }
marci@970
    84
    void nextOut(Edge& i) const { graph->nextOut(i); }
marci@970
    85
alpar@986
    86
    Node source(const Edge& e) const { return graph->source(e); }
alpar@986
    87
    Node target(const Edge& e) const { return graph->target(e); }
marci@556
    88
deba@1697
    89
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
marci@556
    90
    int nodeNum() const { return graph->nodeNum(); }
deba@1697
    91
    
deba@1697
    92
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
marci@556
    93
    int edgeNum() const { return graph->edgeNum(); }
deba@1697
    94
deba@1697
    95
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@1697
    96
    Edge findEdge(const Node& source, const Node& target, 
deba@1697
    97
		  const Edge& prev = INVALID) {
deba@1697
    98
      return graph->findEdge(source, target, prev);
deba@1697
    99
    }
marci@556
   100
  
deba@1697
   101
    Node addNode() const { 
deba@1697
   102
      return Node(graph->addNode()); 
deba@1697
   103
    }
deba@1697
   104
alpar@986
   105
    Edge addEdge(const Node& source, const Node& target) const { 
deba@1697
   106
      return Edge(graph->addEdge(source, target)); 
deba@1697
   107
    }
marci@556
   108
marci@556
   109
    void erase(const Node& i) const { graph->erase(i); }
marci@556
   110
    void erase(const Edge& i) const { graph->erase(i); }
marci@556
   111
  
marci@556
   112
    void clear() const { graph->clear(); }
marci@556
   113
    
marci@739
   114
    int id(const Node& v) const { return graph->id(v); }
marci@739
   115
    int id(const Edge& e) const { return graph->id(e); }
deba@1991
   116
deba@2031
   117
    Node fromNodeId(int id) const {
deba@2031
   118
      return graph->fromNodeId(id);
deba@2031
   119
    }
deba@2031
   120
deba@2031
   121
    Edge fromEdgeId(int id) const {
deba@2031
   122
      return graph->fromEdgeId(id);
deba@2031
   123
    }
deba@2031
   124
deba@1991
   125
    int maxNodeId() const {
deba@1991
   126
      return graph->maxNodeId();
deba@1991
   127
    }
deba@1991
   128
deba@1991
   129
    int maxEdgeId() const {
deba@1991
   130
      return graph->maxEdgeId();
deba@1991
   131
    }
deba@1991
   132
deba@1991
   133
    typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
deba@1991
   134
deba@1991
   135
    NodeNotifier& getNotifier(Node) const {
deba@1991
   136
      return graph->getNotifier(Node());
deba@1991
   137
    } 
deba@1991
   138
deba@1991
   139
    typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
deba@1991
   140
deba@1991
   141
    EdgeNotifier& getNotifier(Edge) const {
deba@1991
   142
      return graph->getNotifier(Edge());
deba@1991
   143
    } 
marci@650
   144
    
marci@970
   145
    template <typename _Value>
deba@2031
   146
    class NodeMap : public Graph::template NodeMap<_Value> {
marci@970
   147
    public:
deba@2031
   148
deba@2031
   149
      typedef typename Graph::template NodeMap<_Value> Parent;
deba@2031
   150
deba@2031
   151
      explicit NodeMap(const Adaptor& ga) 
deba@2031
   152
	: Parent(*ga.graph) {}
deba@2031
   153
deba@2031
   154
      NodeMap(const Adaptor& ga, const _Value& value)
deba@1991
   155
	: Parent(*ga.graph, value) { }
deba@2031
   156
deba@2031
   157
      NodeMap& operator=(const NodeMap& cmap) {
deba@2031
   158
        return operator=<NodeMap>(cmap);
deba@2031
   159
      }
deba@2031
   160
deba@2031
   161
      template <typename CMap>
deba@2031
   162
      NodeMap& operator=(const CMap& cmap) {
deba@2031
   163
        Parent::operator=(cmap);
deba@2031
   164
        return *this;
deba@2031
   165
      }
deba@2031
   166
      
marci@970
   167
    };
marci@556
   168
marci@970
   169
    template <typename _Value>
deba@2031
   170
    class EdgeMap : public Graph::template EdgeMap<_Value> {
marci@970
   171
    public:
deba@2031
   172
      
deba@2031
   173
      typedef typename Graph::template EdgeMap<_Value> Parent;
deba@2031
   174
      
deba@2031
   175
      explicit EdgeMap(const Adaptor& ga) 
deba@2031
   176
	: Parent(*ga.graph) {}
deba@2031
   177
deba@2031
   178
      EdgeMap(const Adaptor& ga, const _Value& value)
deba@2031
   179
	: Parent(*ga.graph, value) {}
deba@2031
   180
deba@2031
   181
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@2031
   182
        return operator=<EdgeMap>(cmap);
deba@2031
   183
      }
deba@2031
   184
deba@2031
   185
      template <typename CMap>
deba@2031
   186
      EdgeMap& operator=(const CMap& cmap) {
deba@2031
   187
        Parent::operator=(cmap);
deba@2031
   188
        return *this;
deba@2031
   189
      }
deba@2031
   190
marci@970
   191
    };
deba@877
   192
marci@556
   193
  };
marci@556
   194
marci@970
   195
  template <typename _Graph>
alpar@1401
   196
  class GraphAdaptor :
deba@1979
   197
    public GraphAdaptorExtender<GraphAdaptorBase<_Graph> > { 
marci@970
   198
  public:
marci@970
   199
    typedef _Graph Graph;
deba@1979
   200
    typedef GraphAdaptorExtender<GraphAdaptorBase<_Graph> > Parent;
marci@970
   201
  protected:
alpar@1401
   202
    GraphAdaptor() : Parent() { }
marci@569
   203
marci@970
   204
  public:
deba@1755
   205
    explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
marci@970
   206
  };
marci@569
   207
deba@1991
   208
  /// \brief Just gives back a graph adaptor
deba@1991
   209
  ///
deba@1991
   210
  /// Just gives back a graph adaptor which 
deba@1991
   211
  /// should be provide original graph
deba@1991
   212
  template<typename Graph>
deba@1991
   213
  GraphAdaptor<const Graph>
deba@1991
   214
  graphAdaptor(const Graph& graph) {
deba@1991
   215
    return GraphAdaptor<const Graph>(graph);
deba@1991
   216
  }
deba@1991
   217
deba@1991
   218
marci@997
   219
  template <typename _Graph>
alpar@1401
   220
  class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@997
   221
  public:
marci@997
   222
    typedef _Graph Graph;
alpar@1401
   223
    typedef GraphAdaptorBase<_Graph> Parent;
marci@997
   224
  protected:
alpar@1401
   225
    RevGraphAdaptorBase() : Parent() { }
marci@997
   226
  public:
marci@997
   227
    typedef typename Parent::Node Node;
marci@997
   228
    typedef typename Parent::Edge Edge;
marci@997
   229
marci@997
   230
    void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
marci@997
   231
    void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
marci@997
   232
marci@997
   233
    void nextIn(Edge& i) const { Parent::nextOut(i); }
marci@997
   234
    void nextOut(Edge& i) const { Parent::nextIn(i); }
marci@997
   235
marci@997
   236
    Node source(const Edge& e) const { return Parent::target(e); }
marci@997
   237
    Node target(const Edge& e) const { return Parent::source(e); }
deba@1991
   238
deba@1991
   239
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@1991
   240
    Edge findEdge(const Node& source, const Node& target, 
deba@1991
   241
		  const Edge& prev = INVALID) {
deba@1991
   242
      return Parent::findEdge(target, source, prev);
deba@1991
   243
    }
deba@1991
   244
marci@997
   245
  };
marci@997
   246
    
marci@997
   247
alpar@1949
   248
  ///\brief A graph adaptor which reverses the orientation of the edges.
alpar@1949
   249
  ///\ingroup graph_adaptors
alpar@1949
   250
  ///
alpar@1949
   251
  /// If \c g is defined as
alpar@1946
   252
  ///\code
marci@923
   253
  /// ListGraph g;
alpar@1946
   254
  ///\endcode
alpar@1949
   255
  /// then
alpar@1946
   256
  ///\code
deba@1991
   257
  /// RevGraphAdaptor<ListGraph> ga(g);
alpar@1946
   258
  ///\endcode
alpar@1949
   259
  ///implements the graph obtained from \c g by 
alpar@1949
   260
  /// reversing the orientation of its edges.
alpar@1946
   261
marci@997
   262
  template<typename _Graph>
alpar@1401
   263
  class RevGraphAdaptor : 
deba@1979
   264
    public GraphAdaptorExtender<RevGraphAdaptorBase<_Graph> > {
marci@650
   265
  public:
marci@997
   266
    typedef _Graph Graph;
deba@1979
   267
    typedef GraphAdaptorExtender<
alpar@1401
   268
      RevGraphAdaptorBase<_Graph> > Parent;
marci@556
   269
  protected:
alpar@1401
   270
    RevGraphAdaptor() { }
marci@556
   271
  public:
deba@1755
   272
    explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
marci@997
   273
  };
marci@556
   274
deba@1991
   275
  /// \brief Just gives back a reverse graph adaptor
deba@1991
   276
  ///
deba@1991
   277
  /// Just gives back a reverse graph adaptor
deba@1991
   278
  template<typename Graph>
deba@1991
   279
  RevGraphAdaptor<const Graph>
deba@1991
   280
  revGraphAdaptor(const Graph& graph) {
deba@1991
   281
    return RevGraphAdaptor<const Graph>(graph);
deba@1991
   282
  }
deba@1991
   283
deba@1681
   284
  template <typename _Graph, typename NodeFilterMap, 
deba@1681
   285
	    typename EdgeFilterMap, bool checked = true>
alpar@1401
   286
  class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@992
   287
  public:
marci@992
   288
    typedef _Graph Graph;
deba@2031
   289
    typedef SubGraphAdaptorBase Adaptor;
alpar@1401
   290
    typedef GraphAdaptorBase<_Graph> Parent;
marci@992
   291
  protected:
marci@992
   292
    NodeFilterMap* node_filter_map;
marci@992
   293
    EdgeFilterMap* edge_filter_map;
alpar@1401
   294
    SubGraphAdaptorBase() : Parent(), 
marci@992
   295
			    node_filter_map(0), edge_filter_map(0) { }
marci@775
   296
marci@992
   297
    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
marci@992
   298
      node_filter_map=&_node_filter_map;
marci@992
   299
    }
marci@992
   300
    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
marci@992
   301
      edge_filter_map=&_edge_filter_map;
marci@992
   302
    }
marci@992
   303
marci@992
   304
  public:
marci@992
   305
marci@992
   306
    typedef typename Parent::Node Node;
marci@992
   307
    typedef typename Parent::Edge Edge;
marci@992
   308
marci@992
   309
    void first(Node& i) const { 
marci@992
   310
      Parent::first(i); 
marci@992
   311
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
marci@992
   312
    }
deba@1681
   313
deba@1681
   314
    void first(Edge& i) const { 
deba@1681
   315
      Parent::first(i); 
deba@1681
   316
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   317
	     || !(*node_filter_map)[Parent::source(i)]
deba@1681
   318
	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
deba@1681
   319
    }
deba@1681
   320
deba@1681
   321
    void firstIn(Edge& i, const Node& n) const { 
deba@1681
   322
      Parent::firstIn(i, n); 
deba@1681
   323
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   324
	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
deba@1681
   325
    }
deba@1681
   326
deba@1681
   327
    void firstOut(Edge& i, const Node& n) const { 
deba@1681
   328
      Parent::firstOut(i, n); 
deba@1681
   329
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   330
	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
deba@1681
   331
    }
deba@1681
   332
deba@1681
   333
    void next(Node& i) const { 
deba@1681
   334
      Parent::next(i); 
deba@1681
   335
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
deba@1681
   336
    }
deba@1681
   337
deba@1681
   338
    void next(Edge& i) const { 
deba@1681
   339
      Parent::next(i); 
deba@1681
   340
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   341
	     || !(*node_filter_map)[Parent::source(i)]
deba@1681
   342
	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
deba@1681
   343
    }
deba@1681
   344
deba@1681
   345
    void nextIn(Edge& i) const { 
deba@1681
   346
      Parent::nextIn(i); 
deba@1681
   347
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   348
	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
deba@1681
   349
    }
deba@1681
   350
deba@1681
   351
    void nextOut(Edge& i) const { 
deba@1681
   352
      Parent::nextOut(i); 
deba@1681
   353
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   354
	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
deba@1681
   355
    }
deba@1681
   356
klao@1951
   357
    ///\e
alpar@1949
   358
klao@1951
   359
    /// This function hides \c n in the graph, i.e. the iteration 
klao@1951
   360
    /// jumps over it. This is done by simply setting the value of \c n  
klao@1951
   361
    /// to be false in the corresponding node-map.
deba@1681
   362
    void hide(const Node& n) const { node_filter_map->set(n, false); }
deba@1681
   363
klao@1951
   364
    ///\e
alpar@1949
   365
klao@1951
   366
    /// This function hides \c e in the graph, i.e. the iteration 
klao@1951
   367
    /// jumps over it. This is done by simply setting the value of \c e  
klao@1951
   368
    /// to be false in the corresponding edge-map.
deba@1681
   369
    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
deba@1681
   370
klao@1951
   371
    ///\e
alpar@1949
   372
klao@1951
   373
    /// The value of \c n is set to be true in the node-map which stores 
klao@1951
   374
    /// hide information. If \c n was hidden previuosly, then it is shown 
klao@1951
   375
    /// again
deba@1681
   376
     void unHide(const Node& n) const { node_filter_map->set(n, true); }
deba@1681
   377
klao@1951
   378
    ///\e
alpar@1949
   379
klao@1951
   380
    /// The value of \c e is set to be true in the edge-map which stores 
klao@1951
   381
    /// hide information. If \c e was hidden previuosly, then it is shown 
klao@1951
   382
    /// again
deba@1681
   383
    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
deba@1681
   384
klao@1951
   385
    /// Returns true if \c n is hidden.
alpar@1949
   386
    
klao@1951
   387
    ///\e
klao@1951
   388
    ///
deba@1681
   389
    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
deba@1681
   390
klao@1951
   391
    /// Returns true if \c n is hidden.
alpar@1949
   392
    
klao@1951
   393
    ///\e
klao@1951
   394
    ///
deba@1681
   395
    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
deba@1681
   396
deba@1697
   397
    typedef False NodeNumTag;
deba@1697
   398
    typedef False EdgeNumTag;
deba@1991
   399
deba@1991
   400
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@1991
   401
    Edge findEdge(const Node& source, const Node& target, 
deba@1991
   402
		  const Edge& prev = INVALID) {
deba@1991
   403
      if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
deba@1991
   404
        return INVALID;
deba@1991
   405
      }
deba@1991
   406
      Edge edge = Parent::findEdge(source, target, prev);
deba@1991
   407
      while (edge != INVALID && !(*edge_filter_map)[edge]) {
deba@1991
   408
        edge = Parent::findEdge(source, target, edge);
deba@1991
   409
      }
deba@1991
   410
      return edge;
deba@1991
   411
    }
deba@2031
   412
deba@2031
   413
    template <typename _Value>
deba@2031
   414
    class NodeMap 
deba@2031
   415
      : public SubMapExtender<Adaptor, 
deba@2031
   416
                              typename Parent::template NodeMap<_Value> > 
deba@2031
   417
    {
deba@2031
   418
    public:
deba@2031
   419
      typedef Adaptor Graph;
deba@2031
   420
      typedef SubMapExtender<Adaptor, typename Parent::
deba@2031
   421
                             template NodeMap<_Value> > Parent;
deba@2031
   422
    
deba@2031
   423
      NodeMap(const Graph& graph) 
deba@2031
   424
	: Parent(graph) {}
deba@2031
   425
      NodeMap(const Graph& graph, const _Value& value) 
deba@2031
   426
	: Parent(graph, value) {}
deba@2031
   427
    
deba@2031
   428
      NodeMap& operator=(const NodeMap& cmap) {
deba@2031
   429
	return operator=<NodeMap>(cmap);
deba@2031
   430
      }
deba@2031
   431
    
deba@2031
   432
      template <typename CMap>
deba@2031
   433
      NodeMap& operator=(const CMap& cmap) {
deba@2031
   434
        Parent::operator=(cmap);
deba@2031
   435
	return *this;
deba@2031
   436
      }
deba@2031
   437
    };
deba@2031
   438
deba@2031
   439
    template <typename _Value>
deba@2031
   440
    class EdgeMap 
deba@2031
   441
      : public SubMapExtender<Adaptor, 
deba@2031
   442
                              typename Parent::template EdgeMap<_Value> > 
deba@2031
   443
    {
deba@2031
   444
    public:
deba@2031
   445
      typedef Adaptor Graph;
deba@2031
   446
      typedef SubMapExtender<Adaptor, typename Parent::
deba@2031
   447
                             template EdgeMap<_Value> > Parent;
deba@2031
   448
    
deba@2031
   449
      EdgeMap(const Graph& graph) 
deba@2031
   450
	: Parent(graph) {}
deba@2031
   451
      EdgeMap(const Graph& graph, const _Value& value) 
deba@2031
   452
	: Parent(graph, value) {}
deba@2031
   453
    
deba@2031
   454
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@2031
   455
	return operator=<EdgeMap>(cmap);
deba@2031
   456
      }
deba@2031
   457
    
deba@2031
   458
      template <typename CMap>
deba@2031
   459
      EdgeMap& operator=(const CMap& cmap) {
deba@2031
   460
        Parent::operator=(cmap);
deba@2031
   461
	return *this;
deba@2031
   462
      }
deba@2031
   463
    };
deba@2031
   464
deba@1681
   465
  };
deba@1681
   466
deba@1681
   467
  template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
deba@1681
   468
  class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
deba@1681
   469
    : public GraphAdaptorBase<_Graph> {
deba@1681
   470
  public:
deba@1681
   471
    typedef _Graph Graph;
deba@2031
   472
    typedef SubGraphAdaptorBase Adaptor;
deba@1681
   473
    typedef GraphAdaptorBase<_Graph> Parent;
deba@1681
   474
  protected:
deba@1681
   475
    NodeFilterMap* node_filter_map;
deba@1681
   476
    EdgeFilterMap* edge_filter_map;
deba@1681
   477
    SubGraphAdaptorBase() : Parent(), 
deba@1681
   478
			    node_filter_map(0), edge_filter_map(0) { }
deba@1681
   479
deba@1681
   480
    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
deba@1681
   481
      node_filter_map=&_node_filter_map;
deba@1681
   482
    }
deba@1681
   483
    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
deba@1681
   484
      edge_filter_map=&_edge_filter_map;
deba@1681
   485
    }
deba@1681
   486
deba@1681
   487
  public:
deba@1681
   488
deba@1681
   489
    typedef typename Parent::Node Node;
deba@1681
   490
    typedef typename Parent::Edge Edge;
deba@1681
   491
deba@1681
   492
    void first(Node& i) const { 
deba@1681
   493
      Parent::first(i); 
deba@1681
   494
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
deba@1681
   495
    }
deba@1681
   496
marci@992
   497
    void first(Edge& i) const { 
marci@992
   498
      Parent::first(i); 
marci@992
   499
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
marci@992
   500
    }
deba@1681
   501
marci@992
   502
    void firstIn(Edge& i, const Node& n) const { 
marci@992
   503
      Parent::firstIn(i, n); 
marci@992
   504
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
marci@992
   505
    }
deba@1681
   506
marci@992
   507
    void firstOut(Edge& i, const Node& n) const { 
marci@992
   508
      Parent::firstOut(i, n); 
marci@992
   509
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
marci@992
   510
    }
marci@992
   511
marci@992
   512
    void next(Node& i) const { 
marci@992
   513
      Parent::next(i); 
marci@992
   514
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
marci@992
   515
    }
marci@992
   516
    void next(Edge& i) const { 
marci@992
   517
      Parent::next(i); 
marci@992
   518
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
marci@992
   519
    }
marci@992
   520
    void nextIn(Edge& i) const { 
marci@992
   521
      Parent::nextIn(i); 
marci@992
   522
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
marci@992
   523
    }
deba@1681
   524
marci@992
   525
    void nextOut(Edge& i) const { 
marci@992
   526
      Parent::nextOut(i); 
marci@992
   527
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
marci@992
   528
    }
marci@992
   529
klao@1951
   530
    ///\e
alpar@1949
   531
klao@1951
   532
    /// This function hides \c n in the graph, i.e. the iteration 
klao@1951
   533
    /// jumps over it. This is done by simply setting the value of \c n  
klao@1951
   534
    /// to be false in the corresponding node-map.
marci@992
   535
    void hide(const Node& n) const { node_filter_map->set(n, false); }
marci@992
   536
klao@1951
   537
    ///\e
alpar@1949
   538
klao@1951
   539
    /// This function hides \c e in the graph, i.e. the iteration 
klao@1951
   540
    /// jumps over it. This is done by simply setting the value of \c e  
klao@1951
   541
    /// to be false in the corresponding edge-map.
marci@992
   542
    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
marci@992
   543
klao@1951
   544
    ///\e
alpar@1949
   545
klao@1951
   546
    /// The value of \c n is set to be true in the node-map which stores 
klao@1951
   547
    /// hide information. If \c n was hidden previuosly, then it is shown 
klao@1951
   548
    /// again
marci@992
   549
     void unHide(const Node& n) const { node_filter_map->set(n, true); }
marci@992
   550
klao@1951
   551
    ///\e
alpar@1949
   552
klao@1951
   553
    /// The value of \c e is set to be true in the edge-map which stores 
klao@1951
   554
    /// hide information. If \c e was hidden previuosly, then it is shown 
klao@1951
   555
    /// again
marci@992
   556
    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
marci@992
   557
klao@1951
   558
    /// Returns true if \c n is hidden.
alpar@1949
   559
    
klao@1951
   560
    ///\e
klao@1951
   561
    ///
marci@992
   562
    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
marci@992
   563
klao@1951
   564
    /// Returns true if \c n is hidden.
alpar@1949
   565
    
klao@1951
   566
    ///\e
klao@1951
   567
    ///
marci@992
   568
    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
marci@992
   569
deba@1697
   570
    typedef False NodeNumTag;
deba@1697
   571
    typedef False EdgeNumTag;
deba@1991
   572
deba@1991
   573
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@1991
   574
    Edge findEdge(const Node& source, const Node& target, 
deba@1991
   575
		  const Edge& prev = INVALID) {
deba@1991
   576
      if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
deba@1991
   577
        return INVALID;
deba@1991
   578
      }
deba@1991
   579
      Edge edge = Parent::findEdge(source, target, prev);
deba@1991
   580
      while (edge != INVALID && !(*edge_filter_map)[edge]) {
deba@1991
   581
        edge = Parent::findEdge(source, target, edge);
deba@1991
   582
      }
deba@1991
   583
      return edge;
deba@1991
   584
    }
deba@2031
   585
deba@2031
   586
    template <typename _Value>
deba@2031
   587
    class NodeMap 
deba@2031
   588
      : public SubMapExtender<Adaptor, 
deba@2031
   589
                              typename Parent::template NodeMap<_Value> > 
deba@2031
   590
    {
deba@2031
   591
    public:
deba@2031
   592
      typedef Adaptor Graph;
deba@2031
   593
      typedef SubMapExtender<Adaptor, typename Parent::
deba@2031
   594
                             template NodeMap<_Value> > Parent;
deba@2031
   595
    
deba@2031
   596
      NodeMap(const Graph& graph) 
deba@2031
   597
	: Parent(graph) {}
deba@2031
   598
      NodeMap(const Graph& graph, const _Value& value) 
deba@2031
   599
	: Parent(graph, value) {}
deba@2031
   600
    
deba@2031
   601
      NodeMap& operator=(const NodeMap& cmap) {
deba@2031
   602
	return operator=<NodeMap>(cmap);
deba@2031
   603
      }
deba@2031
   604
    
deba@2031
   605
      template <typename CMap>
deba@2031
   606
      NodeMap& operator=(const CMap& cmap) {
deba@2031
   607
        Parent::operator=(cmap);
deba@2031
   608
	return *this;
deba@2031
   609
      }
deba@2031
   610
    };
deba@2031
   611
deba@2031
   612
    template <typename _Value>
deba@2031
   613
    class EdgeMap 
deba@2031
   614
      : public SubMapExtender<Adaptor, 
deba@2031
   615
                              typename Parent::template EdgeMap<_Value> > 
deba@2031
   616
    {
deba@2031
   617
    public:
deba@2031
   618
      typedef Adaptor Graph;
deba@2031
   619
      typedef SubMapExtender<Adaptor, typename Parent::
deba@2031
   620
                             template EdgeMap<_Value> > Parent;
deba@2031
   621
    
deba@2031
   622
      EdgeMap(const Graph& graph) 
deba@2031
   623
	: Parent(graph) {}
deba@2031
   624
      EdgeMap(const Graph& graph, const _Value& value) 
deba@2031
   625
	: Parent(graph, value) {}
deba@2031
   626
    
deba@2031
   627
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@2031
   628
	return operator=<EdgeMap>(cmap);
deba@2031
   629
      }
deba@2031
   630
    
deba@2031
   631
      template <typename CMap>
deba@2031
   632
      EdgeMap& operator=(const CMap& cmap) {
deba@2031
   633
        Parent::operator=(cmap);
deba@2031
   634
	return *this;
deba@2031
   635
      }
deba@2031
   636
    };
deba@2031
   637
marci@992
   638
  };
marci@775
   639
klao@1951
   640
  /// \brief A graph adaptor for hiding nodes and edges from a graph.
klao@1951
   641
  /// \ingroup graph_adaptors
klao@1951
   642
  /// 
klao@1951
   643
  /// SubGraphAdaptor shows the graph with filtered node-set and 
klao@1951
   644
  /// edge-set. If the \c checked parameter is true then it filters the edgeset
klao@1951
   645
  /// to do not get invalid edges without source or target.
klao@1952
   646
  /// Let \f$ G=(V, A) \f$ be a directed graph
klao@1951
   647
  /// and suppose that the graph instance \c g of type ListGraph
klao@1952
   648
  /// implements \f$ G \f$.
klao@1952
   649
  /// Let moreover \f$ b_V \f$ and \f$ b_A \f$ be bool-valued functions resp.
klao@1951
   650
  /// on the node-set and edge-set.
klao@1951
   651
  /// SubGraphAdaptor<...>::NodeIt iterates 
klao@1952
   652
  /// on the node-set \f$ \{v\in V : b_V(v)=true\} \f$ and 
klao@1951
   653
  /// SubGraphAdaptor<...>::EdgeIt iterates 
klao@1952
   654
  /// on the edge-set \f$ \{e\in A : b_A(e)=true\} \f$. Similarly, 
klao@1951
   655
  /// SubGraphAdaptor<...>::OutEdgeIt and
klao@1951
   656
  /// SubGraphAdaptor<...>::InEdgeIt iterates 
klao@1951
   657
  /// only on edges leaving and entering a specific node which have true value.
klao@1951
   658
  /// 
klao@1951
   659
  /// If the \c checked template parameter is false then we have to note that 
klao@1951
   660
  /// the node-iterator cares only the filter on the node-set, and the 
klao@1951
   661
  /// edge-iterator cares only the filter on the edge-set.
klao@1951
   662
  /// This way the edge-map
klao@1951
   663
  /// should filter all edges which's source or target is filtered by the 
klao@1951
   664
  /// node-filter.
alpar@1957
   665
  ///\code
klao@1951
   666
  /// typedef ListGraph Graph;
klao@1951
   667
  /// Graph g;
klao@1951
   668
  /// typedef Graph::Node Node;
klao@1951
   669
  /// typedef Graph::Edge Edge;
klao@1951
   670
  /// Node u=g.addNode(); //node of id 0
klao@1951
   671
  /// Node v=g.addNode(); //node of id 1
klao@1951
   672
  /// Node e=g.addEdge(u, v); //edge of id 0
klao@1951
   673
  /// Node f=g.addEdge(v, u); //edge of id 1
klao@1951
   674
  /// Graph::NodeMap<bool> nm(g, true);
klao@1951
   675
  /// nm.set(u, false);
klao@1951
   676
  /// Graph::EdgeMap<bool> em(g, true);
klao@1951
   677
  /// em.set(e, false);
deba@1991
   678
  /// typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGA;
deba@1991
   679
  /// SubGA ga(g, nm, em);
deba@1991
   680
  /// for (SubGA::NodeIt n(ga); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
klao@1951
   681
  /// std::cout << ":-)" << std::endl;
deba@1991
   682
  /// for (SubGA::EdgeIt e(ga); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
alpar@1957
   683
  ///\endcode
klao@1951
   684
  /// The output of the above code is the following.
alpar@1957
   685
  ///\code
klao@1951
   686
  /// 1
klao@1951
   687
  /// :-)
klao@1951
   688
  /// 1
alpar@1957
   689
  ///\endcode
deba@1991
   690
  /// Note that \c n is of type \c SubGA::NodeIt, but it can be converted to
klao@1951
   691
  /// \c Graph::Node that is why \c g.id(n) can be applied.
klao@1951
   692
  /// 
klao@1951
   693
  /// For other examples see also the documentation of NodeSubGraphAdaptor and 
klao@1951
   694
  /// EdgeSubGraphAdaptor.
klao@1951
   695
  /// 
klao@1951
   696
  /// \author Marton Makai
marci@1242
   697
marci@992
   698
  template<typename _Graph, typename NodeFilterMap, 
deba@1681
   699
	   typename EdgeFilterMap, bool checked = true>
alpar@1401
   700
  class SubGraphAdaptor : 
deba@1979
   701
    public GraphAdaptorExtender<
deba@1681
   702
    SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
marci@650
   703
  public:
marci@992
   704
    typedef _Graph Graph;
deba@2031
   705
    typedef GraphAdaptorExtender< SubGraphAdaptorBase<_Graph, NodeFilterMap, 
deba@2031
   706
                                                      EdgeFilterMap, checked> >
deba@2031
   707
    Parent;
deba@2031
   708
marci@556
   709
  protected:
alpar@1401
   710
    SubGraphAdaptor() { }
marci@992
   711
  public:
deba@2031
   712
alpar@1401
   713
    SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
marci@992
   714
		    EdgeFilterMap& _edge_filter_map) { 
marci@992
   715
      setGraph(_graph);
marci@992
   716
      setNodeFilterMap(_node_filter_map);
marci@992
   717
      setEdgeFilterMap(_edge_filter_map);
marci@992
   718
    }
deba@2031
   719
marci@992
   720
  };
marci@556
   721
deba@1991
   722
  /// \brief Just gives back a sub graph adaptor
deba@1991
   723
  ///
deba@1991
   724
  /// Just gives back a sub graph adaptor
deba@1991
   725
  template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
deba@1991
   726
  SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
deba@1991
   727
  subGraphAdaptor(const Graph& graph, 
deba@1991
   728
                   NodeFilterMap& nfm, EdgeFilterMap& efm) {
deba@1991
   729
    return SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
deba@1991
   730
      (graph, nfm, efm);
deba@1991
   731
  }
deba@1991
   732
deba@1991
   733
  template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
deba@1991
   734
  SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
deba@1991
   735
  subGraphAdaptor(const Graph& graph, 
deba@1991
   736
                   NodeFilterMap& nfm, EdgeFilterMap& efm) {
deba@1991
   737
    return SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
deba@1991
   738
      (graph, nfm, efm);
deba@1991
   739
  }
deba@1991
   740
deba@1991
   741
  template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
deba@1991
   742
  SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
deba@1991
   743
  subGraphAdaptor(const Graph& graph, 
deba@1991
   744
                   NodeFilterMap& nfm, EdgeFilterMap& efm) {
deba@1991
   745
    return SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
deba@1991
   746
      (graph, nfm, efm);
deba@1991
   747
  }
deba@1991
   748
deba@1991
   749
  template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
deba@1991
   750
  SubGraphAdaptor<const Graph, const NodeFilterMap, const EdgeFilterMap>
deba@1991
   751
  subGraphAdaptor(const Graph& graph, 
deba@1991
   752
                   NodeFilterMap& nfm, EdgeFilterMap& efm) {
deba@1991
   753
    return SubGraphAdaptor<const Graph, const NodeFilterMap, 
deba@1991
   754
      const EdgeFilterMap>(graph, nfm, efm);
deba@1991
   755
  }
deba@1991
   756
marci@556
   757
marci@569
   758
klao@1951
   759
  ///\brief An adaptor for hiding nodes from a graph.
klao@1951
   760
  ///\ingroup graph_adaptors
klao@1951
   761
  ///
klao@1951
   762
  ///An adaptor for hiding nodes from a graph.
klao@1951
   763
  ///This adaptor specializes SubGraphAdaptor in the way that only
klao@1951
   764
  ///the node-set 
klao@1951
   765
  ///can be filtered. In usual case the checked parameter is true, we get the
klao@1951
   766
  ///induced subgraph. But if the checked parameter is false then we can only
klao@1951
   767
  ///filter only isolated nodes.
klao@1951
   768
  ///\author Marton Makai
deba@1681
   769
  template<typename Graph, typename NodeFilterMap, bool checked = true>
alpar@1401
   770
  class NodeSubGraphAdaptor : 
alpar@1401
   771
    public SubGraphAdaptor<Graph, NodeFilterMap, 
deba@1681
   772
			   ConstMap<typename Graph::Edge,bool>, checked> {
marci@933
   773
  public:
deba@2031
   774
alpar@1401
   775
    typedef SubGraphAdaptor<Graph, NodeFilterMap, 
deba@2031
   776
			    ConstMap<typename Graph::Edge,bool>, checked > 
deba@2031
   777
    Parent;
deba@2031
   778
marci@933
   779
  protected:
marci@933
   780
    ConstMap<typename Graph::Edge, bool> const_true_map;
deba@1991
   781
deba@1991
   782
    NodeSubGraphAdaptor() : const_true_map(true) {
deba@1991
   783
      Parent::setEdgeFilterMap(const_true_map);
deba@1991
   784
    }
deba@1991
   785
marci@933
   786
  public:
deba@2031
   787
alpar@1401
   788
    NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
marci@933
   789
      Parent(), const_true_map(true) { 
marci@933
   790
      Parent::setGraph(_graph);
marci@933
   791
      Parent::setNodeFilterMap(_node_filter_map);
marci@933
   792
      Parent::setEdgeFilterMap(const_true_map);
marci@933
   793
    }
deba@2031
   794
marci@933
   795
  };
marci@933
   796
marci@933
   797
deba@1991
   798
  /// \brief Just gives back a node sub graph adaptor
deba@1991
   799
  ///
deba@1991
   800
  /// Just gives back a node sub graph adaptor
deba@1991
   801
  template<typename Graph, typename NodeFilterMap>
deba@1991
   802
  NodeSubGraphAdaptor<const Graph, NodeFilterMap>
deba@1991
   803
  nodeSubGraphAdaptor(const Graph& graph, NodeFilterMap& nfm) {
deba@1991
   804
    return NodeSubGraphAdaptor<const Graph, NodeFilterMap>(graph, nfm);
deba@1991
   805
  }
deba@1991
   806
deba@1991
   807
  template<typename Graph, typename NodeFilterMap>
deba@1991
   808
  NodeSubGraphAdaptor<const Graph, const NodeFilterMap>
deba@1991
   809
  nodeSubGraphAdaptor(const Graph& graph, const NodeFilterMap& nfm) {
deba@1991
   810
    return NodeSubGraphAdaptor<const Graph, const NodeFilterMap>(graph, nfm);
deba@1991
   811
  }
deba@1991
   812
klao@1951
   813
  ///\brief An adaptor for hiding edges from a graph.
klao@1951
   814
  ///
klao@1951
   815
  ///An adaptor for hiding edges from a graph.
klao@1951
   816
  ///This adaptor specializes SubGraphAdaptor in the way that
klao@1951
   817
  ///only the edge-set 
klao@1951
   818
  ///can be filtered. The usefulness of this adaptor is demonstrated in the 
klao@1951
   819
  ///problem of searching a maximum number of edge-disjoint shortest paths 
klao@1951
   820
  ///between 
klao@1951
   821
  ///two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
klao@1951
   822
  ///non-negative edge-lengths. Note that 
klao@1951
   823
  ///the comprehension of the presented solution 
klao@1951
   824
  ///need's some elementary knowledge from combinatorial optimization. 
klao@1951
   825
  ///
klao@1951
   826
  ///If a single shortest path is to be 
klao@1951
   827
  ///searched between \c s and \c t, then this can be done easily by 
klao@1951
   828
  ///applying the Dijkstra algorithm. What happens, if a maximum number of 
klao@1951
   829
  ///edge-disjoint shortest paths is to be computed. It can be proved that an 
klao@1951
   830
  ///edge can be in a shortest path if and only
klao@1951
   831
  ///if it is tight with respect to 
klao@1951
   832
  ///the potential function computed by Dijkstra.
klao@1951
   833
  ///Moreover, any path containing 
klao@1951
   834
  ///only such edges is a shortest one.
klao@1951
   835
  ///Thus we have to compute a maximum number 
klao@1951
   836
  ///of edge-disjoint paths between \c s and \c t in
klao@1951
   837
  ///the graph which has edge-set 
klao@1951
   838
  ///all the tight edges. The computation will be demonstrated
klao@1951
   839
  ///on the following 
klao@1951
   840
  ///graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
klao@1951
   841
  ///The full source code is available in \ref sub_graph_adaptor_demo.cc. 
klao@1951
   842
  ///If you are interested in more demo programs, you can use 
klao@1951
   843
  ///\ref dim_to_dot.cc to generate .dot files from dimacs files. 
klao@1951
   844
  ///The .dot file of the following figure was generated by  
klao@1951
   845
  ///the demo program \ref dim_to_dot.cc.
klao@1951
   846
  ///
klao@1951
   847
  ///\dot
klao@1951
   848
  ///digraph lemon_dot_example {
klao@1951
   849
  ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
klao@1951
   850
  ///n0 [ label="0 (s)" ];
klao@1951
   851
  ///n1 [ label="1" ];
klao@1951
   852
  ///n2 [ label="2" ];
klao@1951
   853
  ///n3 [ label="3" ];
klao@1951
   854
  ///n4 [ label="4" ];
klao@1951
   855
  ///n5 [ label="5" ];
klao@1951
   856
  ///n6 [ label="6 (t)" ];
klao@1951
   857
  ///edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
klao@1951
   858
  ///n5 ->  n6 [ label="9, length:4" ];
klao@1951
   859
  ///n4 ->  n6 [ label="8, length:2" ];
klao@1951
   860
  ///n3 ->  n5 [ label="7, length:1" ];
klao@1951
   861
  ///n2 ->  n5 [ label="6, length:3" ];
klao@1951
   862
  ///n2 ->  n6 [ label="5, length:5" ];
klao@1951
   863
  ///n2 ->  n4 [ label="4, length:2" ];
klao@1951
   864
  ///n1 ->  n4 [ label="3, length:3" ];
klao@1951
   865
  ///n0 ->  n3 [ label="2, length:1" ];
klao@1951
   866
  ///n0 ->  n2 [ label="1, length:2" ];
klao@1951
   867
  ///n0 ->  n1 [ label="0, length:3" ];
klao@1951
   868
  ///}
klao@1951
   869
  ///\enddot
klao@1951
   870
  ///
klao@1951
   871
  ///\code
klao@1951
   872
  ///Graph g;
klao@1951
   873
  ///Node s, t;
klao@1951
   874
  ///LengthMap length(g);
klao@1951
   875
  ///
klao@1951
   876
  ///readDimacs(std::cin, g, length, s, t);
klao@1951
   877
  ///
klao@1951
   878
  ///cout << "edges with lengths (of form id, source--length->target): " << endl;
klao@1951
   879
  ///for(EdgeIt e(g); e!=INVALID; ++e) 
klao@1951
   880
  ///  cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
klao@1951
   881
  ///       << length[e] << "->" << g.id(g.target(e)) << endl;
klao@1951
   882
  ///
klao@1951
   883
  ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
klao@1951
   884
  ///\endcode
klao@1951
   885
  ///Next, the potential function is computed with Dijkstra.
klao@1951
   886
  ///\code
klao@1951
   887
  ///typedef Dijkstra<Graph, LengthMap> Dijkstra;
klao@1951
   888
  ///Dijkstra dijkstra(g, length);
klao@1951
   889
  ///dijkstra.run(s);
klao@1951
   890
  ///\endcode
klao@1951
   891
  ///Next, we consrtruct a map which filters the edge-set to the tight edges.
klao@1951
   892
  ///\code
klao@1951
   893
  ///typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
klao@1951
   894
  ///  TightEdgeFilter;
klao@1951
   895
  ///TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
klao@1951
   896
  ///
deba@1991
   897
  ///typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGA;
deba@1991
   898
  ///SubGA ga(g, tight_edge_filter);
klao@1951
   899
  ///\endcode
klao@1951
   900
  ///Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
klao@1951
   901
  ///with a max flow algorithm Preflow.
klao@1951
   902
  ///\code
klao@1951
   903
  ///ConstMap<Edge, int> const_1_map(1);
klao@1951
   904
  ///Graph::EdgeMap<int> flow(g, 0);
klao@1951
   905
  ///
deba@1991
   906
  ///Preflow<SubGA, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
deba@1991
   907
  ///  preflow(ga, s, t, const_1_map, flow);
klao@1951
   908
  ///preflow.run();
klao@1951
   909
  ///\endcode
klao@1951
   910
  ///Last, the output is:
klao@1951
   911
  ///\code  
klao@1951
   912
  ///cout << "maximum number of edge-disjoint shortest path: " 
klao@1951
   913
  ///     << preflow.flowValue() << endl;
klao@1951
   914
  ///cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
klao@1951
   915
  ///     << endl;
klao@1951
   916
  ///for(EdgeIt e(g); e!=INVALID; ++e) 
klao@1951
   917
  ///  if (flow[e])
klao@1951
   918
  ///    cout << " " << g.id(g.source(e)) << "--"
klao@1951
   919
  ///         << length[e] << "->" << g.id(g.target(e)) << endl;
klao@1951
   920
  ///\endcode
klao@1951
   921
  ///The program has the following (expected :-)) output:
klao@1951
   922
  ///\code
klao@1951
   923
  ///edges with lengths (of form id, source--length->target):
klao@1951
   924
  /// 9, 5--4->6
klao@1951
   925
  /// 8, 4--2->6
klao@1951
   926
  /// 7, 3--1->5
klao@1951
   927
  /// 6, 2--3->5
klao@1951
   928
  /// 5, 2--5->6
klao@1951
   929
  /// 4, 2--2->4
klao@1951
   930
  /// 3, 1--3->4
klao@1951
   931
  /// 2, 0--1->3
klao@1951
   932
  /// 1, 0--2->2
klao@1951
   933
  /// 0, 0--3->1
klao@1951
   934
  ///s: 0 t: 6
klao@1951
   935
  ///maximum number of edge-disjoint shortest path: 2
klao@1951
   936
  ///edges of the maximum number of edge-disjoint shortest s-t paths:
klao@1951
   937
  /// 9, 5--4->6
klao@1951
   938
  /// 8, 4--2->6
klao@1951
   939
  /// 7, 3--1->5
klao@1951
   940
  /// 4, 2--2->4
klao@1951
   941
  /// 2, 0--1->3
klao@1951
   942
  /// 1, 0--2->2
klao@1951
   943
  ///\endcode
klao@1951
   944
  ///
klao@1951
   945
  ///\author Marton Makai
marci@932
   946
  template<typename Graph, typename EdgeFilterMap>
alpar@1401
   947
  class EdgeSubGraphAdaptor : 
alpar@1401
   948
    public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
deba@1681
   949
			   EdgeFilterMap, false> {
marci@932
   950
  public:
alpar@1401
   951
    typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
deba@1685
   952
			    EdgeFilterMap, false> Parent;
marci@932
   953
  protected:
marci@932
   954
    ConstMap<typename Graph::Node, bool> const_true_map;
deba@1991
   955
deba@1991
   956
    EdgeSubGraphAdaptor() : const_true_map(true) {
deba@1991
   957
      Parent::setNodeFilterMap(const_true_map);
deba@1991
   958
    }
deba@1991
   959
marci@932
   960
  public:
deba@2031
   961
alpar@1401
   962
    EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
marci@932
   963
      Parent(), const_true_map(true) { 
marci@932
   964
      Parent::setGraph(_graph);
marci@932
   965
      Parent::setNodeFilterMap(const_true_map);
marci@932
   966
      Parent::setEdgeFilterMap(_edge_filter_map);
marci@932
   967
    }
deba@2031
   968
marci@932
   969
  };
marci@932
   970
deba@1991
   971
  /// \brief Just gives back an edge sub graph adaptor
deba@1991
   972
  ///
deba@1991
   973
  /// Just gives back an edge sub graph adaptor
deba@1991
   974
  template<typename Graph, typename EdgeFilterMap>
deba@1991
   975
  EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>
deba@1991
   976
  edgeSubGraphAdaptor(const Graph& graph, EdgeFilterMap& efm) {
deba@1991
   977
    return EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>(graph, efm);
deba@1991
   978
  }
deba@1991
   979
deba@1991
   980
  template<typename Graph, typename EdgeFilterMap>
deba@1991
   981
  EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>
deba@1991
   982
  edgeSubGraphAdaptor(const Graph& graph, const EdgeFilterMap& efm) {
deba@1991
   983
    return EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>(graph, efm);
deba@1991
   984
  }
deba@1991
   985
deba@1991
   986
  template <typename _Graph, typename Enable = void>
deba@1980
   987
  class UndirGraphAdaptorBase : 
deba@1979
   988
    public UGraphBaseExtender<GraphAdaptorBase<_Graph> > {
marci@1383
   989
  public:
marci@1383
   990
    typedef _Graph Graph;
deba@2031
   991
    typedef UndirGraphAdaptorBase Adaptor;
deba@1979
   992
    typedef UGraphBaseExtender<GraphAdaptorBase<_Graph> > Parent;
deba@1991
   993
marci@1383
   994
  protected:
deba@1991
   995
deba@1991
   996
    UndirGraphAdaptorBase() : Parent() {}
deba@1991
   997
marci@1383
   998
  public:
deba@1991
   999
klao@1909
  1000
    typedef typename Parent::UEdge UEdge;
marci@1383
  1001
    typedef typename Parent::Edge Edge;
deba@1991
  1002
deba@2031
  1003
  private:
marci@1383
  1004
    
deba@1991
  1005
    template <typename _Value>
deba@2031
  1006
    class EdgeMapBase {
deba@1991
  1007
    private:
deba@1991
  1008
      
deba@1991
  1009
      typedef typename _Graph::template EdgeMap<_Value> MapImpl;
deba@1991
  1010
      
marci@1383
  1011
    public:
deba@1991
  1012
deba@1991
  1013
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
deba@1991
  1014
deba@1991
  1015
      typedef _Value Value;
marci@1383
  1016
      typedef Edge Key;
marci@1383
  1017
      
deba@2031
  1018
      EdgeMapBase(const Adaptor& adaptor) :
deba@2031
  1019
	forward_map(*adaptor.graph), backward_map(*adaptor.graph) {}
marci@569
  1020
deba@2031
  1021
      EdgeMapBase(const Adaptor& adaptor, const Value& v) 
deba@2031
  1022
        : forward_map(*adaptor.graph, v), backward_map(*adaptor.graph, v) {}
marci@1383
  1023
      
deba@1991
  1024
      void set(const Edge& e, const Value& a) { 
deba@1991
  1025
	if (Parent::direction(e)) {
marci@1383
  1026
	  forward_map.set(e, a); 
deba@1991
  1027
        } else { 
deba@1991
  1028
	  backward_map.set(e, a);
deba@1991
  1029
        } 
marci@1383
  1030
      }
marci@556
  1031
deba@1991
  1032
      typename MapTraits<MapImpl>::ConstReturnValue operator[](Edge e) const { 
deba@1991
  1033
	if (Parent::direction(e)) {
marci@1383
  1034
	  return forward_map[e]; 
deba@1991
  1035
	} else { 
marci@1383
  1036
	  return backward_map[e]; 
deba@1991
  1037
        }
marci@556
  1038
      }
deba@1991
  1039
deba@1991
  1040
      typename MapTraits<MapImpl>::ReturnValue operator[](Edge e) { 
deba@1991
  1041
	if (Parent::direction(e)) {
deba@1991
  1042
	  return forward_map[e]; 
deba@1991
  1043
	} else { 
deba@1991
  1044
	  return backward_map[e]; 
deba@1991
  1045
        }
deba@1991
  1046
      }
deba@1991
  1047
deba@1991
  1048
    protected:
deba@1991
  1049
deba@1991
  1050
      MapImpl forward_map, backward_map; 
deba@1991
  1051
marci@556
  1052
    };
deba@2031
  1053
deba@2031
  1054
  public:
deba@2031
  1055
deba@2031
  1056
    template <typename _Value>
deba@2031
  1057
    class EdgeMap 
deba@2031
  1058
      : public SubMapExtender<Adaptor, EdgeMapBase<_Value> > 
deba@2031
  1059
    {
deba@2031
  1060
    public:
deba@2031
  1061
      typedef Adaptor Graph;
deba@2031
  1062
      typedef SubMapExtender<Adaptor, EdgeMapBase<_Value> > Parent;
deba@2031
  1063
    
deba@2031
  1064
      EdgeMap(const Graph& graph) 
deba@2031
  1065
	: Parent(graph) {}
deba@2031
  1066
      EdgeMap(const Graph& graph, const _Value& value) 
deba@2031
  1067
	: Parent(graph, value) {}
deba@2031
  1068
    
deba@2031
  1069
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@2031
  1070
	return operator=<EdgeMap>(cmap);
deba@2031
  1071
      }
deba@2031
  1072
    
deba@2031
  1073
      template <typename CMap>
deba@2031
  1074
      EdgeMap& operator=(const CMap& cmap) {
deba@2031
  1075
        Parent::operator=(cmap);
deba@2031
  1076
	return *this;
deba@2031
  1077
      }
deba@2031
  1078
    };
marci@1383
  1079
        
deba@1991
  1080
    template <typename _Value>
deba@2031
  1081
    class UEdgeMap : public Graph::template EdgeMap<_Value> {
marci@1383
  1082
    public:
deba@2031
  1083
      
deba@2031
  1084
      typedef typename Graph::template EdgeMap<_Value> Parent;
deba@2031
  1085
      
deba@2031
  1086
      explicit UEdgeMap(const Adaptor& ga) 
deba@2031
  1087
	: Parent(*ga.graph) {}
deba@1991
  1088
deba@2031
  1089
      UEdgeMap(const Adaptor& ga, const _Value& value)
deba@2031
  1090
	: Parent(*ga.graph, value) {}
deba@1991
  1091
deba@2031
  1092
      UEdgeMap& operator=(const UEdgeMap& cmap) {
deba@2031
  1093
        return operator=<UEdgeMap>(cmap);
deba@2031
  1094
      }
deba@1991
  1095
deba@2031
  1096
      template <typename CMap>
deba@2031
  1097
      UEdgeMap& operator=(const CMap& cmap) {
deba@2031
  1098
        Parent::operator=(cmap);
deba@2031
  1099
        return *this;
deba@2031
  1100
      }
deba@2031
  1101
deba@1991
  1102
    };
deba@1991
  1103
      
deba@1991
  1104
  };
marci@556
  1105
deba@1991
  1106
  template <typename _Graph>
deba@1991
  1107
  class UndirGraphAdaptorBase<
deba@1991
  1108
    _Graph, typename enable_if<
deba@1991
  1109
    typename _Graph::EdgeNotifier::Notifier>::type > 
deba@1991
  1110
      : public UGraphBaseExtender<GraphAdaptorBase<_Graph> > {
deba@1991
  1111
  public:
deba@1991
  1112
deba@1991
  1113
    typedef _Graph Graph;
deba@2031
  1114
    typedef UndirGraphAdaptorBase Adaptor;
deba@1991
  1115
    typedef UGraphBaseExtender<GraphAdaptorBase<_Graph> > Parent;
deba@1991
  1116
deba@1991
  1117
  protected:
deba@1991
  1118
deba@1991
  1119
    UndirGraphAdaptorBase() 
deba@1999
  1120
      : edge_notifier(*this), edge_notifier_proxy(edge_notifier) {}
deba@1991
  1121
deba@1991
  1122
    void setGraph(_Graph& graph) {
deba@1991
  1123
      Parent::setGraph(graph);
deba@1991
  1124
      edge_notifier_proxy.setUEdgeNotifier(graph.getNotifier(UEdge()));
deba@1991
  1125
    }
deba@1991
  1126
deba@1991
  1127
  public:
deba@1991
  1128
deba@1991
  1129
    ~UndirGraphAdaptorBase() {
deba@1999
  1130
      edge_notifier.clear();
deba@1999
  1131
    }
deba@1999
  1132
deba@1999
  1133
    int maxId(typename Parent::Edge) const {
deba@1999
  1134
      return Parent::maxEdgeId();
deba@1991
  1135
    }
deba@1991
  1136
deba@1991
  1137
deba@1991
  1138
    typedef typename Parent::UEdge UEdge;
deba@1991
  1139
    typedef typename Parent::Edge Edge;
deba@1991
  1140
deba@1991
  1141
    typedef typename Parent::EdgeNotifier UEdgeNotifier;
deba@1991
  1142
deba@1991
  1143
    using Parent::getNotifier;
deba@1991
  1144
deba@1999
  1145
    typedef AlterationNotifier<UndirGraphAdaptorBase, Edge> EdgeNotifier;
deba@1991
  1146
    EdgeNotifier& getNotifier(Edge) const { return edge_notifier; }
deba@1991
  1147
deba@1991
  1148
  protected:
deba@1991
  1149
deba@1991
  1150
    class NotifierProxy : public UEdgeNotifier::ObserverBase {
deba@1991
  1151
    public:
deba@1991
  1152
deba@1991
  1153
      typedef typename UEdgeNotifier::ObserverBase Parent;
deba@1991
  1154
      typedef UndirGraphAdaptorBase AdaptorBase;
marci@1383
  1155
      
deba@1991
  1156
      NotifierProxy(EdgeNotifier& _edge_notifier)
deba@1991
  1157
        : Parent(), edge_notifier(_edge_notifier) {
marci@1383
  1158
      }
marci@556
  1159
deba@1991
  1160
      virtual ~NotifierProxy() {
deba@1991
  1161
        if (Parent::attached()) {
deba@1991
  1162
          Parent::detach();
deba@1991
  1163
        }
marci@1383
  1164
      }
deba@1991
  1165
deba@1991
  1166
      void setUEdgeNotifier(UEdgeNotifier& _uedge_notifier) {
deba@1991
  1167
        Parent::attach(_uedge_notifier);
deba@1991
  1168
      }
deba@1991
  1169
deba@1991
  1170
      
deba@1991
  1171
    protected:
deba@1991
  1172
deba@1991
  1173
      virtual void add(const UEdge& uedge) {
deba@1991
  1174
        std::vector<Edge> edges;
deba@1991
  1175
        edges.push_back(AdaptorBase::Parent::direct(uedge, true));
deba@1991
  1176
        edges.push_back(AdaptorBase::Parent::direct(uedge, false));
deba@1991
  1177
        edge_notifier.add(edges);
deba@1991
  1178
      }
deba@1991
  1179
      virtual void add(const std::vector<UEdge>& uedges) {
deba@1991
  1180
        std::vector<Edge> edges;
deba@1991
  1181
        for (int i = 0; i < (int)uedges.size(); ++i) { 
deba@1991
  1182
          edges.push_back(AdaptorBase::Parent::direct(uedges[i], true));
deba@1991
  1183
          edges.push_back(AdaptorBase::Parent::direct(uedges[i], false));
deba@1991
  1184
        }
deba@1991
  1185
        edge_notifier.add(edges);
deba@1991
  1186
      }
deba@1991
  1187
      virtual void erase(const UEdge& uedge) {
deba@1991
  1188
        std::vector<Edge> edges;
deba@1991
  1189
        edges.push_back(AdaptorBase::Parent::direct(uedge, true));
deba@1991
  1190
        edges.push_back(AdaptorBase::Parent::direct(uedge, false));
deba@1991
  1191
        edge_notifier.erase(edges);
deba@1991
  1192
      }
deba@1991
  1193
      virtual void erase(const std::vector<UEdge>& uedges) {
deba@1991
  1194
        std::vector<Edge> edges;
deba@1991
  1195
        for (int i = 0; i < (int)uedges.size(); ++i) { 
deba@1991
  1196
          edges.push_back(AdaptorBase::Parent::direct(uedges[i], true));
deba@1991
  1197
          edges.push_back(AdaptorBase::Parent::direct(uedges[i], false));
deba@1991
  1198
        }
deba@1991
  1199
        edge_notifier.erase(edges);
deba@1991
  1200
      }
deba@1991
  1201
      virtual void build() {
deba@1991
  1202
        edge_notifier.build();
deba@1991
  1203
      }
deba@1991
  1204
      virtual void clear() {
deba@1991
  1205
        edge_notifier.clear();
deba@1991
  1206
      }
deba@1991
  1207
deba@1991
  1208
      EdgeNotifier& edge_notifier;
deba@1991
  1209
    };
deba@1991
  1210
deba@1991
  1211
deba@1991
  1212
    mutable EdgeNotifier edge_notifier;
deba@1991
  1213
    NotifierProxy edge_notifier_proxy;
deba@1991
  1214
deba@2031
  1215
  private:
deba@1991
  1216
    
deba@1991
  1217
    template <typename _Value>
deba@2031
  1218
    class EdgeMapBase {
deba@1991
  1219
    private:
deba@1991
  1220
      
deba@1991
  1221
      typedef typename _Graph::template EdgeMap<_Value> MapImpl;
deba@1991
  1222
      
deba@1991
  1223
    public:
deba@1991
  1224
deba@1991
  1225
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
deba@1991
  1226
deba@1991
  1227
      typedef _Value Value;
deba@1991
  1228
      typedef Edge Key;
deba@1991
  1229
      
deba@2031
  1230
      EdgeMapBase(const Adaptor& adaptor) :
deba@2031
  1231
	forward_map(*adaptor.graph), backward_map(*adaptor.graph) {}
deba@1991
  1232
deba@2031
  1233
      EdgeMapBase(const Adaptor& adaptor, const Value& v) 
deba@2031
  1234
        : forward_map(*adaptor.graph, v), backward_map(*adaptor.graph, v) {}
deba@1991
  1235
      
deba@1991
  1236
      void set(const Edge& e, const Value& a) { 
deba@1991
  1237
	if (Parent::direction(e)) {
deba@1991
  1238
	  forward_map.set(e, a); 
deba@1991
  1239
        } else { 
deba@1991
  1240
	  backward_map.set(e, a);
deba@1991
  1241
        } 
deba@1991
  1242
      }
deba@1991
  1243
deba@2031
  1244
      typename MapTraits<MapImpl>::ConstReturnValue operator[](Edge e) const { 
deba@1991
  1245
	if (Parent::direction(e)) {
deba@1991
  1246
	  return forward_map[e]; 
deba@1991
  1247
	} else { 
deba@1991
  1248
	  return backward_map[e]; 
deba@1991
  1249
        }
deba@1991
  1250
      }
deba@1991
  1251
deba@2031
  1252
      typename MapTraits<MapImpl>::ReturnValue operator[](Edge e) { 
deba@1991
  1253
	if (Parent::direction(e)) {
deba@1991
  1254
	  return forward_map[e]; 
deba@1991
  1255
	} else { 
deba@1991
  1256
	  return backward_map[e]; 
deba@1991
  1257
        }
deba@1991
  1258
      }
deba@1991
  1259
deba@1991
  1260
    protected:
deba@1991
  1261
deba@1991
  1262
      MapImpl forward_map, backward_map; 
deba@1991
  1263
deba@1991
  1264
    };
deba@2031
  1265
deba@2031
  1266
  public:
deba@2031
  1267
deba@2031
  1268
    template <typename _Value>
deba@2031
  1269
    class EdgeMap 
deba@2031
  1270
      : public SubMapExtender<Adaptor, EdgeMapBase<_Value> > 
deba@2031
  1271
    {
deba@2031
  1272
    public:
deba@2031
  1273
      typedef Adaptor Graph;
deba@2031
  1274
      typedef SubMapExtender<Adaptor, EdgeMapBase<_Value> > Parent;
deba@2031
  1275
    
deba@2031
  1276
      EdgeMap(const Graph& graph) 
deba@2031
  1277
	: Parent(graph) {}
deba@2031
  1278
      EdgeMap(const Graph& graph, const _Value& value) 
deba@2031
  1279
	: Parent(graph, value) {}
deba@2031
  1280
    
deba@2031
  1281
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@2031
  1282
	return operator=<EdgeMap>(cmap);
deba@2031
  1283
      }
deba@2031
  1284
    
deba@2031
  1285
      template <typename CMap>
deba@2031
  1286
      EdgeMap& operator=(const CMap& cmap) {
deba@2031
  1287
        Parent::operator=(cmap);
deba@2031
  1288
	return *this;
deba@2031
  1289
      }
deba@2031
  1290
    };
deba@1991
  1291
        
deba@1991
  1292
    template <typename _Value>
deba@2031
  1293
    class UEdgeMap : public Graph::template EdgeMap<_Value> {
deba@1991
  1294
    public:
deba@2031
  1295
      
deba@2031
  1296
      typedef typename Graph::template EdgeMap<_Value> Parent;
deba@2031
  1297
      
deba@2031
  1298
      explicit UEdgeMap(const Adaptor& ga) 
deba@2031
  1299
	: Parent(*ga.graph) {}
deba@1991
  1300
deba@2031
  1301
      UEdgeMap(const Adaptor& ga, const _Value& value)
deba@2031
  1302
	: Parent(*ga.graph, value) {}
deba@1991
  1303
deba@2031
  1304
      UEdgeMap& operator=(const UEdgeMap& cmap) {
deba@2031
  1305
        return operator=<UEdgeMap>(cmap);
deba@2031
  1306
      }
deba@1991
  1307
deba@2031
  1308
      template <typename CMap>
deba@2031
  1309
      UEdgeMap& operator=(const CMap& cmap) {
deba@2031
  1310
        Parent::operator=(cmap);
deba@2031
  1311
        return *this;
deba@2031
  1312
      }
deba@2031
  1313
marci@1383
  1314
    };
marci@1383
  1315
      
marci@1383
  1316
  };
marci@1383
  1317
klao@1951
  1318
  ///\brief An undirected graph is made from a directed graph by an adaptor
klao@1951
  1319
  ///\ingroup graph_adaptors
klao@1951
  1320
  ///
klao@1951
  1321
  /// Undocumented, untested!!!
klao@1951
  1322
  /// If somebody knows nice demo application, let's polulate it.
klao@1951
  1323
  /// 
klao@1951
  1324
  /// \author Marton Makai
marci@1383
  1325
  template<typename _Graph>
deba@1980
  1326
  class UndirGraphAdaptor : 
deba@1979
  1327
    public UGraphAdaptorExtender<
deba@1980
  1328
    UndirGraphAdaptorBase<_Graph> > {
marci@1383
  1329
  public:
marci@1383
  1330
    typedef _Graph Graph;
deba@1979
  1331
    typedef UGraphAdaptorExtender<
deba@1980
  1332
      UndirGraphAdaptorBase<_Graph> > Parent;
marci@1383
  1333
  protected:
deba@1980
  1334
    UndirGraphAdaptor() { }
marci@1383
  1335
  public:
deba@1980
  1336
    UndirGraphAdaptor(_Graph& _graph) { 
marci@1383
  1337
      setGraph(_graph);
marci@556
  1338
    }
marci@556
  1339
deba@1991
  1340
    template <typename _ForwardMap, typename _BackwardMap>
deba@1991
  1341
    class CombinedEdgeMap {
deba@1991
  1342
    public:
deba@1991
  1343
      
deba@1991
  1344
      typedef _ForwardMap ForwardMap;
deba@1991
  1345
      typedef _BackwardMap BackwardMap;
marci@992
  1346
deba@1991
  1347
      typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
marci@992
  1348
deba@1991
  1349
      typedef typename ForwardMap::Value Value;
deba@1991
  1350
      typedef typename Parent::Edge Key;
deba@1991
  1351
      
deba@1991
  1352
      CombinedEdgeMap() : forward_map(0), backward_map(0) {}
marci@992
  1353
deba@1991
  1354
      CombinedEdgeMap(ForwardMap& _forward_map, BackwardMap& _backward_map) 
deba@1991
  1355
        : forward_map(&_forward_map), backward_map(&_backward_map) {}
marci@992
  1356
      
deba@1991
  1357
      void set(const Key& e, const Value& a) { 
deba@1991
  1358
	if (Parent::direction(e)) {
deba@1991
  1359
	  forward_map->set(e, a); 
deba@1991
  1360
        } else { 
deba@1991
  1361
	  backward_map->set(e, a);
deba@1991
  1362
        } 
marci@992
  1363
      }
marci@992
  1364
deba@1991
  1365
      typename MapTraits<ForwardMap>::ConstReturnValue 
deba@1991
  1366
      operator[](const Key& e) const { 
deba@1991
  1367
	if (Parent::direction(e)) {
deba@1991
  1368
	  return (*forward_map)[e]; 
deba@1991
  1369
	} else { 
deba@1991
  1370
	  return (*backward_map)[e]; 
deba@1991
  1371
        }
marci@992
  1372
      }
marci@992
  1373
deba@1991
  1374
      typename MapTraits<ForwardMap>::ReturnValue 
deba@1991
  1375
      operator[](const Key& e) { 
deba@1991
  1376
	if (Parent::direction(e)) {
deba@1991
  1377
	  return (*forward_map)[e]; 
deba@1991
  1378
	} else { 
deba@1991
  1379
	  return (*backward_map)[e]; 
deba@1991
  1380
        }
marci@992
  1381
      }
deba@1991
  1382
deba@1991
  1383
      void setForwardMap(ForwardMap& _forward_map) {
deba@1991
  1384
        forward_map = &_forward_map;
deba@1991
  1385
      }
deba@1991
  1386
deba@1991
  1387
      void setBackwardMap(BackwardMap& _backward_map) {
deba@1991
  1388
        backward_map = &_backward_map;
deba@1991
  1389
      }
deba@1991
  1390
deba@1991
  1391
    protected:
deba@1991
  1392
deba@1991
  1393
      ForwardMap* forward_map;
deba@1991
  1394
      BackwardMap* backward_map; 
deba@1991
  1395
marci@992
  1396
    };
marci@992
  1397
marci@992
  1398
  };
marci@569
  1399
deba@1991
  1400
  /// \brief Just gives back an undir graph adaptor
klao@1951
  1401
  ///
deba@1991
  1402
  /// Just gives back an undir graph adaptor
marci@650
  1403
  template<typename Graph>
deba@1991
  1404
  UndirGraphAdaptor<const Graph>
deba@1991
  1405
  undirGraphAdaptor(const Graph& graph) {
deba@1991
  1406
    return UndirGraphAdaptor<const Graph>(graph);
deba@1991
  1407
  }
marci@650
  1408
deba@2034
  1409
  template<typename Graph, typename Number,  
deba@2034
  1410
           typename CapacityMap, typename FlowMap, 
deba@2034
  1411
           typename Tolerance = Tolerance<Number> >
marci@658
  1412
  class ResForwardFilter {
marci@650
  1413
    const CapacityMap* capacity;
marci@650
  1414
    const FlowMap* flow;
deba@2034
  1415
    Tolerance tolerance;
marci@650
  1416
  public:
deba@1991
  1417
    typedef typename Graph::Edge Key;
deba@1991
  1418
    typedef bool Value;
deba@1991
  1419
deba@2034
  1420
    ResForwardFilter(const CapacityMap& _capacity, const FlowMap& _flow,
deba@2034
  1421
                     const Tolerance& _tolerance = Tolerance()) 
deba@2034
  1422
      : capacity(&_capacity), flow(&_flow), tolerance(_tolerance) { }
deba@2034
  1423
deba@2034
  1424
    ResForwardFilter(const Tolerance& _tolerance) 
deba@2034
  1425
      : capacity(0), flow(0), tolerance(_tolerance)  { }
deba@2034
  1426
deba@1991
  1427
    void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
deba@1991
  1428
    void setFlow(const FlowMap& _flow) { flow = &_flow; }
deba@2034
  1429
marci@650
  1430
    bool operator[](const typename Graph::Edge& e) const {
deba@2034
  1431
      return tolerance.less((*flow)[e], (*capacity)[e]);
marci@650
  1432
    }
marci@650
  1433
  };
marci@650
  1434
marci@650
  1435
  template<typename Graph, typename Number,
deba@2034
  1436
	   typename CapacityMap, typename FlowMap,
deba@2034
  1437
           typename Tolerance = Tolerance<Number> >
marci@658
  1438
  class ResBackwardFilter {
marci@650
  1439
    const CapacityMap* capacity;
marci@650
  1440
    const FlowMap* flow;
deba@2034
  1441
    Tolerance tolerance;
marci@650
  1442
  public:
deba@1991
  1443
    typedef typename Graph::Edge Key;
deba@1991
  1444
    typedef bool Value;
deba@1991
  1445
deba@2034
  1446
    ResBackwardFilter(const CapacityMap& _capacity, const FlowMap& _flow,
deba@2034
  1447
                      const Tolerance& _tolerance = Tolerance())
deba@2034
  1448
      : capacity(&_capacity), flow(&_flow), tolerance(_tolerance) { }
deba@2034
  1449
    ResBackwardFilter(const Tolerance& _tolerance = Tolerance())
deba@2034
  1450
      : capacity(0), flow(0), tolerance(_tolerance) { }
deba@1991
  1451
    void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
deba@1991
  1452
    void setFlow(const FlowMap& _flow) { flow = &_flow; }
marci@650
  1453
    bool operator[](const typename Graph::Edge& e) const {
deba@2034
  1454
      return tolerance.less(0, Number((*flow)[e]));
marci@650
  1455
    }
marci@650
  1456
  };
marci@650
  1457
marci@653
  1458
  
klao@1951
  1459
  ///\brief An adaptor for composing the residual
klao@1951
  1460
  ///graph for directed flow and circulation problems.
deba@2037
  1461
  ///
klao@1951
  1462
  ///\ingroup graph_adaptors
klao@1951
  1463
  ///
deba@2042
  1464
  ///An adaptor for composing the residual graph for directed flow and
deba@2042
  1465
  ///circulation problems.  Let \f$ G=(V, A) \f$ be a directed graph
deba@2042
  1466
  ///and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F \f$,
deba@2042
  1467
  ///be functions on the edge-set.
deba@2042
  1468
  ///
deba@2042
  1469
  ///In the appications of ResGraphAdaptor, \f$ f \f$ usually stands
deba@2042
  1470
  ///for a flow and \f$ c \f$ for a capacity function.  Suppose that a
deba@2042
  1471
  ///graph instange \c g of type \c ListGraph implements \f$ G \f$.
deba@2042
  1472
  ///
deba@2042
  1473
  ///\code 
deba@2042
  1474
  ///  ListGraph g;
deba@2042
  1475
  ///\endcode 
deba@2042
  1476
  ///
deba@2042
  1477
  ///Then RevGraphAdaptor implements the graph structure with node-set
deba@2042
  1478
  /// \f$ V \f$ and edge-set \f$ A_{forward}\cup A_{backward} \f$,
deba@2042
  1479
  ///where \f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$ and 
deba@2042
  1480
  /// \f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$, i.e. the so called
deba@2042
  1481
  ///residual graph.  When we take the union 
deba@2042
  1482
  /// \f$ A_{forward}\cup A_{backward} \f$, multilicities are counted, i.e. 
deba@2042
  1483
  ///if an edge is in both \f$ A_{forward} \f$ and \f$ A_{backward} \f$, 
deba@2042
  1484
  ///then in the adaptor it appears twice. The following code shows how 
deba@2042
  1485
  ///such an instance can be constructed.
deba@2042
  1486
  ///
deba@2042
  1487
  ///\code 
deba@2042
  1488
  ///  typedef ListGraph Graph; 
deba@2042
  1489
  ///  Graph::EdgeMap<int> f(g);
deba@2042
  1490
  ///  Graph::EdgeMap<int> c(g); 
deba@2042
  1491
  ///  ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > ga(g); 
deba@2042
  1492
  ///\endcode
deba@2042
  1493
  ///\author Marton Makai
deba@2042
  1494
  ///
marci@650
  1495
  template<typename Graph, typename Number, 
deba@2034
  1496
	   typename CapacityMap, typename FlowMap,
deba@2034
  1497
           typename Tolerance = Tolerance<Number> >
alpar@1401
  1498
  class ResGraphAdaptor : 
deba@1991
  1499
    public EdgeSubGraphAdaptor< 
deba@2034
  1500
    UndirGraphAdaptor<const Graph>, 
deba@2034
  1501
    typename UndirGraphAdaptor<const Graph>::template CombinedEdgeMap<
deba@2034
  1502
    ResForwardFilter<const Graph, Number, CapacityMap, FlowMap>,  
deba@2034
  1503
    ResBackwardFilter<const Graph, Number, CapacityMap, FlowMap> > > {
marci@650
  1504
  public:
deba@1991
  1505
deba@2034
  1506
    typedef UndirGraphAdaptor<const Graph> UGraph;
deba@1991
  1507
deba@2034
  1508
    typedef ResForwardFilter<const Graph, Number, CapacityMap, FlowMap> 
deba@1991
  1509
    ForwardFilter;
deba@1991
  1510
deba@2034
  1511
    typedef ResBackwardFilter<const Graph, Number, CapacityMap, FlowMap> 
deba@1991
  1512
    BackwardFilter;
deba@1991
  1513
deba@1991
  1514
    typedef typename UGraph::
deba@1991
  1515
    template CombinedEdgeMap<ForwardFilter, BackwardFilter>
deba@1991
  1516
    EdgeFilter;
deba@1991
  1517
deba@1991
  1518
    typedef EdgeSubGraphAdaptor<UGraph, EdgeFilter> Parent;
deba@1991
  1519
marci@650
  1520
  protected:
deba@1991
  1521
marci@650
  1522
    const CapacityMap* capacity;
marci@650
  1523
    FlowMap* flow;
deba@1991
  1524
deba@1991
  1525
    UGraph ugraph;
deba@1991
  1526
    ForwardFilter forward_filter;
deba@1991
  1527
    BackwardFilter backward_filter;
deba@1991
  1528
    EdgeFilter edge_filter;
deba@1991
  1529
marci@658
  1530
    void setCapacityMap(const CapacityMap& _capacity) {
marci@658
  1531
      capacity=&_capacity;
marci@658
  1532
      forward_filter.setCapacity(_capacity);
marci@658
  1533
      backward_filter.setCapacity(_capacity);
marci@658
  1534
    }
deba@1991
  1535
marci@658
  1536
    void setFlowMap(FlowMap& _flow) {
marci@658
  1537
      flow=&_flow;
marci@658
  1538
      forward_filter.setFlow(_flow);
marci@658
  1539
      backward_filter.setFlow(_flow);
marci@658
  1540
    }
deba@1991
  1541
marci@650
  1542
  public:
deba@1991
  1543
deba@2034
  1544
    /// \brief Constructor of the residual graph.
deba@2034
  1545
    ///
deba@2034
  1546
    /// Constructor of the residual graph. The parameters are the graph type,
deba@2034
  1547
    /// the flow map, the capacity map and a tolerance object.
deba@2034
  1548
    ResGraphAdaptor(const Graph& _graph, const CapacityMap& _capacity, 
deba@2034
  1549
                    FlowMap& _flow, const Tolerance& _tolerance = Tolerance()) 
deba@2034
  1550
      : Parent(), capacity(&_capacity), flow(&_flow), ugraph(_graph),
deba@2034
  1551
        forward_filter(_capacity, _flow, _tolerance), 
deba@2034
  1552
        backward_filter(_capacity, _flow, _tolerance),
deba@2034
  1553
        edge_filter(forward_filter, backward_filter)
deba@2034
  1554
    {
deba@1991
  1555
      Parent::setGraph(ugraph);
deba@1991
  1556
      Parent::setEdgeFilterMap(edge_filter);
marci@650
  1557
    }
marci@650
  1558
marci@660
  1559
    typedef typename Parent::Edge Edge;
marci@660
  1560
deba@2034
  1561
    /// \brief Gives back the residual capacity of the edge.
deba@2034
  1562
    ///
deba@2034
  1563
    /// Gives back the residual capacity of the edge.
deba@2034
  1564
    Number rescap(const Edge& edge) const {
deba@2034
  1565
      if (UGraph::direction(edge)) {
deba@2034
  1566
        return (*capacity)[edge]-(*flow)[edge]; 
deba@2034
  1567
      } else {
deba@2034
  1568
        return (*flow)[edge];
deba@2034
  1569
      }
deba@2034
  1570
    } 
deba@2034
  1571
deba@2034
  1572
    /// \brief Augment on the given edge in the residual graph.
deba@2034
  1573
    ///
deba@2034
  1574
    /// Augment on the given edge in the residual graph. It increase
deba@2034
  1575
    /// or decrease the flow on the original edge depend on the direction
deba@2034
  1576
    /// of the residual edge.
marci@660
  1577
    void augment(const Edge& e, Number a) const {
deba@1991
  1578
      if (UGraph::direction(e)) {
deba@2034
  1579
        flow->set(e, (*flow)[e] + a);
deba@1991
  1580
      } else {  
deba@2034
  1581
        flow->set(e, (*flow)[e] - a);
deba@1991
  1582
      }
marci@650
  1583
    }
marci@650
  1584
deba@2034
  1585
    /// \brief Returns the direction of the edge.
deba@2034
  1586
    ///
deba@2034
  1587
    /// Returns true when the edge is same oriented as the original edge.
deba@1991
  1588
    static bool forward(const Edge& e) {
deba@1991
  1589
      return UGraph::direction(e);
deba@1991
  1590
    }
deba@1991
  1591
deba@2034
  1592
    /// \brief Returns the direction of the edge.
deba@2034
  1593
    ///
deba@2034
  1594
    /// Returns true when the edge is opposite oriented as the original edge.
deba@1991
  1595
    static bool backward(const Edge& e) {
deba@1991
  1596
      return !UGraph::direction(e);
deba@1991
  1597
    }
deba@1991
  1598
deba@2034
  1599
    /// \brief Gives back the forward oriented residual edge.
deba@2034
  1600
    ///
deba@2034
  1601
    /// Gives back the forward oriented residual edge.
deba@1991
  1602
    static Edge forward(const typename Graph::Edge& e) {
deba@1991
  1603
      return UGraph::direct(e, true);
deba@1991
  1604
    }
deba@1991
  1605
deba@2034
  1606
    /// \brief Gives back the backward oriented residual edge.
deba@2034
  1607
    ///
deba@2034
  1608
    /// Gives back the backward oriented residual edge.
deba@1991
  1609
    static Edge backward(const typename Graph::Edge& e) {
deba@1991
  1610
      return UGraph::direct(e, false);
deba@1991
  1611
    }
deba@1991
  1612
klao@1951
  1613
    /// \brief Residual capacity map.
klao@1951
  1614
    ///
klao@1951
  1615
    /// In generic residual graphs the residual capacity can be obtained 
klao@1951
  1616
    /// as a map. 
marci@660
  1617
    class ResCap {
marci@660
  1618
    protected:
deba@1991
  1619
      const ResGraphAdaptor* res_graph;
marci@660
  1620
    public:
alpar@987
  1621
      typedef Number Value;
alpar@987
  1622
      typedef Edge Key;
deba@1991
  1623
      ResCap(const ResGraphAdaptor& _res_graph) 
deba@1991
  1624
        : res_graph(&_res_graph) {}
deba@1991
  1625
      
deba@2034
  1626
      Number operator[](const Edge& e) const {
deba@2034
  1627
        return res_graph->rescap(e);
marci@660
  1628
      }
deba@1991
  1629
      
marci@660
  1630
    };
marci@660
  1631
marci@650
  1632
  };
marci@650
  1633
marci@650
  1634
marci@998
  1635
marci@998
  1636
  template <typename _Graph, typename FirstOutEdgesMap>
alpar@1401
  1637
  class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@998
  1638
  public:
marci@998
  1639
    typedef _Graph Graph;
alpar@1401
  1640
    typedef GraphAdaptorBase<_Graph> Parent;
marci@998
  1641
  protected:
marci@998
  1642
    FirstOutEdgesMap* first_out_edges;
alpar@1401
  1643
    ErasingFirstGraphAdaptorBase() : Parent(), 
marci@998
  1644
				     first_out_edges(0) { }
marci@998
  1645
marci@998
  1646
    void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
marci@998
  1647
      first_out_edges=&_first_out_edges;
marci@998
  1648
    }
marci@998
  1649
marci@998
  1650
  public:
marci@998
  1651
marci@998
  1652
    typedef typename Parent::Node Node;
marci@998
  1653
    typedef typename Parent::Edge Edge;
marci@998
  1654
marci@998
  1655
    void firstOut(Edge& i, const Node& n) const { 
marci@998
  1656
      i=(*first_out_edges)[n];
marci@998
  1657
    }
marci@998
  1658
marci@998
  1659
    void erase(const Edge& e) const {
marci@998
  1660
      Node n=source(e);
marci@998
  1661
      Edge f=e;
marci@998
  1662
      Parent::nextOut(f);
marci@998
  1663
      first_out_edges->set(n, f);
marci@998
  1664
    }    
marci@998
  1665
  };
marci@998
  1666
marci@998
  1667
klao@1951
  1668
  ///\brief For blocking flows.
klao@1951
  1669
  ///\ingroup graph_adaptors
klao@1951
  1670
  ///
klao@1951
  1671
  ///This graph adaptor is used for on-the-fly 
klao@1951
  1672
  ///Dinits blocking flow computations.
klao@1951
  1673
  ///For each node, an out-edge is stored which is used when the 
klao@1951
  1674
  ///\code
klao@1951
  1675
  ///OutEdgeIt& first(OutEdgeIt&, const Node&)
klao@1951
  1676
  ///\endcode
klao@1951
  1677
  ///is called. 
klao@1951
  1678
  ///
klao@1951
  1679
  ///\author Marton Makai
klao@1951
  1680
  ///
marci@998
  1681
  template <typename _Graph, typename FirstOutEdgesMap>
alpar@1401
  1682
  class ErasingFirstGraphAdaptor : 
deba@1979
  1683
    public GraphAdaptorExtender<
alpar@1401
  1684
    ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
marci@650
  1685
  public:
marci@998
  1686
    typedef _Graph Graph;
deba@1979
  1687
    typedef GraphAdaptorExtender<
alpar@1401
  1688
      ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
alpar@1401
  1689
    ErasingFirstGraphAdaptor(Graph& _graph, 
marci@998
  1690
			     FirstOutEdgesMap& _first_out_edges) { 
marci@998
  1691
      setGraph(_graph);
marci@998
  1692
      setFirstOutEdgesMap(_first_out_edges);
marci@998
  1693
    } 
marci@1019
  1694
marci@998
  1695
  };
marci@556
  1696
deba@1989
  1697
//   template <typename _Graph>
deba@1989
  1698
//   class SplitGraphAdaptorBase 
deba@1989
  1699
//     : public GraphAdaptorBase<_Graph> {
deba@1989
  1700
//   public:
deba@1989
  1701
//     typedef GraphAdaptorBase<_Graph> Parent;
deba@1697
  1702
deba@1989
  1703
//     class Node;
deba@1989
  1704
//     class Edge;
deba@1989
  1705
//     template <typename T> class NodeMap;
deba@1989
  1706
//     template <typename T> class EdgeMap;
deba@1697
  1707
    
deba@1697
  1708
deba@1989
  1709
//     class Node : public Parent::Node {
deba@1989
  1710
//       friend class SplitGraphAdaptorBase;
deba@1989
  1711
//       template <typename T> friend class NodeMap;
deba@1989
  1712
//       typedef typename Parent::Node NodeParent;
deba@1989
  1713
//     private:
deba@1697
  1714
deba@1989
  1715
//       bool entry;
deba@1989
  1716
//       Node(typename Parent::Node _node, bool _entry)
deba@1989
  1717
// 	: Parent::Node(_node), entry(_entry) {}
deba@1697
  1718
      
deba@1989
  1719
//     public:
deba@1989
  1720
//       Node() {}
deba@1989
  1721
//       Node(Invalid) : NodeParent(INVALID), entry(true) {}
deba@1697
  1722
deba@1989
  1723
//       bool operator==(const Node& node) const {
deba@1989
  1724
// 	return NodeParent::operator==(node) && entry == node.entry;
deba@1989
  1725
//       }
deba@1697
  1726
      
deba@1989
  1727
//       bool operator!=(const Node& node) const {
deba@1989
  1728
// 	return !(*this == node);
deba@1989
  1729
//       }
deba@1697
  1730
      
deba@1989
  1731
//       bool operator<(const Node& node) const {
deba@1989
  1732
// 	return NodeParent::operator<(node) || 
deba@1989
  1733
// 	  (NodeParent::operator==(node) && entry < node.entry);
deba@1989
  1734
//       }
deba@1989
  1735
//     };
deba@1697
  1736
deba@1989
  1737
//     /// \todo May we want VARIANT/union type
deba@1989
  1738
//     class Edge : public Parent::Edge {
deba@1989
  1739
//       friend class SplitGraphAdaptorBase;
deba@1989
  1740
//       template <typename T> friend class EdgeMap;
deba@1989
  1741
//     private:
deba@1989
  1742
//       typedef typename Parent::Edge EdgeParent;
deba@1989
  1743
//       typedef typename Parent::Node NodeParent;
deba@1989
  1744
//       NodeParent bind;
deba@1697
  1745
deba@1989
  1746
//       Edge(const EdgeParent& edge, const NodeParent& node)
deba@1989
  1747
// 	: EdgeParent(edge), bind(node) {}
deba@1989
  1748
//     public:
deba@1989
  1749
//       Edge() {}
deba@1989
  1750
//       Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {}
deba@1697
  1751
deba@1989
  1752
//       bool operator==(const Edge& edge) const {
deba@1989
  1753
// 	return EdgeParent::operator==(edge) && bind == edge.bind;
deba@1989
  1754
//       }
deba@1697
  1755
      
deba@1989
  1756
//       bool operator!=(const Edge& edge) const {
deba@1989
  1757
// 	return !(*this == edge);
deba@1989
  1758
//       }
deba@1697
  1759
      
deba@1989
  1760
//       bool operator<(const Edge& edge) const {
deba@1989
  1761
// 	return EdgeParent::operator<(edge) || 
deba@1989
  1762
// 	  (EdgeParent::operator==(edge) && bind < edge.bind);
deba@1989
  1763
//       }
deba@1989
  1764
//     };
deba@1697
  1765
deba@1989
  1766
//     void first(Node& node) const {
deba@1989
  1767
//       Parent::first(node);
deba@1989
  1768
//       node.entry = true;
deba@1989
  1769
//     } 
deba@1697
  1770
deba@1989
  1771
//     void next(Node& node) const {
deba@1989
  1772
//       if (node.entry) {
deba@1989
  1773
// 	node.entry = false;
deba@1989
  1774
//       } else {
deba@1989
  1775
// 	node.entry = true;
deba@1989
  1776
// 	Parent::next(node);
deba@1989
  1777
//       }
deba@1989
  1778
//     }
deba@1697
  1779
deba@1989
  1780
//     void first(Edge& edge) const {
deba@1989
  1781
//       Parent::first(edge);
deba@1989
  1782
//       if ((typename Parent::Edge&)edge == INVALID) {
deba@1989
  1783
// 	Parent::first(edge.bind);
deba@1989
  1784
//       } else {
deba@1989
  1785
// 	edge.bind = INVALID;
deba@1989
  1786
//       }
deba@1989
  1787
//     }
deba@1697
  1788
deba@1989
  1789
//     void next(Edge& edge) const {
deba@1989
  1790
//       if ((typename Parent::Edge&)edge != INVALID) {
deba@1989
  1791
// 	Parent::next(edge);
deba@1989
  1792
// 	if ((typename Parent::Edge&)edge == INVALID) {
deba@1989
  1793
// 	  Parent::first(edge.bind);
deba@1989
  1794
// 	}
deba@1989
  1795
//       } else {
deba@1989
  1796
// 	Parent::next(edge.bind);
deba@1989
  1797
//       }      
deba@1989
  1798
//     }
deba@1697
  1799
deba@1989
  1800
//     void firstIn(Edge& edge, const Node& node) const {
deba@1989
  1801
//       if (node.entry) {
deba@1989
  1802
// 	Parent::firstIn(edge, node);
deba@1989
  1803
// 	edge.bind = INVALID;
deba@1989
  1804
//       } else {
deba@1989
  1805
// 	(typename Parent::Edge&)edge = INVALID;
deba@1989
  1806
// 	edge.bind = node;
deba@1989
  1807
//       }
deba@1989
  1808
//     }
deba@1697
  1809
deba@1989
  1810
//     void nextIn(Edge& edge) const {
deba@1989
  1811
//       if ((typename Parent::Edge&)edge != INVALID) {
deba@1989
  1812
// 	Parent::nextIn(edge);
deba@1989
  1813
//       } else {
deba@1989
  1814
// 	edge.bind = INVALID;
deba@1989
  1815
//       }      
deba@1989
  1816
//     }
deba@1697
  1817
deba@1989
  1818
//     void firstOut(Edge& edge, const Node& node) const {
deba@1989
  1819
//       if (!node.entry) {
deba@1989
  1820
// 	Parent::firstOut(edge, node);
deba@1989
  1821
// 	edge.bind = INVALID;
deba@1989
  1822
//       } else {
deba@1989
  1823
// 	(typename Parent::Edge&)edge = INVALID;
deba@1989
  1824
// 	edge.bind = node;
deba@1989
  1825
//       }
deba@1989
  1826
//     }
deba@1697
  1827
deba@1989
  1828
//     void nextOut(Edge& edge) const {
deba@1989
  1829
//       if ((typename Parent::Edge&)edge != INVALID) {
deba@1989
  1830
// 	Parent::nextOut(edge);
deba@1989
  1831
//       } else {
deba@1989
  1832
// 	edge.bind = INVALID;
deba@1989
  1833
//       }
deba@1989
  1834
//     }
deba@1697
  1835
deba@1989
  1836
//     Node source(const Edge& edge) const {
deba@1989
  1837
//       if ((typename Parent::Edge&)edge != INVALID) {
deba@1989
  1838
// 	return Node(Parent::source(edge), false);
deba@1989
  1839
//       } else {
deba@1989
  1840
// 	return Node(edge.bind, true);
deba@1989
  1841
//       }
deba@1989
  1842
//     }
deba@1697
  1843
deba@1989
  1844
//     Node target(const Edge& edge) const {
deba@1989
  1845
//       if ((typename Parent::Edge&)edge != INVALID) {
deba@1989
  1846
// 	return Node(Parent::target(edge), true);
deba@1989
  1847
//       } else {
deba@1989
  1848
// 	return Node(edge.bind, false);
deba@1989
  1849
//       }
deba@1989
  1850
//     }
deba@1697
  1851
deba@1989
  1852
//     static bool entryNode(const Node& node) {
deba@1989
  1853
//       return node.entry;
deba@1989
  1854
//     }
deba@1697
  1855
deba@1989
  1856
//     static bool exitNode(const Node& node) {
deba@1989
  1857
//       return !node.entry;
deba@1989
  1858
//     }
deba@1697
  1859
deba@1989
  1860
//     static Node getEntry(const typename Parent::Node& node) {
deba@1989
  1861
//       return Node(node, true);
deba@1989
  1862
//     }
deba@1697
  1863
deba@1989
  1864
//     static Node getExit(const typename Parent::Node& node) {
deba@1989
  1865
//       return Node(node, false);
deba@1989
  1866
//     }
deba@1697
  1867
deba@1989
  1868
//     static bool originalEdge(const Edge& edge) {
deba@1989
  1869
//       return (typename Parent::Edge&)edge != INVALID;
deba@1989
  1870
//     }
deba@1697
  1871
deba@1989
  1872
//     static bool bindingEdge(const Edge& edge) {
deba@1989
  1873
//       return edge.bind != INVALID;
deba@1989
  1874
//     }
deba@1697
  1875
deba@1989
  1876
//     static Node getBindedNode(const Edge& edge) {
deba@1989
  1877
//       return edge.bind;
deba@1989
  1878
//     }
deba@1697
  1879
deba@1989
  1880
//     int nodeNum() const {
deba@1989
  1881
//       return Parent::nodeNum() * 2;
deba@1989
  1882
//     }
deba@1697
  1883
deba@1989
  1884
//     typedef True EdgeNumTag;
deba@1697
  1885
    
deba@1989
  1886
//     int edgeNum() const {
deba@1989
  1887
//       return countEdges() + Parent::nodeNum();
deba@1989
  1888
//     }
deba@1697
  1889
deba@1989
  1890
//     Edge findEdge(const Node& source, const Node& target, 
deba@1989
  1891
// 		  const Edge& prev = INVALID) const {
deba@1989
  1892
//       if (exitNode(source) && entryNode(target)) {
deba@1989
  1893
// 	return Parent::findEdge(source, target, prev);
deba@1989
  1894
//       } else {
deba@1989
  1895
// 	if (prev == INVALID && entryNode(source) && exitNode(target) && 
deba@1989
  1896
// 	    (typename Parent::Node&)source == (typename Parent::Node&)target) {
deba@1989
  1897
// 	  return Edge(INVALID, source);
deba@1989
  1898
// 	} else {
deba@1989
  1899
// 	  return INVALID;
deba@1989
  1900
// 	}
deba@1989
  1901
//       }
deba@1989
  1902
//     }
deba@1697
  1903
    
deba@1989
  1904
//     template <typename T>
deba@1989
  1905
//     class NodeMap : public MapBase<Node, T> {
deba@1989
  1906
//       typedef typename Parent::template NodeMap<T> NodeImpl;
deba@1989
  1907
//     public:
deba@1989
  1908
//       NodeMap(const SplitGraphAdaptorBase& _graph) 
deba@1989
  1909
// 	: entry(_graph), exit(_graph) {}
deba@1989
  1910
//       NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
deba@1989
  1911
// 	: entry(_graph, t), exit(_graph, t) {}
deba@1697
  1912
      
deba@1989
  1913
//       void set(const Node& key, const T& val) {
deba@1989
  1914
// 	if (key.entry) { entry.set(key, val); }
deba@1989
  1915
// 	else {exit.set(key, val); }
deba@1989
  1916
//       }
deba@1697
  1917
      
deba@1989
  1918
//       typename MapTraits<NodeImpl>::ReturnValue 
deba@1989
  1919
//       operator[](const Node& key) {
deba@1989
  1920
// 	if (key.entry) { return entry[key]; }
deba@1989
  1921
// 	else { return exit[key]; }
deba@1989
  1922
//       }
deba@1697
  1923
deba@1989
  1924
//       typename MapTraits<NodeImpl>::ConstReturnValue
deba@1989
  1925
//       operator[](const Node& key) const {
deba@1989
  1926
// 	if (key.entry) { return entry[key]; }
deba@1989
  1927
// 	else { return exit[key]; }
deba@1989
  1928
//       }
deba@1697
  1929
deba@1989
  1930
//     private:
deba@1989
  1931
//       NodeImpl entry, exit;
deba@1989
  1932
//     };
deba@1697
  1933
deba@1989
  1934
//     template <typename T>
deba@1989
  1935
//     class EdgeMap : public MapBase<Edge, T> {
deba@1989
  1936
//       typedef typename Parent::template NodeMap<T> NodeImpl;
deba@1989
  1937
//       typedef typename Parent::template EdgeMap<T> EdgeImpl;
deba@1989
  1938
//     public:
deba@1989
  1939
//       EdgeMap(const SplitGraphAdaptorBase& _graph) 
deba@1989
  1940
// 	: bind(_graph), orig(_graph) {}
deba@1989
  1941
//       EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
deba@1989
  1942
// 	: bind(_graph, t), orig(_graph, t) {}
deba@1697
  1943
      
deba@1989
  1944
//       void set(const Edge& key, const T& val) {
deba@1989
  1945
// 	if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); }
deba@1989
  1946
// 	else {bind.set(key.bind, val); }
deba@1989
  1947
//       }
deba@1697
  1948
      
deba@1989
  1949
//       typename MapTraits<EdgeImpl>::ReturnValue
deba@1989
  1950
//       operator[](const Edge& key) {
deba@1989
  1951
// 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
deba@1989
  1952
// 	else {return bind[key.bind]; }
deba@1989
  1953
//       }
deba@1697
  1954
deba@1989
  1955
//       typename MapTraits<EdgeImpl>::ConstReturnValue
deba@1989
  1956
//       operator[](const Edge& key) const {
deba@1989
  1957
// 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
deba@1989
  1958
// 	else {return bind[key.bind]; }
deba@1989
  1959
//       }
deba@1697
  1960
deba@1989
  1961
//     private:
deba@1989
  1962
//       typename Parent::template NodeMap<T> bind;
deba@1989
  1963
//       typename Parent::template EdgeMap<T> orig;
deba@1989
  1964
//     };
deba@1697
  1965
deba@1989
  1966
//     template <typename EntryMap, typename ExitMap>
deba@1989
  1967
//     class CombinedNodeMap : public MapBase<Node, typename EntryMap::Value> {
deba@1989
  1968
//     public:
deba@1989
  1969
//       typedef MapBase<Node, typename EntryMap::Value> Parent;
deba@1697
  1970
deba@1989
  1971
//       typedef typename Parent::Key Key;
deba@1989
  1972
//       typedef typename Parent::Value Value;
deba@1697
  1973
deba@1989
  1974
//       CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) 
deba@1989
  1975
// 	: entryMap(_entryMap), exitMap(_exitMap) {}
deba@1697
  1976
deba@1989
  1977
//       Value& operator[](const Key& key) {
deba@1989
  1978
// 	if (key.entry) {
deba@1989
  1979
// 	  return entryMap[key];
deba@1989
  1980
// 	} else {
deba@1989
  1981
// 	  return exitMap[key];
deba@1989
  1982
// 	}
deba@1989
  1983
//       }
deba@1697
  1984
deba@1989
  1985
//       Value operator[](const Key& key) const {
deba@1989
  1986
// 	if (key.entry) {
deba@1989
  1987
// 	  return entryMap[key];
deba@1989
  1988
// 	} else {
deba@1989
  1989
// 	  return exitMap[key];
deba@1989
  1990
// 	}
deba@1989
  1991
//       }
deba@1697
  1992
deba@1989
  1993
//       void set(const Key& key, const Value& value) {
deba@1989
  1994
// 	if (key.entry) {
deba@1989
  1995
// 	  entryMap.set(key, value);
deba@1989
  1996
// 	} else {
deba@1989
  1997
// 	  exitMap.set(key, value);
deba@1989
  1998
// 	}
deba@1989
  1999
//       }
deba@1697
  2000
      
deba@1989
  2001
//     private:
deba@1697
  2002
      
deba@1989
  2003
//       EntryMap& entryMap;
deba@1989
  2004
//       ExitMap& exitMap;
deba@1697
  2005
      
deba@1989
  2006
//     };
deba@1697
  2007
deba@1989
  2008
//     template <typename EdgeMap, typename NodeMap>
deba@1989
  2009
//     class CombinedEdgeMap : public MapBase<Edge, typename EdgeMap::Value> {
deba@1989
  2010
//     public:
deba@1989
  2011
//       typedef MapBase<Edge, typename EdgeMap::Value> Parent;
deba@1697
  2012
deba@1989
  2013
//       typedef typename Parent::Key Key;
deba@1989
  2014
//       typedef typename Parent::Value Value;
deba@1697
  2015
deba@1989
  2016
//       CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) 
deba@1989
  2017
// 	: edgeMap(_edgeMap), nodeMap(_nodeMap) {}
deba@1697
  2018
deba@1989
  2019
//       void set(const Edge& edge, const Value& val) {
deba@1989
  2020
// 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1989
  2021
// 	  edgeMap.set(edge, val);
deba@1989
  2022
// 	} else {
deba@1989
  2023
// 	  nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val);
deba@1989
  2024
// 	}
deba@1989
  2025
//       }
deba@1697
  2026
deba@1989
  2027
//       Value operator[](const Key& edge) const {
deba@1989
  2028
// 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1989
  2029
// 	  return edgeMap[edge];
deba@1989
  2030
// 	} else {
deba@1989
  2031
// 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
deba@1989
  2032
// 	}
deba@1989
  2033
//       }      
deba@1697
  2034
deba@1989
  2035
//       Value& operator[](const Key& edge) {
deba@1989
  2036
// 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1989
  2037
// 	  return edgeMap[edge];
deba@1989
  2038
// 	} else {
deba@1989
  2039
// 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
deba@1989
  2040
// 	}
deba@1989
  2041
//       }      
deba@1697
  2042
      
deba@1989
  2043
//     private:
deba@1989
  2044
//       EdgeMap& edgeMap;
deba@1989
  2045
//       NodeMap& nodeMap;
deba@1989
  2046
//     };
deba@1697
  2047
deba@1989
  2048
//   };
deba@1697
  2049
deba@1989
  2050
//   template <typename _Graph>
deba@1989
  2051
//   class SplitGraphAdaptor 
deba@1989
  2052
//     : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
deba@1989
  2053
//   public:
deba@1989
  2054
//     typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
deba@1697
  2055
deba@1989
  2056
//     SplitGraphAdaptor(_Graph& graph) {
deba@1989
  2057
//       Parent::setGraph(graph);
deba@1989
  2058
//     }
deba@1697
  2059
deba@1697
  2060
deba@1989
  2061
//   };
deba@1697
  2062
alpar@921
  2063
} //namespace lemon
marci@556
  2064
alpar@1401
  2065
#endif //LEMON_GRAPH_ADAPTOR_H
marci@556
  2066