marci@602
|
1 |
// -*- c++ -*-
|
marci@602
|
2 |
#ifndef HUGO_BFS_DFS_H
|
marci@602
|
3 |
#define HUGO_BFS_DFS_H
|
marci@602
|
4 |
|
marci@615
|
5 |
/// \ingroup galgs
|
marci@615
|
6 |
/// \file
|
marci@615
|
7 |
/// \brief Bfs and dfs iterators.
|
marci@604
|
8 |
///
|
marci@615
|
9 |
/// This file contains bfs and dfs iterator classes.
|
marci@604
|
10 |
///
|
marci@615
|
11 |
// /// \author Marton Makai
|
marci@604
|
12 |
|
marci@602
|
13 |
#include <queue>
|
marci@602
|
14 |
#include <stack>
|
marci@602
|
15 |
#include <utility>
|
marci@602
|
16 |
|
marci@602
|
17 |
#include <hugo/invalid.h>
|
marci@602
|
18 |
|
marci@602
|
19 |
namespace hugo {
|
marci@602
|
20 |
|
marci@602
|
21 |
/// Bfs searches for the nodes wich are not marked in
|
marci@602
|
22 |
/// \c reached_map
|
marci@650
|
23 |
/// Reached have to be a read-write bool node-map.
|
marci@615
|
24 |
/// \ingroup galgs
|
marci@602
|
25 |
template <typename Graph, /*typename OutEdgeIt,*/
|
marci@602
|
26 |
typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
|
marci@602
|
27 |
class BfsIterator {
|
marci@602
|
28 |
protected:
|
marci@602
|
29 |
typedef typename Graph::Node Node;
|
marci@777
|
30 |
typedef typename Graph::Edge Edge;
|
marci@602
|
31 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
marci@602
|
32 |
const Graph* graph;
|
marci@602
|
33 |
std::queue<Node> bfs_queue;
|
marci@602
|
34 |
ReachedMap& reached;
|
marci@602
|
35 |
bool b_node_newly_reached;
|
marci@777
|
36 |
Edge actual_edge;
|
marci@602
|
37 |
bool own_reached_map;
|
marci@602
|
38 |
public:
|
marci@602
|
39 |
/// In that constructor \c _reached have to be a reference
|
marci@650
|
40 |
/// for a bool bode-map. The algorithm will search for the
|
marci@650
|
41 |
/// initially \c false nodes
|
marci@650
|
42 |
/// in a bfs order.
|
marci@602
|
43 |
BfsIterator(const Graph& _graph, ReachedMap& _reached) :
|
marci@602
|
44 |
graph(&_graph), reached(_reached),
|
marci@602
|
45 |
own_reached_map(false) { }
|
marci@602
|
46 |
/// The same as above, but the map storing the reached nodes
|
marci@602
|
47 |
/// is constructed dynamically to everywhere false.
|
marci@650
|
48 |
/// \deprecated
|
marci@602
|
49 |
BfsIterator(const Graph& _graph) :
|
marci@602
|
50 |
graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))),
|
marci@602
|
51 |
own_reached_map(true) { }
|
marci@604
|
52 |
/// The map storing the reached nodes have to be destroyed if
|
marci@602
|
53 |
/// it was constructed dynamically
|
marci@602
|
54 |
~BfsIterator() { if (own_reached_map) delete &reached; }
|
marci@602
|
55 |
/// This method markes \c s reached.
|
marci@602
|
56 |
/// If the queue is empty, then \c s is pushed in the bfs queue
|
marci@602
|
57 |
/// and the first out-edge is processed.
|
marci@602
|
58 |
/// If the queue is not empty, then \c s is simply pushed.
|
marci@777
|
59 |
BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) {
|
marci@602
|
60 |
reached.set(s, true);
|
marci@602
|
61 |
if (bfs_queue.empty()) {
|
marci@602
|
62 |
bfs_queue.push(s);
|
marci@777
|
63 |
actual_edge=OutEdgeIt(*graph, s);
|
marci@777
|
64 |
//graph->first(actual_edge, s);
|
alpar@774
|
65 |
if (actual_edge!=INVALID) {
|
alpar@774
|
66 |
Node w=graph->head(actual_edge);
|
marci@602
|
67 |
if (!reached[w]) {
|
marci@602
|
68 |
bfs_queue.push(w);
|
marci@602
|
69 |
reached.set(w, true);
|
marci@602
|
70 |
b_node_newly_reached=true;
|
marci@602
|
71 |
} else {
|
marci@602
|
72 |
b_node_newly_reached=false;
|
marci@602
|
73 |
}
|
marci@602
|
74 |
}
|
marci@602
|
75 |
} else {
|
marci@602
|
76 |
bfs_queue.push(s);
|
marci@602
|
77 |
}
|
marci@777
|
78 |
return *this;
|
marci@602
|
79 |
}
|
marci@602
|
80 |
/// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator,
|
marci@602
|
81 |
/// its \c operator++() iterates on the edges in a bfs order.
|
marci@602
|
82 |
BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>&
|
marci@602
|
83 |
operator++() {
|
alpar@774
|
84 |
if (actual_edge!=INVALID) {
|
marci@777
|
85 |
actual_edge=++OutEdgeIt(*graph, actual_edge);
|
marci@777
|
86 |
//++actual_edge;
|
alpar@774
|
87 |
if (actual_edge!=INVALID) {
|
alpar@774
|
88 |
Node w=graph->head(actual_edge);
|
marci@602
|
89 |
if (!reached[w]) {
|
marci@602
|
90 |
bfs_queue.push(w);
|
marci@602
|
91 |
reached.set(w, true);
|
marci@602
|
92 |
b_node_newly_reached=true;
|
marci@602
|
93 |
} else {
|
marci@602
|
94 |
b_node_newly_reached=false;
|
marci@602
|
95 |
}
|
marci@602
|
96 |
}
|
marci@602
|
97 |
} else {
|
marci@602
|
98 |
bfs_queue.pop();
|
marci@602
|
99 |
if (!bfs_queue.empty()) {
|
marci@777
|
100 |
actual_edge=OutEdgeIt(*graph, bfs_queue.front());
|
marci@777
|
101 |
//graph->first(actual_edge, bfs_queue.front());
|
alpar@774
|
102 |
if (actual_edge!=INVALID) {
|
alpar@774
|
103 |
Node w=graph->head(actual_edge);
|
marci@602
|
104 |
if (!reached[w]) {
|
marci@602
|
105 |
bfs_queue.push(w);
|
marci@602
|
106 |
reached.set(w, true);
|
marci@602
|
107 |
b_node_newly_reached=true;
|
marci@602
|
108 |
} else {
|
marci@602
|
109 |
b_node_newly_reached=false;
|
marci@602
|
110 |
}
|
marci@602
|
111 |
}
|
marci@602
|
112 |
}
|
marci@602
|
113 |
}
|
marci@602
|
114 |
return *this;
|
marci@602
|
115 |
}
|
marci@646
|
116 |
/// Returns true iff the algorithm is finished.
|
marci@602
|
117 |
bool finished() const { return bfs_queue.empty(); }
|
marci@602
|
118 |
/// The conversion operator makes for converting the bfs-iterator
|
marci@602
|
119 |
/// to an \c out-edge-iterator.
|
marci@602
|
120 |
///\bug Edge have to be in HUGO 0.2
|
marci@777
|
121 |
operator Edge() const { return actual_edge; }
|
marci@646
|
122 |
/// Returns if b-node has been reached just now.
|
marci@602
|
123 |
bool isBNodeNewlyReached() const { return b_node_newly_reached; }
|
marci@646
|
124 |
/// Returns if a-node is examined.
|
alpar@774
|
125 |
bool isANodeExamined() const { return actual_edge==INVALID; }
|
marci@646
|
126 |
/// Returns a-node of the actual edge, so does if the edge is invalid.
|
marci@777
|
127 |
Node tail() const { return bfs_queue.front(); }
|
marci@646
|
128 |
/// \pre The actual edge have to be valid.
|
marci@777
|
129 |
Node head() const { return graph->head(actual_edge); }
|
marci@615
|
130 |
/// Guess what?
|
marci@650
|
131 |
/// \deprecated
|
marci@602
|
132 |
const ReachedMap& getReachedMap() const { return reached; }
|
marci@615
|
133 |
/// Guess what?
|
marci@650
|
134 |
/// \deprecated
|
marci@602
|
135 |
const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
|
marci@615
|
136 |
};
|
marci@602
|
137 |
|
marci@602
|
138 |
/// Bfs searches for the nodes wich are not marked in
|
marci@602
|
139 |
/// \c reached_map
|
marci@602
|
140 |
/// Reached have to work as a read-write bool Node-map,
|
marci@650
|
141 |
/// Pred is a write edge node-map and
|
marci@650
|
142 |
/// Dist is a read-write node-map of integral value, have to be.
|
marci@615
|
143 |
/// \ingroup galgs
|
marci@602
|
144 |
template <typename Graph,
|
marci@602
|
145 |
typename ReachedMap=typename Graph::template NodeMap<bool>,
|
marci@602
|
146 |
typename PredMap
|
marci@602
|
147 |
=typename Graph::template NodeMap<typename Graph::Edge>,
|
marci@602
|
148 |
typename DistMap=typename Graph::template NodeMap<int> >
|
marci@602
|
149 |
class Bfs : public BfsIterator<Graph, ReachedMap> {
|
marci@602
|
150 |
typedef BfsIterator<Graph, ReachedMap> Parent;
|
marci@602
|
151 |
protected:
|
marci@602
|
152 |
typedef typename Parent::Node Node;
|
marci@602
|
153 |
PredMap& pred;
|
marci@602
|
154 |
DistMap& dist;
|
marci@602
|
155 |
public:
|
marci@602
|
156 |
/// The algorithm will search in a bfs order for
|
marci@602
|
157 |
/// the nodes which are \c false initially.
|
marci@602
|
158 |
/// The constructor makes no initial changes on the maps.
|
athos@671
|
159 |
Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) :
|
athos@671
|
160 |
BfsIterator<Graph, ReachedMap>(_graph, _reached),
|
athos@671
|
161 |
pred(_pred), dist(_dist) { }
|
marci@602
|
162 |
/// \c s is marked to be reached and pushed in the bfs queue.
|
marci@602
|
163 |
/// If the queue is empty, then the first out-edge is processed.
|
marci@602
|
164 |
/// If \c s was not marked previously, then
|
marci@602
|
165 |
/// in addition its pred is set to be \c INVALID, and dist to \c 0.
|
marci@602
|
166 |
/// if \c s was marked previuosly, then it is simply pushed.
|
marci@777
|
167 |
Bfs<Graph, ReachedMap, PredMap, DistMap>& push(Node s) {
|
marci@602
|
168 |
if (this->reached[s]) {
|
marci@602
|
169 |
Parent::pushAndSetReached(s);
|
marci@602
|
170 |
} else {
|
marci@602
|
171 |
Parent::pushAndSetReached(s);
|
marci@602
|
172 |
pred.set(s, INVALID);
|
marci@602
|
173 |
dist.set(s, 0);
|
marci@602
|
174 |
}
|
marci@777
|
175 |
return *this;
|
marci@602
|
176 |
}
|
marci@602
|
177 |
/// A bfs is processed from \c s.
|
marci@777
|
178 |
Bfs<Graph, ReachedMap, PredMap, DistMap>& run(Node s) {
|
marci@602
|
179 |
push(s);
|
marci@602
|
180 |
while (!this->finished()) this->operator++();
|
marci@777
|
181 |
return *this;
|
marci@602
|
182 |
}
|
marci@602
|
183 |
/// Beside the bfs iteration, \c pred and \dist are saved in a
|
marci@602
|
184 |
/// newly reached node.
|
marci@604
|
185 |
Bfs<Graph, ReachedMap, PredMap, DistMap>& operator++() {
|
marci@602
|
186 |
Parent::operator++();
|
marci@602
|
187 |
if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached)
|
marci@602
|
188 |
{
|
marci@777
|
189 |
pred.set(this->head(), this->actual_edge);
|
marci@777
|
190 |
dist.set(this->head(), dist[this->tail()]);
|
marci@602
|
191 |
}
|
marci@602
|
192 |
return *this;
|
marci@602
|
193 |
}
|
marci@615
|
194 |
/// Guess what?
|
marci@650
|
195 |
/// \deprecated
|
marci@602
|
196 |
const PredMap& getPredMap() const { return pred; }
|
marci@615
|
197 |
/// Guess what?
|
marci@650
|
198 |
/// \deprecated
|
marci@602
|
199 |
const DistMap& getDistMap() const { return dist; }
|
marci@602
|
200 |
};
|
marci@602
|
201 |
|
marci@602
|
202 |
/// Dfs searches for the nodes wich are not marked in
|
marci@602
|
203 |
/// \c reached_map
|
marci@602
|
204 |
/// Reached have to be a read-write bool Node-map.
|
marci@615
|
205 |
/// \ingroup galgs
|
marci@602
|
206 |
template <typename Graph, /*typename OutEdgeIt,*/
|
marci@602
|
207 |
typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
|
marci@602
|
208 |
class DfsIterator {
|
marci@602
|
209 |
protected:
|
marci@602
|
210 |
typedef typename Graph::Node Node;
|
marci@777
|
211 |
typedef typename Graph::Edge Edge;
|
marci@602
|
212 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
marci@602
|
213 |
const Graph* graph;
|
marci@602
|
214 |
std::stack<OutEdgeIt> dfs_stack;
|
marci@602
|
215 |
bool b_node_newly_reached;
|
marci@777
|
216 |
Edge actual_edge;
|
marci@602
|
217 |
Node actual_node;
|
marci@602
|
218 |
ReachedMap& reached;
|
marci@602
|
219 |
bool own_reached_map;
|
marci@602
|
220 |
public:
|
marci@602
|
221 |
/// In that constructor \c _reached have to be a reference
|
marci@650
|
222 |
/// for a bool node-map. The algorithm will search in a dfs order for
|
marci@602
|
223 |
/// the nodes which are \c false initially
|
marci@602
|
224 |
DfsIterator(const Graph& _graph, ReachedMap& _reached) :
|
marci@602
|
225 |
graph(&_graph), reached(_reached),
|
marci@602
|
226 |
own_reached_map(false) { }
|
marci@602
|
227 |
/// The same as above, but the map of reached nodes is
|
marci@602
|
228 |
/// constructed dynamically
|
marci@602
|
229 |
/// to everywhere false.
|
marci@602
|
230 |
DfsIterator(const Graph& _graph) :
|
marci@602
|
231 |
graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))),
|
marci@602
|
232 |
own_reached_map(true) { }
|
marci@602
|
233 |
~DfsIterator() { if (own_reached_map) delete &reached; }
|
marci@602
|
234 |
/// This method markes s reached and first out-edge is processed.
|
marci@777
|
235 |
DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) {
|
marci@602
|
236 |
actual_node=s;
|
marci@602
|
237 |
reached.set(s, true);
|
marci@777
|
238 |
OutEdgeIt e(*graph, s);
|
marci@777
|
239 |
//graph->first(e, s);
|
marci@602
|
240 |
dfs_stack.push(e);
|
marci@777
|
241 |
return *this;
|
marci@602
|
242 |
}
|
marci@602
|
243 |
/// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator,
|
marci@602
|
244 |
/// its \c operator++() iterates on the edges in a dfs order.
|
marci@602
|
245 |
DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>&
|
marci@602
|
246 |
operator++() {
|
marci@602
|
247 |
actual_edge=dfs_stack.top();
|
alpar@774
|
248 |
if (actual_edge!=INVALID/*.valid()*/) {
|
alpar@774
|
249 |
Node w=graph->head(actual_edge);
|
marci@602
|
250 |
actual_node=w;
|
marci@602
|
251 |
if (!reached[w]) {
|
marci@777
|
252 |
OutEdgeIt e(*graph, w);
|
marci@777
|
253 |
//graph->first(e, w);
|
marci@602
|
254 |
dfs_stack.push(e);
|
marci@602
|
255 |
reached.set(w, true);
|
marci@602
|
256 |
b_node_newly_reached=true;
|
marci@602
|
257 |
} else {
|
alpar@774
|
258 |
actual_node=graph->tail(actual_edge);
|
alpar@774
|
259 |
++dfs_stack.top();
|
marci@602
|
260 |
b_node_newly_reached=false;
|
marci@602
|
261 |
}
|
marci@602
|
262 |
} else {
|
marci@602
|
263 |
//actual_node=G.aNode(dfs_stack.top());
|
marci@602
|
264 |
dfs_stack.pop();
|
marci@602
|
265 |
}
|
marci@602
|
266 |
return *this;
|
marci@602
|
267 |
}
|
marci@646
|
268 |
/// Returns true iff the algorithm is finished.
|
marci@602
|
269 |
bool finished() const { return dfs_stack.empty(); }
|
marci@646
|
270 |
/// The conversion operator makes for converting the bfs-iterator
|
marci@646
|
271 |
/// to an \c out-edge-iterator.
|
marci@646
|
272 |
///\bug Edge have to be in HUGO 0.2
|
marci@777
|
273 |
operator Edge() const { return actual_edge; }
|
marci@646
|
274 |
/// Returns if b-node has been reached just now.
|
marci@602
|
275 |
bool isBNodeNewlyReached() const { return b_node_newly_reached; }
|
marci@646
|
276 |
/// Returns if a-node is examined.
|
alpar@774
|
277 |
bool isANodeExamined() const { return actual_edge==INVALID; }
|
marci@646
|
278 |
/// Returns a-node of the actual edge, so does if the edge is invalid.
|
marci@777
|
279 |
Node tail() const { return actual_node; /*FIXME*/}
|
marci@646
|
280 |
/// Returns b-node of the actual edge.
|
marci@646
|
281 |
/// \pre The actual edge have to be valid.
|
marci@777
|
282 |
Node head() const { return graph->head(actual_edge); }
|
marci@615
|
283 |
/// Guess what?
|
marci@650
|
284 |
/// \deprecated
|
marci@602
|
285 |
const ReachedMap& getReachedMap() const { return reached; }
|
marci@615
|
286 |
/// Guess what?
|
marci@650
|
287 |
/// \deprecated
|
marci@602
|
288 |
const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
|
marci@602
|
289 |
};
|
marci@602
|
290 |
|
marci@602
|
291 |
/// Dfs searches for the nodes wich are not marked in
|
marci@602
|
292 |
/// \c reached_map
|
marci@650
|
293 |
/// Reached is a read-write bool node-map,
|
marci@650
|
294 |
/// Pred is a write node-map, have to be.
|
marci@615
|
295 |
/// \ingroup galgs
|
marci@602
|
296 |
template <typename Graph,
|
marci@602
|
297 |
typename ReachedMap=typename Graph::template NodeMap<bool>,
|
marci@602
|
298 |
typename PredMap
|
marci@602
|
299 |
=typename Graph::template NodeMap<typename Graph::Edge> >
|
marci@602
|
300 |
class Dfs : public DfsIterator<Graph, ReachedMap> {
|
marci@602
|
301 |
typedef DfsIterator<Graph, ReachedMap> Parent;
|
marci@602
|
302 |
protected:
|
marci@602
|
303 |
typedef typename Parent::Node Node;
|
marci@602
|
304 |
PredMap& pred;
|
marci@602
|
305 |
public:
|
marci@602
|
306 |
/// The algorithm will search in a dfs order for
|
marci@602
|
307 |
/// the nodes which are \c false initially.
|
marci@602
|
308 |
/// The constructor makes no initial changes on the maps.
|
athos@671
|
309 |
Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(_pred) { }
|
marci@602
|
310 |
/// \c s is marked to be reached and pushed in the bfs queue.
|
marci@602
|
311 |
/// If the queue is empty, then the first out-edge is processed.
|
marci@602
|
312 |
/// If \c s was not marked previously, then
|
marci@602
|
313 |
/// in addition its pred is set to be \c INVALID.
|
marci@602
|
314 |
/// if \c s was marked previuosly, then it is simply pushed.
|
marci@777
|
315 |
Dfs<Graph, ReachedMap, PredMap>& push(Node s) {
|
marci@602
|
316 |
if (this->reached[s]) {
|
marci@602
|
317 |
Parent::pushAndSetReached(s);
|
marci@602
|
318 |
} else {
|
marci@602
|
319 |
Parent::pushAndSetReached(s);
|
marci@602
|
320 |
pred.set(s, INVALID);
|
marci@602
|
321 |
}
|
marci@777
|
322 |
return *this;
|
marci@602
|
323 |
}
|
marci@602
|
324 |
/// A bfs is processed from \c s.
|
marci@777
|
325 |
Dfs<Graph, ReachedMap, PredMap>& run(Node s) {
|
marci@602
|
326 |
push(s);
|
marci@602
|
327 |
while (!this->finished()) this->operator++();
|
marci@777
|
328 |
return *this;
|
marci@602
|
329 |
}
|
marci@602
|
330 |
/// Beside the dfs iteration, \c pred is saved in a
|
marci@602
|
331 |
/// newly reached node.
|
marci@604
|
332 |
Dfs<Graph, ReachedMap, PredMap>& operator++() {
|
marci@602
|
333 |
Parent::operator++();
|
marci@602
|
334 |
if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached)
|
marci@602
|
335 |
{
|
marci@777
|
336 |
pred.set(this->head(), this->actual_edge);
|
marci@602
|
337 |
}
|
marci@602
|
338 |
return *this;
|
marci@602
|
339 |
}
|
marci@615
|
340 |
/// Guess what?
|
marci@650
|
341 |
/// \deprecated
|
marci@602
|
342 |
const PredMap& getPredMap() const { return pred; }
|
marci@602
|
343 |
};
|
marci@602
|
344 |
|
marci@602
|
345 |
|
marci@602
|
346 |
} // namespace hugo
|
marci@602
|
347 |
|
marci@602
|
348 |
#endif //HUGO_BFS_DFS_H
|