lemon/linear_heap.h
author ladanyi
Sun, 29 Jan 2006 22:06:45 +0000
changeset 1919 9704601de87f
parent 1902 e9af75c90c28
child 1956 a055123339d5
permissions -rw-r--r--
demo for simann
deba@1724
     1
/* -*- C++ -*-
deba@1724
     2
 * lemon/linear_heap.h - Part of LEMON, a generic C++ optimization library
deba@1724
     3
 *
alpar@1875
     4
 * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@1724
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1724
     6
 *
deba@1724
     7
 * Permission to use, modify and distribute this software is granted
deba@1724
     8
 * provided that this copyright notice appears in all copies. For
deba@1724
     9
 * precise terms see the accompanying LICENSE file.
deba@1724
    10
 *
deba@1724
    11
 * This software is provided "AS IS" with no warranty of any kind,
deba@1724
    12
 * express or implied, and with no claim as to its suitability for any
deba@1724
    13
 * purpose.
deba@1724
    14
 *
deba@1724
    15
 */
deba@1724
    16
deba@1724
    17
#ifndef LEMON_LINEAR_HEAP_H
deba@1724
    18
#define LEMON_LINEAR_HEAP_H
deba@1724
    19
deba@1724
    20
///\ingroup auxdat
deba@1724
    21
///\file
deba@1724
    22
///\brief Binary Heap implementation.
deba@1724
    23
deba@1724
    24
#include <vector>
deba@1724
    25
#include <utility>
deba@1724
    26
#include <functional>
deba@1724
    27
deba@1724
    28
namespace lemon {
deba@1724
    29
deba@1834
    30
  /// \ingroup auxdat
deba@1724
    31
deba@1724
    32
  /// \brief A Linear Heap implementation.
deba@1724
    33
  ///
deba@1724
    34
  /// This class implements the \e linear \e heap data structure. A \e heap
deba@1724
    35
  /// is a data structure for storing items with specified values called \e
deba@1724
    36
  /// priorities in such a way that finding the item with minimum priority is
deba@1724
    37
  /// efficient. The linear heap is very simple implementation, it can store
deba@1724
    38
  /// only integer priorities and it stores for each priority in the [0..C]
deba@1724
    39
  /// range a list of items. So it should be used only when the priorities
deba@1724
    40
  /// are small. It is not intended to use as dijkstra heap.
deba@1724
    41
  ///
deba@1724
    42
  /// \param _Item Type of the items to be stored.  
deba@1724
    43
  /// \param _ItemIntMap A read and writable Item int map, used internally
deba@1724
    44
  /// to handle the cross references.
deba@1724
    45
  /// \param minimize If the given parameter is true then the heap gives back
deba@1724
    46
  /// the lowest priority. 
deba@1724
    47
  template <typename _Item, typename _ItemIntMap, bool minimize = true >
deba@1724
    48
  class LinearHeap {
deba@1724
    49
deba@1724
    50
  public:
deba@1724
    51
    typedef _Item Item;
deba@1724
    52
    typedef int Prio;
deba@1724
    53
    typedef std::pair<Item, Prio> Pair;
deba@1724
    54
    typedef _ItemIntMap ItemIntMap;
deba@1724
    55
deba@1724
    56
    /// \brief Type to represent the items states.
deba@1724
    57
    ///
deba@1724
    58
    /// Each Item element have a state associated to it. It may be "in heap",
deba@1724
    59
    /// "pre heap" or "post heap". The latter two are indifferent from the
deba@1724
    60
    /// heap's point of view, but may be useful to the user.
deba@1724
    61
    ///
deba@1724
    62
    /// The ItemIntMap \e should be initialized in such way that it maps
deba@1724
    63
    /// PRE_HEAP (-1) to any element to be put in the heap...
deba@1724
    64
    enum state_enum {
deba@1724
    65
      IN_HEAP = 0,
deba@1724
    66
      PRE_HEAP = -1,
deba@1724
    67
      POST_HEAP = -2
deba@1724
    68
    };
deba@1724
    69
deba@1724
    70
  public:
deba@1724
    71
    /// \brief The constructor.
deba@1724
    72
    ///
deba@1724
    73
    /// The constructor.
deba@1724
    74
    /// \param _index should be given to the constructor, since it is used
deba@1724
    75
    /// internally to handle the cross references. The value of the map
deba@1724
    76
    /// should be PRE_HEAP (-1) for each element.
deba@1724
    77
    explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
deba@1724
    78
    
deba@1724
    79
    /// The number of items stored in the heap.
deba@1724
    80
    ///
deba@1724
    81
    /// \brief Returns the number of items stored in the heap.
deba@1724
    82
    int size() const { return data.size(); }
deba@1724
    83
    
deba@1724
    84
    /// \brief Checks if the heap stores no items.
deba@1724
    85
    ///
deba@1724
    86
    /// Returns \c true if and only if the heap stores no items.
deba@1724
    87
    bool empty() const { return data.empty(); }
deba@1724
    88
deba@1724
    89
    /// \brief Make empty this heap.
deba@1724
    90
    /// 
deba@1724
    91
    /// Make empty this heap.
deba@1724
    92
    void clear() { 
deba@1724
    93
      for (int i = 0; i < (int)data.size(); ++i) {
deba@1724
    94
	index[data[i].item] = -2;
deba@1724
    95
      }
deba@1724
    96
      data.clear(); first.clear(); minimal = 0;
deba@1724
    97
    }
deba@1724
    98
deba@1724
    99
  private:
deba@1724
   100
deba@1724
   101
    void relocate_last(int idx) {
deba@1724
   102
      if (idx + 1 < (int)data.size()) {
deba@1724
   103
	data[idx] = data.back();
deba@1724
   104
	if (data[idx].prev != -1) {
deba@1724
   105
	  data[data[idx].prev].next = idx;
deba@1724
   106
	} else {
deba@1724
   107
	  first[data[idx].value] = idx;
deba@1724
   108
	}
deba@1724
   109
	if (data[idx].next != -1) {
deba@1724
   110
	  data[data[idx].next].prev = idx;
deba@1724
   111
	}
deba@1724
   112
	index[data[idx].item] = idx;
deba@1724
   113
      }
deba@1724
   114
      data.pop_back();
deba@1724
   115
    }
deba@1724
   116
deba@1724
   117
    void unlace(int idx) {
deba@1724
   118
      if (data[idx].prev != -1) {
deba@1724
   119
	data[data[idx].prev].next = data[idx].next;
deba@1724
   120
      } else {
deba@1724
   121
	first[data[idx].value] = data[idx].next;
deba@1724
   122
      }
deba@1724
   123
      if (data[idx].next != -1) {
deba@1724
   124
	data[data[idx].next].prev = data[idx].prev;
deba@1724
   125
      }
deba@1724
   126
    }
deba@1724
   127
deba@1724
   128
    void lace(int idx) {
deba@1724
   129
      if ((int)first.size() <= data[idx].value) {
deba@1724
   130
	first.resize(data[idx].value + 1, -1);
deba@1724
   131
      }
deba@1724
   132
      data[idx].next = first[data[idx].value];
deba@1724
   133
      if (data[idx].next != -1) {
deba@1724
   134
	data[data[idx].next].prev = idx;
deba@1724
   135
      }
deba@1724
   136
      first[data[idx].value] = idx;
deba@1724
   137
      data[idx].prev = -1;
deba@1724
   138
    }
deba@1724
   139
deba@1724
   140
  public:
deba@1724
   141
    /// \brief Insert a pair of item and priority into the heap.
deba@1724
   142
    ///
deba@1724
   143
    /// Adds \c p.first to the heap with priority \c p.second.
deba@1724
   144
    /// \param p The pair to insert.
deba@1724
   145
    void push(const Pair& p) {
deba@1724
   146
      push(p.first, p.second);
deba@1724
   147
    }
deba@1724
   148
deba@1724
   149
    /// \brief Insert an item into the heap with the given priority.
deba@1724
   150
    ///    
deba@1724
   151
    /// Adds \c i to the heap with priority \c p. 
deba@1724
   152
    /// \param i The item to insert.
deba@1724
   153
    /// \param p The priority of the item.
deba@1724
   154
    void push(const Item &i, const Prio &p) { 
deba@1724
   155
      int idx = data.size();
deba@1724
   156
      index[i] = idx;
deba@1724
   157
      data.push_back(LinearItem(i, p));
deba@1724
   158
      lace(idx);
deba@1724
   159
      if (p < minimal) {
deba@1724
   160
	minimal = p;
deba@1724
   161
      }
deba@1724
   162
    }
deba@1724
   163
deba@1758
   164
    /// \brief Returns the item with minimum priority.
deba@1724
   165
    ///
deba@1758
   166
    /// This method returns the item with minimum priority.
deba@1724
   167
    /// \pre The heap must be nonempty.  
deba@1724
   168
    Item top() const {
deba@1724
   169
      while (first[minimal] == -1) {
deba@1724
   170
	++minimal;
deba@1724
   171
      }
deba@1724
   172
      return data[first[minimal]].item;
deba@1724
   173
    }
deba@1724
   174
deba@1758
   175
    /// \brief Returns the minimum priority.
deba@1724
   176
    ///
deba@1758
   177
    /// It returns the minimum priority.
deba@1724
   178
    /// \pre The heap must be nonempty.
deba@1724
   179
    Prio prio() const {
deba@1724
   180
      while (first[minimal] == -1) {
deba@1724
   181
	++minimal;
deba@1724
   182
      }
deba@1724
   183
      return minimal;
deba@1724
   184
    }
deba@1724
   185
deba@1758
   186
    /// \brief Deletes the item with minimum priority.
deba@1724
   187
    ///
deba@1758
   188
    /// This method deletes the item with minimum priority from the heap.  
deba@1724
   189
    /// \pre The heap must be non-empty.  
deba@1724
   190
    void pop() {
deba@1724
   191
      while (first[minimal] == -1) {
deba@1724
   192
	++minimal;
deba@1724
   193
      }
deba@1724
   194
      int idx = first[minimal];
deba@1724
   195
      index[data[idx].item] = -2;
deba@1724
   196
      unlace(idx);
deba@1724
   197
      relocate_last(idx);
deba@1724
   198
    }
deba@1724
   199
deba@1724
   200
    /// \brief Deletes \c i from the heap.
deba@1724
   201
    ///
deba@1724
   202
    /// This method deletes item \c i from the heap, if \c i was
deba@1724
   203
    /// already stored in the heap.
deba@1724
   204
    /// \param i The item to erase. 
deba@1724
   205
    void erase(const Item &i) {
deba@1724
   206
      int idx = index[i];
deba@1724
   207
      index[data[idx].item] = -2;
deba@1724
   208
      unlace(idx);
deba@1724
   209
      relocate_last(idx);
deba@1724
   210
    }
deba@1724
   211
deba@1724
   212
    
deba@1724
   213
    /// \brief Returns the priority of \c i.
deba@1724
   214
    ///
deba@1724
   215
    /// This function returns the priority of item \c i.  
deba@1724
   216
    /// \pre \c i must be in the heap.
deba@1724
   217
    /// \param i The item.
deba@1724
   218
    Prio operator[](const Item &i) const {
deba@1724
   219
      int idx = index[i];
deba@1724
   220
      return data[idx].value;
deba@1724
   221
    }
deba@1724
   222
deba@1724
   223
    /// \brief \c i gets to the heap with priority \c p independently 
deba@1724
   224
    /// if \c i was already there.
deba@1724
   225
    ///
deba@1724
   226
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
deba@1724
   227
    /// in the heap and sets the priority of \c i to \c p otherwise.
deba@1724
   228
    /// \param i The item.
deba@1724
   229
    /// \param p The priority.
deba@1724
   230
    void set(const Item &i, const Prio &p) {
deba@1724
   231
      int idx = index[i];
deba@1724
   232
      if (idx < 0) {
deba@1724
   233
	push(i,p);
deba@1724
   234
      } else if (p > data[idx].value) {
deba@1724
   235
	increase(i, p);
deba@1724
   236
      } else {
deba@1724
   237
	decrease(i, p);
deba@1724
   238
      }
deba@1724
   239
    }
deba@1724
   240
deba@1724
   241
    /// \brief Decreases the priority of \c i to \c p.
deba@1724
   242
deba@1724
   243
    /// This method decreases the priority of item \c i to \c p.
deba@1724
   244
    /// \pre \c i must be stored in the heap with priority at least \c
deba@1724
   245
    /// p relative to \c Compare.
deba@1724
   246
    /// \param i The item.
deba@1724
   247
    /// \param p The priority.
deba@1724
   248
    void decrease(const Item &i, const Prio &p) {
deba@1724
   249
      int idx = index[i];
deba@1724
   250
      unlace(idx);
deba@1724
   251
      data[idx].value = p;
deba@1724
   252
      if (p < minimal) {
deba@1724
   253
	minimal = p;
deba@1724
   254
      }
deba@1724
   255
      lace(idx);
deba@1724
   256
    }
deba@1724
   257
    
deba@1724
   258
    /// \brief Increases the priority of \c i to \c p.
deba@1724
   259
    ///
deba@1724
   260
    /// This method sets the priority of item \c i to \c p. 
deba@1724
   261
    /// \pre \c i must be stored in the heap with priority at most \c
deba@1724
   262
    /// p relative to \c Compare.
deba@1724
   263
    /// \param i The item.
deba@1724
   264
    /// \param p The priority.
deba@1724
   265
    void increase(const Item &i, const Prio &p) {
deba@1724
   266
      int idx = index[i];
deba@1724
   267
      unlace(idx);
deba@1724
   268
      data[idx].value = p;
deba@1724
   269
      lace(idx);
deba@1724
   270
    }
deba@1724
   271
deba@1724
   272
    /// \brief Returns if \c item is in, has already been in, or has 
deba@1724
   273
    /// never been in the heap.
deba@1724
   274
    ///
deba@1724
   275
    /// This method returns PRE_HEAP if \c item has never been in the
deba@1724
   276
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
deba@1724
   277
    /// otherwise. In the latter case it is possible that \c item will
deba@1724
   278
    /// get back to the heap again.
deba@1724
   279
    /// \param i The item.
deba@1724
   280
    state_enum state(const Item &i) const {
deba@1724
   281
      int idx = index[i];
deba@1724
   282
      if (idx >= 0) idx = 0;
deba@1724
   283
      return state_enum(idx);
deba@1724
   284
    }
deba@1724
   285
deba@1902
   286
    /// \brief Sets the state of the \c item in the heap.
deba@1902
   287
    ///
deba@1902
   288
    /// Sets the state of the \c item in the heap. It can be used to
deba@1902
   289
    /// manually clear the heap when it is important to achive the
deba@1902
   290
    /// better time complexity.
deba@1902
   291
    /// \param i The item.
deba@1902
   292
    /// \param st The state. It should not be \c IN_HEAP. 
deba@1902
   293
    void state(const Item& i, state_enum st) {
deba@1902
   294
      switch (st) {
deba@1902
   295
      case POST_HEAP:
deba@1902
   296
      case PRE_HEAP:
deba@1902
   297
        if (state(i) == IN_HEAP) {
deba@1902
   298
          erase(i);
deba@1902
   299
        }
deba@1902
   300
        index[i] = st;
deba@1902
   301
        break;
deba@1906
   302
      case IN_HEAP:
deba@1906
   303
        break;
deba@1902
   304
      }
deba@1902
   305
    }
deba@1902
   306
deba@1724
   307
  private:
deba@1724
   308
deba@1724
   309
    struct LinearItem {
deba@1724
   310
      LinearItem(const Item& _item, int _value) 
deba@1724
   311
	: item(_item), value(_value) {}
deba@1724
   312
deba@1724
   313
      Item item;
deba@1724
   314
      int value;
deba@1724
   315
deba@1724
   316
      int prev, next;
deba@1724
   317
    };
deba@1724
   318
deba@1724
   319
    ItemIntMap& index;
deba@1724
   320
    std::vector<int> first;
deba@1724
   321
    std::vector<LinearItem> data;
deba@1724
   322
    mutable int minimal;
deba@1724
   323
deba@1724
   324
  }; // class LinearHeap
deba@1724
   325
deba@1724
   326
deba@1724
   327
  template <typename _Item, typename _ItemIntMap>
deba@1724
   328
  class LinearHeap<_Item, _ItemIntMap, false> {
deba@1724
   329
deba@1724
   330
  public:
deba@1724
   331
    typedef _Item Item;
deba@1724
   332
    typedef int Prio;
deba@1724
   333
    typedef std::pair<Item, Prio> Pair;
deba@1724
   334
    typedef _ItemIntMap ItemIntMap;
deba@1724
   335
deba@1724
   336
    enum state_enum {
deba@1724
   337
      IN_HEAP = 0,
deba@1724
   338
      PRE_HEAP = -1,
deba@1724
   339
      POST_HEAP = -2
deba@1724
   340
    };
deba@1724
   341
deba@1724
   342
  public:
deba@1724
   343
deba@1724
   344
    explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
deba@1724
   345
deba@1724
   346
    int size() const { return data.size(); }
deba@1724
   347
    bool empty() const { return data.empty(); }
deba@1724
   348
deba@1724
   349
    void clear() { 
deba@1724
   350
      for (int i = 0; i < (int)data.size(); ++i) {
deba@1724
   351
	index[data[i].item] = -2;
deba@1724
   352
      }
deba@1724
   353
      data.clear(); first.clear(); maximal = -1; 
deba@1724
   354
    }
deba@1724
   355
deba@1724
   356
  private:
deba@1724
   357
deba@1724
   358
    void relocate_last(int idx) {
deba@1724
   359
      if (idx + 1 != (int)data.size()) {
deba@1724
   360
	data[idx] = data.back();
deba@1724
   361
	if (data[idx].prev != -1) {
deba@1724
   362
	  data[data[idx].prev].next = idx;
deba@1724
   363
	} else {
deba@1724
   364
	  first[data[idx].value] = idx;
deba@1724
   365
	}
deba@1724
   366
	if (data[idx].next != -1) {
deba@1724
   367
	  data[data[idx].next].prev = idx;
deba@1724
   368
	}
deba@1724
   369
	index[data[idx].item] = idx;
deba@1724
   370
      }
deba@1724
   371
      data.pop_back();
deba@1724
   372
    }
deba@1724
   373
deba@1724
   374
    void unlace(int idx) {
deba@1724
   375
      if (data[idx].prev != -1) {
deba@1724
   376
	data[data[idx].prev].next = data[idx].next;
deba@1724
   377
      } else {
deba@1724
   378
	first[data[idx].value] = data[idx].next;
deba@1724
   379
      }
deba@1724
   380
      if (data[idx].next != -1) {
deba@1724
   381
	data[data[idx].next].prev = data[idx].prev;
deba@1724
   382
      }
deba@1724
   383
    }
deba@1724
   384
deba@1724
   385
    void lace(int idx) {
deba@1724
   386
      if ((int)first.size() <= data[idx].value) {
deba@1724
   387
	first.resize(data[idx].value + 1, -1);
deba@1724
   388
      }
deba@1724
   389
      data[idx].next = first[data[idx].value];
deba@1724
   390
      if (data[idx].next != -1) {
deba@1724
   391
	data[data[idx].next].prev = idx;
deba@1724
   392
      }
deba@1724
   393
      first[data[idx].value] = idx;
deba@1724
   394
      data[idx].prev = -1;
deba@1724
   395
    }
deba@1724
   396
deba@1724
   397
  public:
deba@1724
   398
deba@1724
   399
    void push(const Pair& p) {
deba@1724
   400
      push(p.first, p.second);
deba@1724
   401
    }
deba@1724
   402
deba@1724
   403
    void push(const Item &i, const Prio &p) { 
deba@1724
   404
      int idx = data.size();
deba@1724
   405
      index[i] = idx;
deba@1724
   406
      data.push_back(LinearItem(i, p));
deba@1724
   407
      lace(idx);
deba@1724
   408
      if (data[idx].value > maximal) {
deba@1724
   409
	maximal = data[idx].value;
deba@1724
   410
      }
deba@1724
   411
    }
deba@1724
   412
deba@1724
   413
    Item top() const {
deba@1724
   414
      while (first[maximal] == -1) {
deba@1724
   415
	--maximal;
deba@1724
   416
      }
deba@1724
   417
      return data[first[maximal]].item;
deba@1724
   418
    }
deba@1724
   419
deba@1724
   420
    Prio prio() const {
deba@1724
   421
      while (first[maximal] == -1) {
deba@1724
   422
	--maximal;
deba@1724
   423
      }
deba@1724
   424
      return maximal;
deba@1724
   425
    }
deba@1724
   426
deba@1724
   427
    void pop() {
deba@1724
   428
      while (first[maximal] == -1) {
deba@1724
   429
	--maximal;
deba@1724
   430
      }
deba@1724
   431
      int idx = first[maximal];
deba@1724
   432
      index[data[idx].item] = -2;
deba@1724
   433
      unlace(idx);
deba@1724
   434
      relocate_last(idx);
deba@1724
   435
    }
deba@1724
   436
deba@1724
   437
    void erase(const Item &i) {
deba@1724
   438
      int idx = index[i];
deba@1724
   439
      index[data[idx].item] = -2;
deba@1724
   440
      unlace(idx);
deba@1724
   441
      relocate_last(idx);
deba@1724
   442
    }
deba@1724
   443
deba@1724
   444
    Prio operator[](const Item &i) const {
deba@1724
   445
      int idx = index[i];
deba@1724
   446
      return data[idx].value;
deba@1724
   447
    }
deba@1724
   448
deba@1724
   449
    void set(const Item &i, const Prio &p) {
deba@1724
   450
      int idx = index[i];
deba@1724
   451
      if (idx < 0) {
deba@1724
   452
	push(i,p);
deba@1724
   453
      } else if (p > data[idx].value) {
deba@1724
   454
	decrease(i, p);
deba@1724
   455
      } else {
deba@1724
   456
	increase(i, p);
deba@1724
   457
      }
deba@1724
   458
    }
deba@1724
   459
deba@1724
   460
    void decrease(const Item &i, const Prio &p) {
deba@1724
   461
      int idx = index[i];
deba@1724
   462
      unlace(idx);
deba@1724
   463
      data[idx].value = p;
deba@1724
   464
      if (p > maximal) {
deba@1724
   465
	maximal = p;
deba@1724
   466
      }
deba@1724
   467
      lace(idx);
deba@1724
   468
    }
deba@1724
   469
    
deba@1724
   470
    void increase(const Item &i, const Prio &p) {
deba@1724
   471
      int idx = index[i];
deba@1724
   472
      unlace(idx);
deba@1724
   473
      data[idx].value = p;
deba@1724
   474
      lace(idx);
deba@1724
   475
    }
deba@1724
   476
deba@1724
   477
    state_enum state(const Item &i) const {
deba@1724
   478
      int idx = index[i];
deba@1724
   479
      if (idx >= 0) idx = 0;
deba@1724
   480
      return state_enum(idx);
deba@1724
   481
    }
deba@1724
   482
deba@1902
   483
    void state(const Item& i, state_enum st) {
deba@1902
   484
      switch (st) {
deba@1902
   485
      case POST_HEAP:
deba@1902
   486
      case PRE_HEAP:
deba@1902
   487
        if (state(i) == IN_HEAP) {
deba@1902
   488
          erase(i);
deba@1902
   489
        }
deba@1902
   490
        index[i] = st;
deba@1902
   491
        break;
deba@1906
   492
      case IN_HEAP:
deba@1906
   493
        break;
deba@1902
   494
      }
deba@1902
   495
    }
deba@1902
   496
deba@1724
   497
  private:
deba@1724
   498
deba@1724
   499
    struct LinearItem {
deba@1724
   500
      LinearItem(const Item& _item, int _value) 
deba@1724
   501
	: item(_item), value(_value) {}
deba@1724
   502
deba@1724
   503
      Item item;
deba@1724
   504
      int value;
deba@1724
   505
deba@1724
   506
      int prev, next;
deba@1724
   507
    };
deba@1724
   508
deba@1724
   509
    ItemIntMap& index;
deba@1724
   510
    std::vector<int> first;
deba@1724
   511
    std::vector<LinearItem> data;
deba@1724
   512
    mutable int maximal;
deba@1724
   513
deba@1724
   514
  }; // class LinearHeap
deba@1724
   515
deba@1724
   516
}
deba@1724
   517
  
deba@1724
   518
#endif