lemon/kruskal.h
author deba
Mon, 27 Feb 2006 10:36:01 +0000
changeset 1986 9b56cca61e2e
parent 1956 a055123339d5
child 1993 2115143eceea
permissions -rw-r--r--
An additional simplier interface for static size graphs.
Node operator()(int) for getting node by index
int index(Node node) for getting index by node
alpar@906
     1
/* -*- C++ -*-
alpar@906
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     8
 *
alpar@906
     9
 * Permission to use, modify and distribute this software is granted
alpar@906
    10
 * provided that this copyright notice appears in all copies. For
alpar@906
    11
 * precise terms see the accompanying LICENSE file.
alpar@906
    12
 *
alpar@906
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    14
 * express or implied, and with no claim as to its suitability for any
alpar@906
    15
 * purpose.
alpar@906
    16
 *
alpar@906
    17
 */
alpar@906
    18
alpar@921
    19
#ifndef LEMON_KRUSKAL_H
alpar@921
    20
#define LEMON_KRUSKAL_H
alpar@810
    21
alpar@810
    22
#include <algorithm>
klao@1942
    23
#include <vector>
alpar@921
    24
#include <lemon/unionfind.h>
klao@1942
    25
#include <lemon/utility.h>
deba@1979
    26
#include <lemon/traits.h>
alpar@810
    27
alpar@810
    28
/**
alpar@810
    29
@defgroup spantree Minimum Cost Spanning Tree Algorithms
alpar@810
    30
@ingroup galgs
alpar@810
    31
\brief This group containes the algorithms for finding a minimum cost spanning
alpar@810
    32
tree in a graph
alpar@810
    33
alpar@810
    34
This group containes the algorithms for finding a minimum cost spanning
alpar@810
    35
tree in a graph
alpar@810
    36
*/
alpar@810
    37
alpar@810
    38
///\ingroup spantree
alpar@810
    39
///\file
alpar@810
    40
///\brief Kruskal's algorithm to compute a minimum cost tree
alpar@810
    41
///
alpar@810
    42
///Kruskal's algorithm to compute a minimum cost tree.
alpar@1557
    43
///
alpar@1557
    44
///\todo The file still needs some clean-up.
alpar@810
    45
alpar@921
    46
namespace lemon {
alpar@810
    47
alpar@810
    48
  /// \addtogroup spantree
alpar@810
    49
  /// @{
alpar@810
    50
alpar@810
    51
  /// Kruskal's algorithm to find a minimum cost tree of a graph.
alpar@810
    52
alpar@810
    53
  /// This function runs Kruskal's algorithm to find a minimum cost tree.
alpar@1557
    54
  /// Due to hard C++ hacking, it accepts various input and output types.
alpar@1557
    55
  ///
alpar@1555
    56
  /// \param g The graph the algorithm runs on.
alpar@1555
    57
  /// It can be either \ref concept::StaticGraph "directed" or 
klao@1909
    58
  /// \ref concept::UGraph "undirected".
alpar@1555
    59
  /// If the graph is directed, the algorithm consider it to be 
alpar@1555
    60
  /// undirected by disregarding the direction of the edges.
alpar@810
    61
  ///
alpar@1557
    62
  /// \param in This object is used to describe the edge costs. It can be one
alpar@1557
    63
  /// of the following choices.
alpar@1557
    64
  /// - An STL compatible 'Forward Container'
alpar@824
    65
  /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
alpar@1557
    66
  /// where \c X is the type of the costs. The pairs indicates the edges along
alpar@1557
    67
  /// with the assigned cost. <em>They must be in a
alpar@1557
    68
  /// cost-ascending order.</em>
alpar@1557
    69
  /// - Any readable Edge map. The values of the map indicate the edge costs.
alpar@810
    70
  ///
alpar@1557
    71
  /// \retval out Here we also have a choise.
alpar@1557
    72
  /// - Is can be a writable \c bool edge map. 
alpar@810
    73
  /// After running the algorithm
alpar@810
    74
  /// this will contain the found minimum cost spanning tree: the value of an
alpar@810
    75
  /// edge will be set to \c true if it belongs to the tree, otherwise it will
alpar@810
    76
  /// be set to \c false. The value of each edge will be set exactly once.
alpar@1557
    77
  /// - It can also be an iteraror of an STL Container with
alpar@1557
    78
  /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
alpar@1557
    79
  /// The algorithm copies the elements of the found tree into this sequence.
alpar@1557
    80
  /// For example, if we know that the spanning tree of the graph \c g has
alpar@1603
    81
  /// say 53 edges, then
alpar@1557
    82
  /// we can put its edges into a STL vector \c tree with a code like this.
alpar@1946
    83
  ///\code
alpar@1557
    84
  /// std::vector<Edge> tree(53);
alpar@1557
    85
  /// kruskal(g,cost,tree.begin());
alpar@1946
    86
  ///\endcode
alpar@1557
    87
  /// Or if we don't know in advance the size of the tree, we can write this.
alpar@1946
    88
  ///\code
alpar@1557
    89
  /// std::vector<Edge> tree;
alpar@1557
    90
  /// kruskal(g,cost,std::back_inserter(tree));
alpar@1946
    91
  ///\endcode
alpar@810
    92
  ///
alpar@810
    93
  /// \return The cost of the found tree.
alpar@1449
    94
  ///
alpar@1631
    95
  /// \warning If kruskal is run on an
klao@1909
    96
  /// \ref lemon::concept::UGraph "undirected graph", be sure that the
alpar@1603
    97
  /// map storing the tree is also undirected
klao@1909
    98
  /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
alpar@1603
    99
  /// half of the edges will not be set.
alpar@1603
   100
  ///
alpar@1449
   101
  /// \todo Discuss the case of undirected graphs: In this case the algorithm
klao@1909
   102
  /// also require <tt>Edge</tt>s instead of <tt>UEdge</tt>s, as some
alpar@1449
   103
  /// people would expect. So, one should be careful not to add both of the
klao@1909
   104
  /// <tt>Edge</tt>s belonging to a certain <tt>UEdge</tt>.
alpar@1570
   105
  /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
alpar@810
   106
alpar@1557
   107
#ifdef DOXYGEN
alpar@824
   108
  template <class GR, class IN, class OUT>
alpar@824
   109
  typename IN::value_type::second_type
alpar@1547
   110
  kruskal(GR const& g, IN const& in, 
alpar@1557
   111
	  OUT& out)
alpar@1557
   112
#else
alpar@1557
   113
  template <class GR, class IN, class OUT>
alpar@1557
   114
  typename IN::value_type::second_type
alpar@1557
   115
  kruskal(GR const& g, IN const& in, 
alpar@1557
   116
	  OUT& out,
alpar@1557
   117
// 	  typename IN::value_type::first_type = typename GR::Edge()
alpar@1557
   118
// 	  ,typename OUT::Key = OUT::Key()
alpar@1557
   119
// 	  //,typename OUT::Key = typename GR::Edge()
alpar@1557
   120
	  const typename IN::value_type::first_type * = 
alpar@1557
   121
	  (const typename IN::value_type::first_type *)(0),
alpar@1557
   122
	  const typename OUT::Key * = (const typename OUT::Key *)(0)
alpar@1557
   123
	  )
alpar@1557
   124
#endif
alpar@810
   125
  {
alpar@824
   126
    typedef typename IN::value_type::second_type EdgeCost;
alpar@824
   127
    typedef typename GR::template NodeMap<int> NodeIntMap;
alpar@824
   128
    typedef typename GR::Node Node;
alpar@810
   129
alpar@1547
   130
    NodeIntMap comp(g, -1);
alpar@810
   131
    UnionFind<Node,NodeIntMap> uf(comp); 
alpar@810
   132
      
alpar@810
   133
    EdgeCost tot_cost = 0;
alpar@824
   134
    for (typename IN::const_iterator p = in.begin(); 
alpar@810
   135
	 p!=in.end(); ++p ) {
alpar@1547
   136
      if ( uf.join(g.target((*p).first),
alpar@1547
   137
		   g.source((*p).first)) ) {
alpar@810
   138
	out.set((*p).first, true);
alpar@810
   139
	tot_cost += (*p).second;
alpar@810
   140
      }
alpar@810
   141
      else {
alpar@810
   142
	out.set((*p).first, false);
alpar@810
   143
      }
alpar@810
   144
    }
alpar@810
   145
    return tot_cost;
alpar@810
   146
  }
alpar@810
   147
alpar@1557
   148
 
alpar@1557
   149
  /// @}
alpar@1557
   150
alpar@1557
   151
  
alpar@810
   152
  /* A work-around for running Kruskal with const-reference bool maps... */
alpar@810
   153
klao@885
   154
  /// Helper class for calling kruskal with "constant" output map.
klao@885
   155
klao@885
   156
  /// Helper class for calling kruskal with output maps constructed
klao@885
   157
  /// on-the-fly.
alpar@810
   158
  ///
klao@885
   159
  /// A typical examle is the following call:
alpar@1547
   160
  /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
klao@885
   161
  /// Here, the third argument is a temporary object (which wraps around an
klao@885
   162
  /// iterator with a writable bool map interface), and thus by rules of C++
klao@885
   163
  /// is a \c const object. To enable call like this exist this class and
klao@885
   164
  /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
klao@885
   165
  /// third argument.
alpar@824
   166
  template<class Map>
alpar@810
   167
  class NonConstMapWr {
alpar@810
   168
    const Map &m;
alpar@810
   169
  public:
alpar@1557
   170
    typedef typename Map::Key Key;
alpar@987
   171
    typedef typename Map::Value Value;
alpar@810
   172
alpar@810
   173
    NonConstMapWr(const Map &_m) : m(_m) {}
alpar@810
   174
alpar@987
   175
    template<class Key>
alpar@987
   176
    void set(Key const& k, Value const &v) const { m.set(k,v); }
alpar@810
   177
  };
alpar@810
   178
alpar@824
   179
  template <class GR, class IN, class OUT>
alpar@810
   180
  inline
klao@885
   181
  typename IN::value_type::second_type
alpar@1557
   182
  kruskal(GR const& g, IN const& edges, OUT const& out_map,
alpar@1557
   183
// 	  typename IN::value_type::first_type = typename GR::Edge(),
alpar@1557
   184
// 	  typename OUT::Key = GR::Edge()
alpar@1557
   185
	  const typename IN::value_type::first_type * = 
alpar@1557
   186
	  (const typename IN::value_type::first_type *)(0),
alpar@1557
   187
	  const typename OUT::Key * = (const typename OUT::Key *)(0)
alpar@1557
   188
	  )
alpar@810
   189
  {
alpar@824
   190
    NonConstMapWr<OUT> map_wr(out_map);
alpar@1547
   191
    return kruskal(g, edges, map_wr);
alpar@810
   192
  }  
alpar@810
   193
alpar@810
   194
  /* ** ** Input-objects ** ** */
alpar@810
   195
zsuzska@1274
   196
  /// Kruskal's input source.
alpar@1557
   197
 
zsuzska@1274
   198
  /// Kruskal's input source.
alpar@810
   199
  ///
alpar@1570
   200
  /// In most cases you possibly want to use the \ref kruskal() instead.
alpar@810
   201
  ///
alpar@810
   202
  /// \sa makeKruskalMapInput()
alpar@810
   203
  ///
alpar@824
   204
  ///\param GR The type of the graph the algorithm runs on.
alpar@810
   205
  ///\param Map An edge map containing the cost of the edges.
alpar@810
   206
  ///\par
alpar@810
   207
  ///The cost type can be any type satisfying
alpar@810
   208
  ///the STL 'LessThan comparable'
alpar@810
   209
  ///concept if it also has an operator+() implemented. (It is necessary for
alpar@810
   210
  ///computing the total cost of the tree).
alpar@810
   211
  ///
alpar@824
   212
  template<class GR, class Map>
alpar@810
   213
  class KruskalMapInput
alpar@824
   214
    : public std::vector< std::pair<typename GR::Edge,
alpar@987
   215
				    typename Map::Value> > {
alpar@810
   216
    
alpar@810
   217
  public:
alpar@824
   218
    typedef std::vector< std::pair<typename GR::Edge,
alpar@987
   219
				   typename Map::Value> > Parent;
alpar@810
   220
    typedef typename Parent::value_type value_type;
alpar@810
   221
alpar@810
   222
  private:
alpar@810
   223
    class comparePair {
alpar@810
   224
    public:
alpar@810
   225
      bool operator()(const value_type& a,
alpar@810
   226
		      const value_type& b) {
alpar@810
   227
	return a.second < b.second;
alpar@810
   228
      }
alpar@810
   229
    };
alpar@810
   230
alpar@1449
   231
    template<class _GR>
deba@1979
   232
    typename enable_if<UndirectedTagIndicator<_GR>,void>::type
alpar@1547
   233
    fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
alpar@1449
   234
    {
klao@1909
   235
      for(typename GR::UEdgeIt e(g);e!=INVALID;++e) 
deba@1679
   236
	push_back(value_type(g.direct(e, true), m[e]));
alpar@1449
   237
    }
alpar@1449
   238
alpar@1449
   239
    template<class _GR>
deba@1979
   240
    typename disable_if<UndirectedTagIndicator<_GR>,void>::type
alpar@1547
   241
    fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
alpar@1449
   242
    {
alpar@1547
   243
      for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
alpar@1449
   244
	push_back(value_type(e, m[e]));
alpar@1449
   245
    }
alpar@1449
   246
    
alpar@1449
   247
    
alpar@810
   248
  public:
alpar@810
   249
alpar@810
   250
    void sort() {
alpar@810
   251
      std::sort(this->begin(), this->end(), comparePair());
alpar@810
   252
    }
alpar@810
   253
alpar@1547
   254
    KruskalMapInput(GR const& g, Map const& m) {
alpar@1547
   255
      fillWithEdges(g,m); 
alpar@810
   256
      sort();
alpar@810
   257
    }
alpar@810
   258
  };
alpar@810
   259
alpar@810
   260
  /// Creates a KruskalMapInput object for \ref kruskal()
alpar@810
   261
zsuzska@1274
   262
  /// It makes easier to use 
alpar@810
   263
  /// \ref KruskalMapInput by making it unnecessary 
alpar@810
   264
  /// to explicitly give the type of the parameters.
alpar@810
   265
  ///
alpar@810
   266
  /// In most cases you possibly
alpar@1570
   267
  /// want to use \ref kruskal() instead.
alpar@810
   268
  ///
alpar@1547
   269
  ///\param g The type of the graph the algorithm runs on.
alpar@810
   270
  ///\param m An edge map containing the cost of the edges.
alpar@810
   271
  ///\par
alpar@810
   272
  ///The cost type can be any type satisfying the
alpar@810
   273
  ///STL 'LessThan Comparable'
alpar@810
   274
  ///concept if it also has an operator+() implemented. (It is necessary for
alpar@810
   275
  ///computing the total cost of the tree).
alpar@810
   276
  ///
alpar@810
   277
  ///\return An appropriate input source for \ref kruskal().
alpar@810
   278
  ///
alpar@824
   279
  template<class GR, class Map>
alpar@810
   280
  inline
alpar@1547
   281
  KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
alpar@810
   282
  {
alpar@1547
   283
    return KruskalMapInput<GR,Map>(g,m);
alpar@810
   284
  }
alpar@810
   285
  
alpar@810
   286
  
klao@885
   287
klao@885
   288
  /* ** ** Output-objects: simple writable bool maps ** ** */
alpar@810
   289
  
klao@885
   290
klao@885
   291
alpar@810
   292
  /// A writable bool-map that makes a sequence of "true" keys
alpar@810
   293
alpar@810
   294
  /// A writable bool-map that creates a sequence out of keys that receives
alpar@810
   295
  /// the value "true".
klao@885
   296
  ///
klao@885
   297
  /// \sa makeKruskalSequenceOutput()
klao@885
   298
  ///
klao@885
   299
  /// Very often, when looking for a min cost spanning tree, we want as
klao@885
   300
  /// output a container containing the edges of the found tree. For this
klao@885
   301
  /// purpose exist this class that wraps around an STL iterator with a
klao@885
   302
  /// writable bool map interface. When a key gets value "true" this key
klao@885
   303
  /// is added to sequence pointed by the iterator.
klao@885
   304
  ///
klao@885
   305
  /// A typical usage:
alpar@1946
   306
  ///\code
klao@885
   307
  /// std::vector<Graph::Edge> v;
klao@885
   308
  /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
alpar@1946
   309
  ///\endcode
klao@885
   310
  /// 
klao@885
   311
  /// For the most common case, when the input is given by a simple edge
klao@885
   312
  /// map and the output is a sequence of the tree edges, a special
klao@885
   313
  /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
klao@885
   314
  ///
alpar@987
   315
  /// \warning Not a regular property map, as it doesn't know its Key
klao@885
   316
alpar@824
   317
  template<class Iterator>
klao@885
   318
  class KruskalSequenceOutput {
alpar@810
   319
    mutable Iterator it;
alpar@810
   320
alpar@810
   321
  public:
klao@1942
   322
    typedef typename std::iterator_traits<Iterator>::value_type Key;
alpar@987
   323
    typedef bool Value;
alpar@810
   324
klao@885
   325
    KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
alpar@810
   326
alpar@987
   327
    template<typename Key>
alpar@987
   328
    void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
alpar@810
   329
  };
alpar@810
   330
alpar@824
   331
  template<class Iterator>
alpar@810
   332
  inline
klao@885
   333
  KruskalSequenceOutput<Iterator>
klao@885
   334
  makeKruskalSequenceOutput(Iterator it) {
klao@885
   335
    return KruskalSequenceOutput<Iterator>(it);
alpar@810
   336
  }
alpar@810
   337
klao@885
   338
klao@885
   339
alpar@810
   340
  /* ** ** Wrapper funtions ** ** */
alpar@810
   341
alpar@1557
   342
//   \brief Wrapper function to kruskal().
alpar@1557
   343
//   Input is from an edge map, output is a plain bool map.
alpar@1557
   344
//  
alpar@1557
   345
//   Wrapper function to kruskal().
alpar@1557
   346
//   Input is from an edge map, output is a plain bool map.
alpar@1557
   347
//  
alpar@1557
   348
//   \param g The type of the graph the algorithm runs on.
alpar@1557
   349
//   \param in An edge map containing the cost of the edges.
alpar@1557
   350
//   \par
alpar@1557
   351
//   The cost type can be any type satisfying the
alpar@1557
   352
//   STL 'LessThan Comparable'
alpar@1557
   353
//   concept if it also has an operator+() implemented. (It is necessary for
alpar@1557
   354
//   computing the total cost of the tree).
alpar@1557
   355
//  
alpar@1557
   356
//   \retval out This must be a writable \c bool edge map.
alpar@1557
   357
//   After running the algorithm
alpar@1557
   358
//   this will contain the found minimum cost spanning tree: the value of an
alpar@1557
   359
//   edge will be set to \c true if it belongs to the tree, otherwise it will
alpar@1557
   360
//   be set to \c false. The value of each edge will be set exactly once.
alpar@1557
   361
//  
alpar@1557
   362
//   \return The cost of the found tree.
alpar@810
   363
alpar@824
   364
  template <class GR, class IN, class RET>
alpar@810
   365
  inline
alpar@987
   366
  typename IN::Value
alpar@1557
   367
  kruskal(GR const& g,
alpar@1557
   368
	  IN const& in,
alpar@1557
   369
	  RET &out,
alpar@1557
   370
	  //	  typename IN::Key = typename GR::Edge(),
alpar@1557
   371
	  //typename IN::Key = typename IN::Key (),
alpar@1557
   372
	  //	  typename RET::Key = typename GR::Edge()
alpar@1557
   373
	  const typename IN::Key *  = (const typename IN::Key *)(0),
alpar@1557
   374
	  const typename RET::Key * = (const typename RET::Key *)(0)
alpar@1557
   375
	  )
alpar@1557
   376
  {
alpar@1547
   377
    return kruskal(g,
alpar@1547
   378
		   KruskalMapInput<GR,IN>(g,in),
alpar@810
   379
		   out);
alpar@810
   380
  }
alpar@810
   381
alpar@1557
   382
//   \brief Wrapper function to kruskal().
alpar@1557
   383
//   Input is from an edge map, output is an STL Sequence.
alpar@1557
   384
//  
alpar@1557
   385
//   Wrapper function to kruskal().
alpar@1557
   386
//   Input is from an edge map, output is an STL Sequence.
alpar@1557
   387
//  
alpar@1557
   388
//   \param g The type of the graph the algorithm runs on.
alpar@1557
   389
//   \param in An edge map containing the cost of the edges.
alpar@1557
   390
//   \par
alpar@1557
   391
//   The cost type can be any type satisfying the
alpar@1557
   392
//   STL 'LessThan Comparable'
alpar@1557
   393
//   concept if it also has an operator+() implemented. (It is necessary for
alpar@1557
   394
//   computing the total cost of the tree).
alpar@1557
   395
//  
alpar@1557
   396
//   \retval out This must be an iteraror of an STL Container with
alpar@1557
   397
//   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
alpar@1557
   398
//   The algorithm copies the elements of the found tree into this sequence.
alpar@1557
   399
//   For example, if we know that the spanning tree of the graph \c g has
alpar@1603
   400
//   say 53 edges, then
alpar@1557
   401
//   we can put its edges into a STL vector \c tree with a code like this.
alpar@1946
   402
//\code
alpar@1557
   403
//   std::vector<Edge> tree(53);
alpar@1570
   404
//   kruskal(g,cost,tree.begin());
alpar@1946
   405
//\endcode
alpar@1557
   406
//   Or if we don't know in advance the size of the tree, we can write this.
alpar@1946
   407
//\code
alpar@1557
   408
//   std::vector<Edge> tree;
alpar@1570
   409
//   kruskal(g,cost,std::back_inserter(tree));
alpar@1946
   410
//\endcode
alpar@1557
   411
//  
alpar@1557
   412
//   \return The cost of the found tree.
alpar@1557
   413
//  
alpar@1557
   414
//   \bug its name does not follow the coding style.
klao@885
   415
alpar@824
   416
  template <class GR, class IN, class RET>
alpar@810
   417
  inline
alpar@987
   418
  typename IN::Value
alpar@1557
   419
  kruskal(const GR& g,
alpar@1557
   420
	  const IN& in,
alpar@1557
   421
	  RET out,
alpar@1557
   422
	  const typename RET::value_type * = 
alpar@1557
   423
	  (const typename RET::value_type *)(0)
alpar@1557
   424
	  )
alpar@810
   425
  {
klao@885
   426
    KruskalSequenceOutput<RET> _out(out);
alpar@1547
   427
    return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
alpar@810
   428
  }
alpar@1557
   429
 
klao@1942
   430
  template <class GR, class IN, class RET>
klao@1942
   431
  inline
klao@1942
   432
  typename IN::Value
klao@1942
   433
  kruskal(const GR& g,
klao@1942
   434
	  const IN& in,
klao@1942
   435
	  RET *out
klao@1942
   436
	  )
klao@1942
   437
  {
klao@1942
   438
    KruskalSequenceOutput<RET*> _out(out);
klao@1942
   439
    return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
klao@1942
   440
  }
klao@1942
   441
 
alpar@810
   442
  /// @}
alpar@810
   443
alpar@921
   444
} //namespace lemon
alpar@810
   445
alpar@921
   446
#endif //LEMON_KRUSKAL_H