lemon/linear_heap.h
author deba
Mon, 27 Feb 2006 10:36:01 +0000
changeset 1986 9b56cca61e2e
parent 1906 7fa90b66ca9e
permissions -rw-r--r--
An additional simplier interface for static size graphs.
Node operator()(int) for getting node by index
int index(Node node) for getting index by node
deba@1724
     1
/* -*- C++ -*-
deba@1724
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@1724
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1724
     8
 *
deba@1724
     9
 * Permission to use, modify and distribute this software is granted
deba@1724
    10
 * provided that this copyright notice appears in all copies. For
deba@1724
    11
 * precise terms see the accompanying LICENSE file.
deba@1724
    12
 *
deba@1724
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@1724
    14
 * express or implied, and with no claim as to its suitability for any
deba@1724
    15
 * purpose.
deba@1724
    16
 *
deba@1724
    17
 */
deba@1724
    18
deba@1724
    19
#ifndef LEMON_LINEAR_HEAP_H
deba@1724
    20
#define LEMON_LINEAR_HEAP_H
deba@1724
    21
deba@1724
    22
///\ingroup auxdat
deba@1724
    23
///\file
deba@1724
    24
///\brief Binary Heap implementation.
deba@1724
    25
deba@1724
    26
#include <vector>
deba@1724
    27
#include <utility>
deba@1724
    28
#include <functional>
deba@1724
    29
deba@1724
    30
namespace lemon {
deba@1724
    31
deba@1834
    32
  /// \ingroup auxdat
deba@1724
    33
deba@1724
    34
  /// \brief A Linear Heap implementation.
deba@1724
    35
  ///
deba@1724
    36
  /// This class implements the \e linear \e heap data structure. A \e heap
deba@1724
    37
  /// is a data structure for storing items with specified values called \e
deba@1724
    38
  /// priorities in such a way that finding the item with minimum priority is
deba@1724
    39
  /// efficient. The linear heap is very simple implementation, it can store
deba@1724
    40
  /// only integer priorities and it stores for each priority in the [0..C]
deba@1724
    41
  /// range a list of items. So it should be used only when the priorities
deba@1724
    42
  /// are small. It is not intended to use as dijkstra heap.
deba@1724
    43
  ///
deba@1724
    44
  /// \param _Item Type of the items to be stored.  
deba@1724
    45
  /// \param _ItemIntMap A read and writable Item int map, used internally
deba@1724
    46
  /// to handle the cross references.
deba@1724
    47
  /// \param minimize If the given parameter is true then the heap gives back
deba@1724
    48
  /// the lowest priority. 
deba@1724
    49
  template <typename _Item, typename _ItemIntMap, bool minimize = true >
deba@1724
    50
  class LinearHeap {
deba@1724
    51
deba@1724
    52
  public:
deba@1724
    53
    typedef _Item Item;
deba@1724
    54
    typedef int Prio;
deba@1724
    55
    typedef std::pair<Item, Prio> Pair;
deba@1724
    56
    typedef _ItemIntMap ItemIntMap;
deba@1724
    57
deba@1724
    58
    /// \brief Type to represent the items states.
deba@1724
    59
    ///
deba@1724
    60
    /// Each Item element have a state associated to it. It may be "in heap",
deba@1724
    61
    /// "pre heap" or "post heap". The latter two are indifferent from the
deba@1724
    62
    /// heap's point of view, but may be useful to the user.
deba@1724
    63
    ///
deba@1724
    64
    /// The ItemIntMap \e should be initialized in such way that it maps
deba@1724
    65
    /// PRE_HEAP (-1) to any element to be put in the heap...
deba@1724
    66
    enum state_enum {
deba@1724
    67
      IN_HEAP = 0,
deba@1724
    68
      PRE_HEAP = -1,
deba@1724
    69
      POST_HEAP = -2
deba@1724
    70
    };
deba@1724
    71
deba@1724
    72
  public:
deba@1724
    73
    /// \brief The constructor.
deba@1724
    74
    ///
deba@1724
    75
    /// The constructor.
deba@1724
    76
    /// \param _index should be given to the constructor, since it is used
deba@1724
    77
    /// internally to handle the cross references. The value of the map
deba@1724
    78
    /// should be PRE_HEAP (-1) for each element.
deba@1724
    79
    explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
deba@1724
    80
    
deba@1724
    81
    /// The number of items stored in the heap.
deba@1724
    82
    ///
deba@1724
    83
    /// \brief Returns the number of items stored in the heap.
deba@1724
    84
    int size() const { return data.size(); }
deba@1724
    85
    
deba@1724
    86
    /// \brief Checks if the heap stores no items.
deba@1724
    87
    ///
deba@1724
    88
    /// Returns \c true if and only if the heap stores no items.
deba@1724
    89
    bool empty() const { return data.empty(); }
deba@1724
    90
deba@1724
    91
    /// \brief Make empty this heap.
deba@1724
    92
    /// 
deba@1724
    93
    /// Make empty this heap.
deba@1724
    94
    void clear() { 
deba@1724
    95
      for (int i = 0; i < (int)data.size(); ++i) {
deba@1724
    96
	index[data[i].item] = -2;
deba@1724
    97
      }
deba@1724
    98
      data.clear(); first.clear(); minimal = 0;
deba@1724
    99
    }
deba@1724
   100
deba@1724
   101
  private:
deba@1724
   102
deba@1724
   103
    void relocate_last(int idx) {
deba@1724
   104
      if (idx + 1 < (int)data.size()) {
deba@1724
   105
	data[idx] = data.back();
deba@1724
   106
	if (data[idx].prev != -1) {
deba@1724
   107
	  data[data[idx].prev].next = idx;
deba@1724
   108
	} else {
deba@1724
   109
	  first[data[idx].value] = idx;
deba@1724
   110
	}
deba@1724
   111
	if (data[idx].next != -1) {
deba@1724
   112
	  data[data[idx].next].prev = idx;
deba@1724
   113
	}
deba@1724
   114
	index[data[idx].item] = idx;
deba@1724
   115
      }
deba@1724
   116
      data.pop_back();
deba@1724
   117
    }
deba@1724
   118
deba@1724
   119
    void unlace(int idx) {
deba@1724
   120
      if (data[idx].prev != -1) {
deba@1724
   121
	data[data[idx].prev].next = data[idx].next;
deba@1724
   122
      } else {
deba@1724
   123
	first[data[idx].value] = data[idx].next;
deba@1724
   124
      }
deba@1724
   125
      if (data[idx].next != -1) {
deba@1724
   126
	data[data[idx].next].prev = data[idx].prev;
deba@1724
   127
      }
deba@1724
   128
    }
deba@1724
   129
deba@1724
   130
    void lace(int idx) {
deba@1724
   131
      if ((int)first.size() <= data[idx].value) {
deba@1724
   132
	first.resize(data[idx].value + 1, -1);
deba@1724
   133
      }
deba@1724
   134
      data[idx].next = first[data[idx].value];
deba@1724
   135
      if (data[idx].next != -1) {
deba@1724
   136
	data[data[idx].next].prev = idx;
deba@1724
   137
      }
deba@1724
   138
      first[data[idx].value] = idx;
deba@1724
   139
      data[idx].prev = -1;
deba@1724
   140
    }
deba@1724
   141
deba@1724
   142
  public:
deba@1724
   143
    /// \brief Insert a pair of item and priority into the heap.
deba@1724
   144
    ///
deba@1724
   145
    /// Adds \c p.first to the heap with priority \c p.second.
deba@1724
   146
    /// \param p The pair to insert.
deba@1724
   147
    void push(const Pair& p) {
deba@1724
   148
      push(p.first, p.second);
deba@1724
   149
    }
deba@1724
   150
deba@1724
   151
    /// \brief Insert an item into the heap with the given priority.
deba@1724
   152
    ///    
deba@1724
   153
    /// Adds \c i to the heap with priority \c p. 
deba@1724
   154
    /// \param i The item to insert.
deba@1724
   155
    /// \param p The priority of the item.
deba@1724
   156
    void push(const Item &i, const Prio &p) { 
deba@1724
   157
      int idx = data.size();
deba@1724
   158
      index[i] = idx;
deba@1724
   159
      data.push_back(LinearItem(i, p));
deba@1724
   160
      lace(idx);
deba@1724
   161
      if (p < minimal) {
deba@1724
   162
	minimal = p;
deba@1724
   163
      }
deba@1724
   164
    }
deba@1724
   165
deba@1758
   166
    /// \brief Returns the item with minimum priority.
deba@1724
   167
    ///
deba@1758
   168
    /// This method returns the item with minimum priority.
deba@1724
   169
    /// \pre The heap must be nonempty.  
deba@1724
   170
    Item top() const {
deba@1724
   171
      while (first[minimal] == -1) {
deba@1724
   172
	++minimal;
deba@1724
   173
      }
deba@1724
   174
      return data[first[minimal]].item;
deba@1724
   175
    }
deba@1724
   176
deba@1758
   177
    /// \brief Returns the minimum priority.
deba@1724
   178
    ///
deba@1758
   179
    /// It returns the minimum priority.
deba@1724
   180
    /// \pre The heap must be nonempty.
deba@1724
   181
    Prio prio() const {
deba@1724
   182
      while (first[minimal] == -1) {
deba@1724
   183
	++minimal;
deba@1724
   184
      }
deba@1724
   185
      return minimal;
deba@1724
   186
    }
deba@1724
   187
deba@1758
   188
    /// \brief Deletes the item with minimum priority.
deba@1724
   189
    ///
deba@1758
   190
    /// This method deletes the item with minimum priority from the heap.  
deba@1724
   191
    /// \pre The heap must be non-empty.  
deba@1724
   192
    void pop() {
deba@1724
   193
      while (first[minimal] == -1) {
deba@1724
   194
	++minimal;
deba@1724
   195
      }
deba@1724
   196
      int idx = first[minimal];
deba@1724
   197
      index[data[idx].item] = -2;
deba@1724
   198
      unlace(idx);
deba@1724
   199
      relocate_last(idx);
deba@1724
   200
    }
deba@1724
   201
deba@1724
   202
    /// \brief Deletes \c i from the heap.
deba@1724
   203
    ///
deba@1724
   204
    /// This method deletes item \c i from the heap, if \c i was
deba@1724
   205
    /// already stored in the heap.
deba@1724
   206
    /// \param i The item to erase. 
deba@1724
   207
    void erase(const Item &i) {
deba@1724
   208
      int idx = index[i];
deba@1724
   209
      index[data[idx].item] = -2;
deba@1724
   210
      unlace(idx);
deba@1724
   211
      relocate_last(idx);
deba@1724
   212
    }
deba@1724
   213
deba@1724
   214
    
deba@1724
   215
    /// \brief Returns the priority of \c i.
deba@1724
   216
    ///
deba@1724
   217
    /// This function returns the priority of item \c i.  
deba@1724
   218
    /// \pre \c i must be in the heap.
deba@1724
   219
    /// \param i The item.
deba@1724
   220
    Prio operator[](const Item &i) const {
deba@1724
   221
      int idx = index[i];
deba@1724
   222
      return data[idx].value;
deba@1724
   223
    }
deba@1724
   224
deba@1724
   225
    /// \brief \c i gets to the heap with priority \c p independently 
deba@1724
   226
    /// if \c i was already there.
deba@1724
   227
    ///
deba@1724
   228
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
deba@1724
   229
    /// in the heap and sets the priority of \c i to \c p otherwise.
deba@1724
   230
    /// \param i The item.
deba@1724
   231
    /// \param p The priority.
deba@1724
   232
    void set(const Item &i, const Prio &p) {
deba@1724
   233
      int idx = index[i];
deba@1724
   234
      if (idx < 0) {
deba@1724
   235
	push(i,p);
deba@1724
   236
      } else if (p > data[idx].value) {
deba@1724
   237
	increase(i, p);
deba@1724
   238
      } else {
deba@1724
   239
	decrease(i, p);
deba@1724
   240
      }
deba@1724
   241
    }
deba@1724
   242
deba@1724
   243
    /// \brief Decreases the priority of \c i to \c p.
deba@1724
   244
deba@1724
   245
    /// This method decreases the priority of item \c i to \c p.
deba@1724
   246
    /// \pre \c i must be stored in the heap with priority at least \c
deba@1724
   247
    /// p relative to \c Compare.
deba@1724
   248
    /// \param i The item.
deba@1724
   249
    /// \param p The priority.
deba@1724
   250
    void decrease(const Item &i, const Prio &p) {
deba@1724
   251
      int idx = index[i];
deba@1724
   252
      unlace(idx);
deba@1724
   253
      data[idx].value = p;
deba@1724
   254
      if (p < minimal) {
deba@1724
   255
	minimal = p;
deba@1724
   256
      }
deba@1724
   257
      lace(idx);
deba@1724
   258
    }
deba@1724
   259
    
deba@1724
   260
    /// \brief Increases the priority of \c i to \c p.
deba@1724
   261
    ///
deba@1724
   262
    /// This method sets the priority of item \c i to \c p. 
deba@1724
   263
    /// \pre \c i must be stored in the heap with priority at most \c
deba@1724
   264
    /// p relative to \c Compare.
deba@1724
   265
    /// \param i The item.
deba@1724
   266
    /// \param p The priority.
deba@1724
   267
    void increase(const Item &i, const Prio &p) {
deba@1724
   268
      int idx = index[i];
deba@1724
   269
      unlace(idx);
deba@1724
   270
      data[idx].value = p;
deba@1724
   271
      lace(idx);
deba@1724
   272
    }
deba@1724
   273
deba@1724
   274
    /// \brief Returns if \c item is in, has already been in, or has 
deba@1724
   275
    /// never been in the heap.
deba@1724
   276
    ///
deba@1724
   277
    /// This method returns PRE_HEAP if \c item has never been in the
deba@1724
   278
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
deba@1724
   279
    /// otherwise. In the latter case it is possible that \c item will
deba@1724
   280
    /// get back to the heap again.
deba@1724
   281
    /// \param i The item.
deba@1724
   282
    state_enum state(const Item &i) const {
deba@1724
   283
      int idx = index[i];
deba@1724
   284
      if (idx >= 0) idx = 0;
deba@1724
   285
      return state_enum(idx);
deba@1724
   286
    }
deba@1724
   287
deba@1902
   288
    /// \brief Sets the state of the \c item in the heap.
deba@1902
   289
    ///
deba@1902
   290
    /// Sets the state of the \c item in the heap. It can be used to
deba@1902
   291
    /// manually clear the heap when it is important to achive the
deba@1902
   292
    /// better time complexity.
deba@1902
   293
    /// \param i The item.
deba@1902
   294
    /// \param st The state. It should not be \c IN_HEAP. 
deba@1902
   295
    void state(const Item& i, state_enum st) {
deba@1902
   296
      switch (st) {
deba@1902
   297
      case POST_HEAP:
deba@1902
   298
      case PRE_HEAP:
deba@1902
   299
        if (state(i) == IN_HEAP) {
deba@1902
   300
          erase(i);
deba@1902
   301
        }
deba@1902
   302
        index[i] = st;
deba@1902
   303
        break;
deba@1906
   304
      case IN_HEAP:
deba@1906
   305
        break;
deba@1902
   306
      }
deba@1902
   307
    }
deba@1902
   308
deba@1724
   309
  private:
deba@1724
   310
deba@1724
   311
    struct LinearItem {
deba@1724
   312
      LinearItem(const Item& _item, int _value) 
deba@1724
   313
	: item(_item), value(_value) {}
deba@1724
   314
deba@1724
   315
      Item item;
deba@1724
   316
      int value;
deba@1724
   317
deba@1724
   318
      int prev, next;
deba@1724
   319
    };
deba@1724
   320
deba@1724
   321
    ItemIntMap& index;
deba@1724
   322
    std::vector<int> first;
deba@1724
   323
    std::vector<LinearItem> data;
deba@1724
   324
    mutable int minimal;
deba@1724
   325
deba@1724
   326
  }; // class LinearHeap
deba@1724
   327
deba@1724
   328
deba@1724
   329
  template <typename _Item, typename _ItemIntMap>
deba@1724
   330
  class LinearHeap<_Item, _ItemIntMap, false> {
deba@1724
   331
deba@1724
   332
  public:
deba@1724
   333
    typedef _Item Item;
deba@1724
   334
    typedef int Prio;
deba@1724
   335
    typedef std::pair<Item, Prio> Pair;
deba@1724
   336
    typedef _ItemIntMap ItemIntMap;
deba@1724
   337
deba@1724
   338
    enum state_enum {
deba@1724
   339
      IN_HEAP = 0,
deba@1724
   340
      PRE_HEAP = -1,
deba@1724
   341
      POST_HEAP = -2
deba@1724
   342
    };
deba@1724
   343
deba@1724
   344
  public:
deba@1724
   345
deba@1724
   346
    explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
deba@1724
   347
deba@1724
   348
    int size() const { return data.size(); }
deba@1724
   349
    bool empty() const { return data.empty(); }
deba@1724
   350
deba@1724
   351
    void clear() { 
deba@1724
   352
      for (int i = 0; i < (int)data.size(); ++i) {
deba@1724
   353
	index[data[i].item] = -2;
deba@1724
   354
      }
deba@1724
   355
      data.clear(); first.clear(); maximal = -1; 
deba@1724
   356
    }
deba@1724
   357
deba@1724
   358
  private:
deba@1724
   359
deba@1724
   360
    void relocate_last(int idx) {
deba@1724
   361
      if (idx + 1 != (int)data.size()) {
deba@1724
   362
	data[idx] = data.back();
deba@1724
   363
	if (data[idx].prev != -1) {
deba@1724
   364
	  data[data[idx].prev].next = idx;
deba@1724
   365
	} else {
deba@1724
   366
	  first[data[idx].value] = idx;
deba@1724
   367
	}
deba@1724
   368
	if (data[idx].next != -1) {
deba@1724
   369
	  data[data[idx].next].prev = idx;
deba@1724
   370
	}
deba@1724
   371
	index[data[idx].item] = idx;
deba@1724
   372
      }
deba@1724
   373
      data.pop_back();
deba@1724
   374
    }
deba@1724
   375
deba@1724
   376
    void unlace(int idx) {
deba@1724
   377
      if (data[idx].prev != -1) {
deba@1724
   378
	data[data[idx].prev].next = data[idx].next;
deba@1724
   379
      } else {
deba@1724
   380
	first[data[idx].value] = data[idx].next;
deba@1724
   381
      }
deba@1724
   382
      if (data[idx].next != -1) {
deba@1724
   383
	data[data[idx].next].prev = data[idx].prev;
deba@1724
   384
      }
deba@1724
   385
    }
deba@1724
   386
deba@1724
   387
    void lace(int idx) {
deba@1724
   388
      if ((int)first.size() <= data[idx].value) {
deba@1724
   389
	first.resize(data[idx].value + 1, -1);
deba@1724
   390
      }
deba@1724
   391
      data[idx].next = first[data[idx].value];
deba@1724
   392
      if (data[idx].next != -1) {
deba@1724
   393
	data[data[idx].next].prev = idx;
deba@1724
   394
      }
deba@1724
   395
      first[data[idx].value] = idx;
deba@1724
   396
      data[idx].prev = -1;
deba@1724
   397
    }
deba@1724
   398
deba@1724
   399
  public:
deba@1724
   400
deba@1724
   401
    void push(const Pair& p) {
deba@1724
   402
      push(p.first, p.second);
deba@1724
   403
    }
deba@1724
   404
deba@1724
   405
    void push(const Item &i, const Prio &p) { 
deba@1724
   406
      int idx = data.size();
deba@1724
   407
      index[i] = idx;
deba@1724
   408
      data.push_back(LinearItem(i, p));
deba@1724
   409
      lace(idx);
deba@1724
   410
      if (data[idx].value > maximal) {
deba@1724
   411
	maximal = data[idx].value;
deba@1724
   412
      }
deba@1724
   413
    }
deba@1724
   414
deba@1724
   415
    Item top() const {
deba@1724
   416
      while (first[maximal] == -1) {
deba@1724
   417
	--maximal;
deba@1724
   418
      }
deba@1724
   419
      return data[first[maximal]].item;
deba@1724
   420
    }
deba@1724
   421
deba@1724
   422
    Prio prio() const {
deba@1724
   423
      while (first[maximal] == -1) {
deba@1724
   424
	--maximal;
deba@1724
   425
      }
deba@1724
   426
      return maximal;
deba@1724
   427
    }
deba@1724
   428
deba@1724
   429
    void pop() {
deba@1724
   430
      while (first[maximal] == -1) {
deba@1724
   431
	--maximal;
deba@1724
   432
      }
deba@1724
   433
      int idx = first[maximal];
deba@1724
   434
      index[data[idx].item] = -2;
deba@1724
   435
      unlace(idx);
deba@1724
   436
      relocate_last(idx);
deba@1724
   437
    }
deba@1724
   438
deba@1724
   439
    void erase(const Item &i) {
deba@1724
   440
      int idx = index[i];
deba@1724
   441
      index[data[idx].item] = -2;
deba@1724
   442
      unlace(idx);
deba@1724
   443
      relocate_last(idx);
deba@1724
   444
    }
deba@1724
   445
deba@1724
   446
    Prio operator[](const Item &i) const {
deba@1724
   447
      int idx = index[i];
deba@1724
   448
      return data[idx].value;
deba@1724
   449
    }
deba@1724
   450
deba@1724
   451
    void set(const Item &i, const Prio &p) {
deba@1724
   452
      int idx = index[i];
deba@1724
   453
      if (idx < 0) {
deba@1724
   454
	push(i,p);
deba@1724
   455
      } else if (p > data[idx].value) {
deba@1724
   456
	decrease(i, p);
deba@1724
   457
      } else {
deba@1724
   458
	increase(i, p);
deba@1724
   459
      }
deba@1724
   460
    }
deba@1724
   461
deba@1724
   462
    void decrease(const Item &i, const Prio &p) {
deba@1724
   463
      int idx = index[i];
deba@1724
   464
      unlace(idx);
deba@1724
   465
      data[idx].value = p;
deba@1724
   466
      if (p > maximal) {
deba@1724
   467
	maximal = p;
deba@1724
   468
      }
deba@1724
   469
      lace(idx);
deba@1724
   470
    }
deba@1724
   471
    
deba@1724
   472
    void increase(const Item &i, const Prio &p) {
deba@1724
   473
      int idx = index[i];
deba@1724
   474
      unlace(idx);
deba@1724
   475
      data[idx].value = p;
deba@1724
   476
      lace(idx);
deba@1724
   477
    }
deba@1724
   478
deba@1724
   479
    state_enum state(const Item &i) const {
deba@1724
   480
      int idx = index[i];
deba@1724
   481
      if (idx >= 0) idx = 0;
deba@1724
   482
      return state_enum(idx);
deba@1724
   483
    }
deba@1724
   484
deba@1902
   485
    void state(const Item& i, state_enum st) {
deba@1902
   486
      switch (st) {
deba@1902
   487
      case POST_HEAP:
deba@1902
   488
      case PRE_HEAP:
deba@1902
   489
        if (state(i) == IN_HEAP) {
deba@1902
   490
          erase(i);
deba@1902
   491
        }
deba@1902
   492
        index[i] = st;
deba@1902
   493
        break;
deba@1906
   494
      case IN_HEAP:
deba@1906
   495
        break;
deba@1902
   496
      }
deba@1902
   497
    }
deba@1902
   498
deba@1724
   499
  private:
deba@1724
   500
deba@1724
   501
    struct LinearItem {
deba@1724
   502
      LinearItem(const Item& _item, int _value) 
deba@1724
   503
	: item(_item), value(_value) {}
deba@1724
   504
deba@1724
   505
      Item item;
deba@1724
   506
      int value;
deba@1724
   507
deba@1724
   508
      int prev, next;
deba@1724
   509
    };
deba@1724
   510
deba@1724
   511
    ItemIntMap& index;
deba@1724
   512
    std::vector<int> first;
deba@1724
   513
    std::vector<LinearItem> data;
deba@1724
   514
    mutable int maximal;
deba@1724
   515
deba@1724
   516
  }; // class LinearHeap
deba@1724
   517
deba@1724
   518
}
deba@1724
   519
  
deba@1724
   520
#endif