lemon/xy.h
author deba
Mon, 27 Feb 2006 10:36:01 +0000
changeset 1986 9b56cca61e2e
parent 1956 a055123339d5
child 1993 2115143eceea
permissions -rw-r--r--
An additional simplier interface for static size graphs.
Node operator()(int) for getting node by index
int index(Node node) for getting index by node
alpar@906
     1
/* -*- C++ -*-
alpar@906
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     8
 *
alpar@906
     9
 * Permission to use, modify and distribute this software is granted
alpar@906
    10
 * provided that this copyright notice appears in all copies. For
alpar@906
    11
 * precise terms see the accompanying LICENSE file.
alpar@906
    12
 *
alpar@906
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    14
 * express or implied, and with no claim as to its suitability for any
alpar@906
    15
 * purpose.
alpar@906
    16
 *
alpar@906
    17
 */
alpar@906
    18
alpar@921
    19
#ifndef LEMON_XY_H
alpar@921
    20
#define LEMON_XY_H
athos@201
    21
athos@201
    22
#include <iostream>
deba@1420
    23
#include <lemon/utility.h>
athos@201
    24
klao@491
    25
///\ingroup misc
alpar@249
    26
///\file
alpar@249
    27
///\brief A simple two dimensional vector and a bounding box implementation 
alpar@249
    28
///
alpar@921
    29
/// The class \ref lemon::xy "xy" implements
alpar@249
    30
///a two dimensional vector with the usual
alpar@249
    31
/// operations.
alpar@249
    32
///
alpar@921
    33
/// The class \ref lemon::BoundingBox "BoundingBox" can be used to determine
ladanyi@1426
    34
/// the rectangular bounding box of a set of \ref lemon::xy "xy"'s.
alpar@458
    35
///
alpar@458
    36
///\author Attila Bernath
alpar@249
    37
alpar@249
    38
alpar@921
    39
namespace lemon {
alpar@431
    40
alpar@431
    41
  /// \addtogroup misc
alpar@431
    42
  /// @{
alpar@431
    43
alpar@1257
    44
  /// A simple two dimensional vector (plainvector) implementation
alpar@242
    45
alpar@1257
    46
  /// A simple two dimensional vector (plainvector) implementation
alpar@458
    47
  ///with the usual vector
alpar@458
    48
  /// operators.
alpar@458
    49
  ///
alpar@458
    50
  ///\author Attila Bernath
athos@207
    51
  template<typename T>
athos@207
    52
    class xy {
athos@201
    53
athos@207
    54
    public:
athos@240
    55
alpar@987
    56
      typedef T Value;
alpar@964
    57
alpar@1974
    58
      ///First co-ordinate
alpar@1974
    59
      T x;
alpar@1974
    60
      ///Second co-ordinate
alpar@1974
    61
      T y;     
athos@207
    62
      
alpar@1257
    63
      ///Default constructor
alpar@1257
    64
      xy() {}
athos@201
    65
athos@240
    66
      ///Constructing the instance from coordinates
athos@514
    67
      xy(T a, T b) : x(a), y(b) { }
athos@201
    68
athos@201
    69
alpar@1049
    70
      ///Conversion constructor
alpar@1049
    71
      template<class TT> xy(const xy<TT> &p) : x(p.x), y(p.y) {}
alpar@1049
    72
athos@207
    73
      ///Gives back the square of the norm of the vector
alpar@1257
    74
      T normSquare() const {
ladanyi@1426
    75
        return x*x+y*y;
alpar@1391
    76
      }
athos@201
    77
  
athos@207
    78
      ///Increments the left hand side by u
alpar@1257
    79
      xy<T>& operator +=(const xy<T>& u) {
ladanyi@1426
    80
        x += u.x;
ladanyi@1426
    81
        y += u.y;
ladanyi@1426
    82
        return *this;
alpar@1391
    83
      }
athos@201
    84
  
athos@207
    85
      ///Decrements the left hand side by u
alpar@1257
    86
      xy<T>& operator -=(const xy<T>& u) {
ladanyi@1426
    87
        x -= u.x;
ladanyi@1426
    88
        y -= u.y;
ladanyi@1426
    89
        return *this;
alpar@1391
    90
      }
athos@201
    91
athos@207
    92
      ///Multiplying the left hand side with a scalar
alpar@1257
    93
      xy<T>& operator *=(const T &u) {
ladanyi@1426
    94
        x *= u;
ladanyi@1426
    95
        y *= u;
ladanyi@1426
    96
        return *this;
alpar@1391
    97
      }
athos@207
    98
athos@207
    99
      ///Dividing the left hand side by a scalar
alpar@1257
   100
      xy<T>& operator /=(const T &u) {
ladanyi@1426
   101
        x /= u;
ladanyi@1426
   102
        y /= u;
ladanyi@1426
   103
        return *this;
alpar@1391
   104
      }
athos@201
   105
  
athos@207
   106
      ///Returns the scalar product of two vectors
alpar@1257
   107
      T operator *(const xy<T>& u) const {
ladanyi@1426
   108
        return x*u.x+y*u.y;
alpar@1391
   109
      }
athos@201
   110
  
athos@207
   111
      ///Returns the sum of two vectors
athos@207
   112
      xy<T> operator+(const xy<T> &u) const {
ladanyi@1426
   113
        xy<T> b=*this;
ladanyi@1426
   114
        return b+=u;
alpar@1391
   115
      }
athos@201
   116
alpar@1049
   117
      ///Returns the neg of the vectors
alpar@1049
   118
      xy<T> operator-() const {
ladanyi@1426
   119
        xy<T> b=*this;
ladanyi@1426
   120
        b.x=-b.x; b.y=-b.y;
ladanyi@1426
   121
        return b;
alpar@1391
   122
      }
alpar@1049
   123
athos@207
   124
      ///Returns the difference of two vectors
athos@207
   125
      xy<T> operator-(const xy<T> &u) const {
ladanyi@1426
   126
        xy<T> b=*this;
ladanyi@1426
   127
        return b-=u;
alpar@1391
   128
      }
athos@201
   129
athos@207
   130
      ///Returns a vector multiplied by a scalar
athos@207
   131
      xy<T> operator*(const T &u) const {
ladanyi@1426
   132
        xy<T> b=*this;
ladanyi@1426
   133
        return b*=u;
alpar@1391
   134
      }
athos@201
   135
athos@207
   136
      ///Returns a vector divided by a scalar
athos@207
   137
      xy<T> operator/(const T &u) const {
ladanyi@1426
   138
        xy<T> b=*this;
ladanyi@1426
   139
        return b/=u;
alpar@1391
   140
      }
athos@201
   141
athos@207
   142
      ///Testing equality
alpar@1257
   143
      bool operator==(const xy<T> &u) const {
ladanyi@1426
   144
        return (x==u.x) && (y==u.y);
alpar@1391
   145
      }
athos@201
   146
athos@207
   147
      ///Testing inequality
alpar@1257
   148
      bool operator!=(xy u) const {
ladanyi@1426
   149
        return  (x!=u.x) || (y!=u.y);
alpar@1391
   150
      }
athos@201
   151
athos@207
   152
    };
athos@201
   153
alpar@1071
   154
  ///Returns a vector multiplied by a scalar
alpar@1083
   155
alpar@1083
   156
  ///Returns a vector multiplied by a scalar
alpar@1083
   157
  ///\relates xy
alpar@1071
   158
  template<typename T> xy<T> operator*(const T &u,const xy<T> &x) {
alpar@1071
   159
    return x*u;
alpar@1391
   160
  }
alpar@1071
   161
alpar@814
   162
  ///Read a plainvector from a stream
alpar@814
   163
alpar@967
   164
  ///Read a plainvector from a stream
alpar@814
   165
  ///\relates xy
alpar@814
   166
  ///
athos@207
   167
  template<typename T>
deba@1392
   168
  inline std::istream& operator>>(std::istream &is, xy<T> &z) {
deba@1392
   169
    char c;
deba@1392
   170
    if (is >> c) {
deba@1392
   171
      if (c != '(') is.putback(c);
deba@1392
   172
    } else {
deba@1392
   173
      is.clear();
deba@1392
   174
    }
deba@1392
   175
    if (!(is >> z.x)) return is;
deba@1392
   176
    if (is >> c) {
deba@1392
   177
      if (c != ',') is.putback(c);
deba@1392
   178
    } else {
deba@1392
   179
      is.clear();
deba@1392
   180
    }
deba@1392
   181
    if (!(is >> z.y)) return is;
deba@1392
   182
    if (is >> c) {
deba@1392
   183
      if (c != ')') is.putback(c);
deba@1392
   184
    } else {
deba@1392
   185
      is.clear();
deba@1392
   186
    }
athos@207
   187
    return is;
athos@207
   188
  }
athos@201
   189
alpar@814
   190
  ///Write a plainvector to a stream
alpar@814
   191
alpar@967
   192
  ///Write a plainvector to a stream
alpar@814
   193
  ///\relates xy
alpar@814
   194
  ///
athos@207
   195
  template<typename T>
deba@1392
   196
  inline std::ostream& operator<<(std::ostream &os, const xy<T>& z)
athos@207
   197
  {
athos@240
   198
    os << "(" << z.x << ", " << z.y << ")";
athos@207
   199
    return os;
athos@207
   200
  }
athos@207
   201
alpar@1202
   202
  ///Rotate by 90 degrees
alpar@1202
   203
alpar@1202
   204
  ///Returns its parameter rotated by 90 degrees in positive direction.
alpar@1202
   205
  ///\relates xy
alpar@1202
   206
  ///
alpar@1202
   207
  template<typename T>
alpar@1202
   208
  inline xy<T> rot90(const xy<T> &z)
alpar@1202
   209
  {
alpar@1202
   210
    return xy<T>(-z.y,z.x);
alpar@1202
   211
  }
alpar@1202
   212
alpar@1202
   213
  ///Rotate by 270 degrees
alpar@1202
   214
alpar@1202
   215
  ///Returns its parameter rotated by 90 degrees in negative direction.
alpar@1202
   216
  ///\relates xy
alpar@1202
   217
  ///
alpar@1202
   218
  template<typename T>
alpar@1202
   219
  inline xy<T> rot270(const xy<T> &z)
alpar@1202
   220
  {
alpar@1202
   221
    return xy<T>(z.y,-z.x);
alpar@1202
   222
  }
alpar@1202
   223
alpar@1202
   224
  
athos@244
   225
alpar@458
   226
  /// A class to calculate or store the bounding box of plainvectors.
alpar@458
   227
alpar@458
   228
  /// A class to calculate or store the bounding box of plainvectors.
alpar@458
   229
  ///
alpar@458
   230
  ///\author Attila Bernath
athos@244
   231
  template<typename T>
athos@244
   232
    class BoundingBox {
athos@244
   233
      xy<T> bottom_left, top_right;
athos@244
   234
      bool _empty;
athos@244
   235
    public:
athos@244
   236
      
ladanyi@1426
   237
      ///Default constructor: creates an empty bounding box
athos@244
   238
      BoundingBox() { _empty = true; }
athos@244
   239
athos@244
   240
      ///Constructing the instance from one point
athos@244
   241
      BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
athos@244
   242
ladanyi@1426
   243
      ///Were any points added?
athos@244
   244
      bool empty() const {
ladanyi@1426
   245
        return _empty;
athos@244
   246
      }
athos@244
   247
alpar@1391
   248
      ///Makes the BoundingBox empty
alpar@1391
   249
      void clear() {
ladanyi@1426
   250
        _empty=1;
alpar@1391
   251
      }
alpar@1391
   252
alpar@1927
   253
      ///\brief Gives back the bottom left corner
alpar@1927
   254
      ///(if the bounding box is empty, then the return value is not defined) 
athos@244
   255
      xy<T> bottomLeft() const {
ladanyi@1426
   256
        return bottom_left;
alpar@1391
   257
      }
athos@244
   258
alpar@1927
   259
      ///\brief Sets the bottom left corner
alpar@1927
   260
      ///(should only bee used for non-empty box) 
alpar@1927
   261
      void bottomLeft(xy<T> p) {
alpar@1927
   262
	bottom_left = p;
alpar@1927
   263
      }
alpar@1927
   264
alpar@1927
   265
      ///\brief Gives back the top right corner
alpar@1927
   266
      ///(if the bounding box is empty, then the return value is not defined) 
athos@244
   267
      xy<T> topRight() const {
ladanyi@1426
   268
        return top_right;
alpar@1391
   269
      }
athos@244
   270
alpar@1927
   271
      ///\brief Sets the top right corner
alpar@1927
   272
      ///(should only bee used for non-empty box) 
alpar@1927
   273
      void topRight(xy<T> p) {
alpar@1927
   274
	top_right = p;
alpar@1927
   275
      }
alpar@1927
   276
alpar@1927
   277
      ///\brief Gives back the bottom right corner
alpar@1927
   278
      ///(if the bounding box is empty, then the return value is not defined) 
alpar@1045
   279
      xy<T> bottomRight() const {
ladanyi@1426
   280
        return xy<T>(top_right.x,bottom_left.y);
alpar@1391
   281
      }
alpar@1045
   282
alpar@1927
   283
      ///\brief Sets the bottom right corner
alpar@1927
   284
      ///(should only bee used for non-empty box) 
alpar@1927
   285
      void bottomRight(xy<T> p) {
alpar@1927
   286
	top_right.x = p.x;
alpar@1927
   287
	bottom_left.y = p.y;
alpar@1927
   288
      }
alpar@1927
   289
alpar@1927
   290
      ///\brief Gives back the top left corner
alpar@1927
   291
      ///(if the bounding box is empty, then the return value is not defined) 
alpar@1045
   292
      xy<T> topLeft() const {
ladanyi@1426
   293
        return xy<T>(bottom_left.x,top_right.y);
alpar@1391
   294
      }
alpar@1045
   295
alpar@1927
   296
      ///\brief Sets the top left corner
alpar@1927
   297
      ///(should only bee used for non-empty box) 
alpar@1927
   298
      void topLeft(xy<T> p) {
alpar@1927
   299
	top_right.y = p.y;
alpar@1927
   300
	bottom_left.x = p.x;
alpar@1927
   301
      }
alpar@1927
   302
alpar@1927
   303
      ///\brief Gives back the bottom of the box
alpar@1927
   304
      ///(if the bounding box is empty, then the return value is not defined) 
alpar@1045
   305
      T bottom() const {
ladanyi@1426
   306
        return bottom_left.y;
alpar@1391
   307
      }
alpar@1045
   308
alpar@1927
   309
      ///\brief Sets the bottom of the box
alpar@1927
   310
      ///(should only bee used for non-empty box) 
alpar@1927
   311
      void bottom(T t) {
alpar@1927
   312
	bottom_left.y = t;
alpar@1927
   313
      }
alpar@1927
   314
alpar@1927
   315
      ///\brief Gives back the top of the box
alpar@1927
   316
      ///(if the bounding box is empty, then the return value is not defined) 
alpar@1045
   317
      T top() const {
ladanyi@1426
   318
        return top_right.y;
alpar@1391
   319
      }
alpar@1045
   320
alpar@1927
   321
      ///\brief Sets the top of the box
alpar@1927
   322
      ///(should only bee used for non-empty box) 
alpar@1927
   323
      void top(T t) {
alpar@1927
   324
	top_right.y = t;
alpar@1927
   325
      }
alpar@1927
   326
alpar@1927
   327
      ///\brief Gives back the left side of the box
alpar@1927
   328
      ///(if the bounding box is empty, then the return value is not defined) 
alpar@1045
   329
      T left() const {
ladanyi@1426
   330
        return bottom_left.x;
alpar@1391
   331
      }
alpar@1045
   332
alpar@1927
   333
      ///\brief Sets the left side of the box
alpar@1927
   334
      ///(should only bee used for non-empty box) 
alpar@1927
   335
      void left(T t) {
alpar@1927
   336
	bottom_left.x = t;
alpar@1927
   337
      }
alpar@1927
   338
alpar@1927
   339
      ///\brief Gives back the right side of the box
alpar@1927
   340
      ///(if the bounding box is empty, then the return value is not defined) 
alpar@1045
   341
      T right() const {
ladanyi@1426
   342
        return top_right.x;
alpar@1391
   343
      }
alpar@1045
   344
alpar@1927
   345
      ///\brief Sets the right side of the box
alpar@1927
   346
      ///(should only bee used for non-empty box) 
alpar@1927
   347
      void right(T t) {
alpar@1927
   348
	top_right.x = t;
alpar@1927
   349
      }
alpar@1927
   350
alpar@1927
   351
      ///\brief Gives back the height of the box
alpar@1927
   352
      ///(if the bounding box is empty, then the return value is not defined) 
alpar@1102
   353
      T height() const {
ladanyi@1426
   354
        return top_right.y-bottom_left.y;
alpar@1391
   355
      }
alpar@1102
   356
alpar@1927
   357
      ///\brief Gives back the width of the box
alpar@1927
   358
      ///(if the bounding box is empty, then the return value is not defined) 
alpar@1102
   359
      T width() const {
ladanyi@1426
   360
        return top_right.x-bottom_left.x;
alpar@1391
   361
      }
alpar@1102
   362
athos@244
   363
      ///Checks whether a point is inside a bounding box
athos@244
   364
      bool inside(const xy<T>& u){
ladanyi@1426
   365
        if (_empty)
ladanyi@1426
   366
          return false;
ladanyi@1426
   367
        else{
ladanyi@1426
   368
          return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
ladanyi@1426
   369
              (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
ladanyi@1426
   370
        }
athos@244
   371
      }
athos@244
   372
  
athos@244
   373
      ///Increments a bounding box with a point
alpar@1588
   374
      BoundingBox& add(const xy<T>& u){
ladanyi@1426
   375
        if (_empty){
ladanyi@1426
   376
          bottom_left=top_right=u;
ladanyi@1426
   377
          _empty = false;
ladanyi@1426
   378
        }
ladanyi@1426
   379
        else{
ladanyi@1426
   380
          if (bottom_left.x > u.x) bottom_left.x = u.x;
ladanyi@1426
   381
          if (bottom_left.y > u.y) bottom_left.y = u.y;
ladanyi@1426
   382
          if (top_right.x < u.x) top_right.x = u.x;
ladanyi@1426
   383
          if (top_right.y < u.y) top_right.y = u.y;
ladanyi@1426
   384
        }
ladanyi@1426
   385
        return *this;
alpar@1391
   386
      }
athos@244
   387
  
alpar@1588
   388
//       ///Sums a bounding box and a point
alpar@1588
   389
//       BoundingBox operator +(const xy<T>& u){
alpar@1588
   390
//         BoundingBox b = *this;
alpar@1588
   391
//         return b += u;
alpar@1588
   392
//       }
athos@244
   393
athos@244
   394
      ///Increments a bounding box with an other bounding box
alpar@1588
   395
      BoundingBox& add(const BoundingBox &u){
ladanyi@1426
   396
        if ( !u.empty() ){
alpar@1588
   397
          this->add(u.bottomLeft());
alpar@1588
   398
	  this->add(u.topRight());
ladanyi@1426
   399
        }
ladanyi@1426
   400
        return *this;
alpar@1391
   401
      }
athos@244
   402
  
athos@244
   403
      ///Sums two bounding boxes
athos@244
   404
      BoundingBox operator +(const BoundingBox& u){
ladanyi@1426
   405
        BoundingBox b = *this;
alpar@1588
   406
        return b.add(u);
alpar@1588
   407
      }
alpar@1588
   408
alpar@1588
   409
alpar@1588
   410
      ///Intersection of two bounding boxes
alpar@1588
   411
      BoundingBox operator &(const BoundingBox& u){
alpar@1588
   412
        BoundingBox b;
alpar@1588
   413
	b.bottom_left.x=std::max(this->bottom_left.x,u.bottom_left.x);
alpar@1588
   414
	b.bottom_left.y=std::max(this->bottom_left.y,u.bottom_left.y);
alpar@1588
   415
	b.top_right.x=std::min(this->top_right.x,u.top_right.x);
alpar@1588
   416
	b.top_right.y=std::min(this->top_right.y,u.top_right.y);
alpar@1588
   417
	b._empty = this->_empty || u._empty ||
alpar@1588
   418
	  b.bottom_left.x>top_right.x && b.bottom_left.y>top_right.y;
alpar@1588
   419
        return b;
alpar@1391
   420
      }
athos@244
   421
athos@244
   422
    };//class Boundingbox
athos@244
   423
athos@244
   424
alpar@1317
   425
  ///Map of x-coordinates of an xy<>-map
alpar@1317
   426
alpar@1317
   427
  ///\ingroup maps
alpar@1317
   428
  ///
alpar@1317
   429
  template<class M>
alpar@1317
   430
  class XMap 
alpar@1317
   431
  {
deba@1706
   432
    M& _map;
alpar@1317
   433
  public:
deba@1420
   434
alpar@1317
   435
    typedef typename M::Value::Value Value;
alpar@1317
   436
    typedef typename M::Key Key;
alpar@1317
   437
    ///\e
deba@1706
   438
    XMap(M& map) : _map(map) {}
alpar@1317
   439
    Value operator[](Key k) const {return _map[k].x;}
alpar@1352
   440
    void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
alpar@1317
   441
  };
alpar@1317
   442
    
alpar@1317
   443
  ///Returns an \ref XMap class
alpar@1317
   444
alpar@1317
   445
  ///This function just returns an \ref XMap class.
alpar@1317
   446
  ///
alpar@1317
   447
  ///\ingroup maps
alpar@1317
   448
  ///\relates XMap
alpar@1317
   449
  template<class M> 
alpar@1317
   450
  inline XMap<M> xMap(M &m) 
alpar@1317
   451
  {
alpar@1317
   452
    return XMap<M>(m);
alpar@1317
   453
  }
alpar@1317
   454
deba@1420
   455
  template<class M> 
deba@1420
   456
  inline XMap<M> xMap(const M &m) 
deba@1420
   457
  {
deba@1420
   458
    return XMap<M>(m);
deba@1420
   459
  }
deba@1420
   460
alpar@1317
   461
  ///Constant (read only) version of \ref XMap
alpar@1317
   462
alpar@1317
   463
  ///\ingroup maps
alpar@1317
   464
  ///
alpar@1317
   465
  template<class M>
alpar@1317
   466
  class ConstXMap 
alpar@1317
   467
  {
deba@1706
   468
    const M& _map;
alpar@1317
   469
  public:
deba@1420
   470
alpar@1317
   471
    typedef typename M::Value::Value Value;
alpar@1317
   472
    typedef typename M::Key Key;
alpar@1317
   473
    ///\e
alpar@1317
   474
    ConstXMap(const M &map) : _map(map) {}
alpar@1317
   475
    Value operator[](Key k) const {return _map[k].x;}
alpar@1317
   476
  };
alpar@1317
   477
    
alpar@1317
   478
  ///Returns a \ref ConstXMap class
alpar@1317
   479
alpar@1317
   480
  ///This function just returns an \ref ConstXMap class.
alpar@1317
   481
  ///
alpar@1317
   482
  ///\ingroup maps
alpar@1317
   483
  ///\relates ConstXMap
alpar@1317
   484
  template<class M> 
alpar@1317
   485
  inline ConstXMap<M> xMap(const M &m) 
alpar@1317
   486
  {
alpar@1317
   487
    return ConstXMap<M>(m);
alpar@1317
   488
  }
alpar@1317
   489
alpar@1317
   490
  ///Map of y-coordinates of an xy<>-map
alpar@1317
   491
    
alpar@1317
   492
  ///\ingroup maps
alpar@1317
   493
  ///
alpar@1317
   494
  template<class M>
alpar@1317
   495
  class YMap 
alpar@1317
   496
  {
deba@1706
   497
    M& _map;
alpar@1317
   498
  public:
deba@1420
   499
alpar@1317
   500
    typedef typename M::Value::Value Value;
alpar@1317
   501
    typedef typename M::Key Key;
alpar@1317
   502
    ///\e
deba@1706
   503
    YMap(M& map) : _map(map) {}
alpar@1317
   504
    Value operator[](Key k) const {return _map[k].y;}
alpar@1352
   505
    void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
alpar@1317
   506
  };
alpar@1317
   507
alpar@1317
   508
  ///Returns an \ref YMap class
alpar@1317
   509
alpar@1317
   510
  ///This function just returns an \ref YMap class.
alpar@1317
   511
  ///
alpar@1317
   512
  ///\ingroup maps
alpar@1317
   513
  ///\relates YMap
alpar@1317
   514
  template<class M> 
alpar@1317
   515
  inline YMap<M> yMap(M &m) 
alpar@1317
   516
  {
alpar@1317
   517
    return YMap<M>(m);
alpar@1317
   518
  }
alpar@1317
   519
deba@1420
   520
  template<class M> 
deba@1420
   521
  inline YMap<M> yMap(const M &m) 
deba@1420
   522
  {
deba@1420
   523
    return YMap<M>(m);
deba@1420
   524
  }
deba@1420
   525
alpar@1317
   526
  ///Constant (read only) version of \ref YMap
alpar@1317
   527
alpar@1317
   528
  ///\ingroup maps
alpar@1317
   529
  ///
alpar@1317
   530
  template<class M>
alpar@1317
   531
  class ConstYMap 
alpar@1317
   532
  {
deba@1706
   533
    const M& _map;
alpar@1317
   534
  public:
deba@1420
   535
alpar@1317
   536
    typedef typename M::Value::Value Value;
alpar@1317
   537
    typedef typename M::Key Key;
alpar@1317
   538
    ///\e
alpar@1317
   539
    ConstYMap(const M &map) : _map(map) {}
alpar@1317
   540
    Value operator[](Key k) const {return _map[k].y;}
alpar@1317
   541
  };
alpar@1317
   542
    
alpar@1317
   543
  ///Returns a \ref ConstYMap class
alpar@1317
   544
alpar@1317
   545
  ///This function just returns an \ref ConstYMap class.
alpar@1317
   546
  ///
alpar@1317
   547
  ///\ingroup maps
alpar@1317
   548
  ///\relates ConstYMap
alpar@1317
   549
  template<class M> 
alpar@1317
   550
  inline ConstYMap<M> yMap(const M &m) 
alpar@1317
   551
  {
alpar@1317
   552
    return ConstYMap<M>(m);
alpar@1317
   553
  }
alpar@1317
   554
alpar@1317
   555
alpar@1352
   556
  ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
alpar@1352
   557
alpar@1352
   558
  ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
alpar@1352
   559
  ///\ingroup maps
alpar@1352
   560
  ///
alpar@1352
   561
  template<class M>
alpar@1352
   562
  class NormSquareMap 
alpar@1352
   563
  {
deba@1706
   564
    const M& _map;
alpar@1352
   565
  public:
deba@1420
   566
alpar@1352
   567
    typedef typename M::Value::Value Value;
alpar@1352
   568
    typedef typename M::Key Key;
alpar@1352
   569
    ///\e
alpar@1352
   570
    NormSquareMap(const M &map) : _map(map) {}
alpar@1352
   571
    Value operator[](Key k) const {return _map[k].normSquare();}
alpar@1352
   572
  };
alpar@1352
   573
    
alpar@1352
   574
  ///Returns a \ref NormSquareMap class
alpar@1352
   575
alpar@1352
   576
  ///This function just returns an \ref NormSquareMap class.
alpar@1352
   577
  ///
alpar@1352
   578
  ///\ingroup maps
alpar@1352
   579
  ///\relates NormSquareMap
alpar@1352
   580
  template<class M> 
alpar@1352
   581
  inline NormSquareMap<M> normSquareMap(const M &m) 
alpar@1352
   582
  {
alpar@1352
   583
    return NormSquareMap<M>(m);
alpar@1352
   584
  }
alpar@1352
   585
alpar@431
   586
  /// @}
athos@244
   587
athos@244
   588
alpar@921
   589
} //namespace lemon
athos@201
   590
alpar@921
   591
#endif //LEMON_XY_H