deba@1693
|
1 |
/* -*- C++ -*-
|
deba@1693
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@1956
|
5 |
* Copyright (C) 2003-2006
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@1693
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@1693
|
8 |
*
|
deba@1693
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@1693
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@1693
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@1693
|
12 |
*
|
deba@1693
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@1693
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@1693
|
15 |
* purpose.
|
deba@1693
|
16 |
*
|
deba@1693
|
17 |
*/
|
deba@1693
|
18 |
|
deba@1693
|
19 |
#ifndef HYPERCUBE_GRAPH_H
|
deba@1693
|
20 |
#define HYPERCUBE_GRAPH_H
|
deba@1693
|
21 |
|
deba@1693
|
22 |
#include <iostream>
|
deba@1693
|
23 |
#include <vector>
|
deba@1993
|
24 |
#include <lemon/bits/invalid.h>
|
deba@1993
|
25 |
#include <lemon/bits/utility.h>
|
deba@1791
|
26 |
#include <lemon/error.h>
|
deba@1693
|
27 |
|
deba@1998
|
28 |
#include <lemon/bits/base_extender.h>
|
deba@1791
|
29 |
#include <lemon/bits/graph_extender.h>
|
deba@1693
|
30 |
|
deba@1693
|
31 |
///\ingroup graphs
|
deba@1693
|
32 |
///\file
|
deba@1693
|
33 |
///\brief HyperCubeGraph class.
|
deba@1693
|
34 |
|
deba@1693
|
35 |
namespace lemon {
|
deba@1693
|
36 |
|
deba@1693
|
37 |
class HyperCubeGraphBase {
|
deba@1693
|
38 |
|
deba@1693
|
39 |
public:
|
deba@1693
|
40 |
|
deba@1693
|
41 |
typedef HyperCubeGraphBase Graph;
|
deba@1693
|
42 |
|
deba@1693
|
43 |
class Node;
|
deba@1693
|
44 |
class Edge;
|
deba@1693
|
45 |
|
deba@1693
|
46 |
public:
|
deba@1693
|
47 |
|
deba@1693
|
48 |
HyperCubeGraphBase() {}
|
deba@1693
|
49 |
|
deba@1693
|
50 |
protected:
|
deba@1693
|
51 |
|
deba@1693
|
52 |
void construct(int dim) {
|
deba@1693
|
53 |
_dim = dim;
|
deba@1693
|
54 |
_nodeNum = 1 << dim;
|
deba@1693
|
55 |
}
|
deba@1693
|
56 |
|
deba@1693
|
57 |
public:
|
deba@1693
|
58 |
|
deba@1693
|
59 |
|
deba@1693
|
60 |
typedef True NodeNumTag;
|
deba@1693
|
61 |
typedef True EdgeNumTag;
|
deba@1693
|
62 |
|
deba@1693
|
63 |
int nodeNum() const { return _nodeNum; }
|
deba@1693
|
64 |
int edgeNum() const { return _nodeNum * _dim; }
|
deba@1693
|
65 |
|
deba@1791
|
66 |
int maxNodeId() const { return nodeNum() - 1; }
|
deba@1791
|
67 |
int maxEdgeId() const { return edgeNum() - 1; }
|
deba@1693
|
68 |
|
deba@1693
|
69 |
Node source(Edge e) const {
|
deba@1693
|
70 |
return e.id / _dim;
|
deba@1693
|
71 |
}
|
deba@1693
|
72 |
|
deba@1693
|
73 |
Node target(Edge e) const {
|
deba@1693
|
74 |
return (e.id / _dim) ^ ( 1 << (e.id % _dim));
|
deba@1693
|
75 |
}
|
deba@1693
|
76 |
|
deba@1693
|
77 |
static int id(Node v) { return v.id; }
|
deba@1693
|
78 |
static int id(Edge e) { return e.id; }
|
deba@1693
|
79 |
|
deba@1791
|
80 |
static Node nodeFromId(int id) { return Node(id);}
|
deba@1693
|
81 |
|
deba@1791
|
82 |
static Edge edgeFromId(int id) { return Edge(id);}
|
deba@1693
|
83 |
|
deba@1693
|
84 |
class Node {
|
deba@1693
|
85 |
friend class HyperCubeGraphBase;
|
deba@1693
|
86 |
|
deba@1693
|
87 |
protected:
|
deba@1693
|
88 |
int id;
|
deba@1693
|
89 |
Node(int _id) { id = _id;}
|
deba@1693
|
90 |
public:
|
deba@1693
|
91 |
Node() {}
|
deba@1693
|
92 |
Node (Invalid) { id = -1; }
|
deba@1693
|
93 |
bool operator==(const Node node) const {return id == node.id;}
|
deba@1693
|
94 |
bool operator!=(const Node node) const {return id != node.id;}
|
deba@1693
|
95 |
bool operator<(const Node node) const {return id < node.id;}
|
deba@1693
|
96 |
};
|
deba@1693
|
97 |
|
deba@1693
|
98 |
class Edge {
|
deba@1693
|
99 |
friend class HyperCubeGraphBase;
|
deba@1693
|
100 |
|
deba@1693
|
101 |
protected:
|
deba@1693
|
102 |
int id;
|
deba@1693
|
103 |
|
deba@1693
|
104 |
Edge(int _id) : id(_id) {}
|
deba@1693
|
105 |
|
deba@1693
|
106 |
public:
|
deba@1693
|
107 |
Edge() { }
|
deba@1693
|
108 |
Edge (Invalid) { id = -1; }
|
deba@1693
|
109 |
bool operator==(const Edge edge) const {return id == edge.id;}
|
deba@1693
|
110 |
bool operator!=(const Edge edge) const {return id != edge.id;}
|
deba@1693
|
111 |
bool operator<(const Edge edge) const {return id < edge.id;}
|
deba@1693
|
112 |
};
|
deba@1693
|
113 |
|
deba@1693
|
114 |
void first(Node& node) const {
|
deba@1693
|
115 |
node.id = nodeNum() - 1;
|
deba@1693
|
116 |
}
|
deba@1693
|
117 |
|
deba@1693
|
118 |
static void next(Node& node) {
|
deba@1693
|
119 |
--node.id;
|
deba@1693
|
120 |
}
|
deba@1693
|
121 |
|
deba@1693
|
122 |
void first(Edge& edge) const {
|
deba@1693
|
123 |
edge.id = edgeNum() - 1;
|
deba@1693
|
124 |
}
|
deba@1693
|
125 |
|
deba@1693
|
126 |
static void next(Edge& edge) {
|
deba@1693
|
127 |
--edge.id;
|
deba@1693
|
128 |
}
|
deba@1693
|
129 |
|
deba@1693
|
130 |
void firstOut(Edge& edge, const Node& node) const {
|
deba@1693
|
131 |
edge.id = node.id * _dim;
|
deba@1693
|
132 |
}
|
deba@1693
|
133 |
|
deba@1693
|
134 |
void nextOut(Edge& edge) const {
|
deba@1693
|
135 |
++edge.id;
|
deba@1693
|
136 |
if (edge.id % _dim == 0) edge.id = -1;
|
deba@1693
|
137 |
}
|
deba@1693
|
138 |
|
deba@1693
|
139 |
void firstIn(Edge& edge, const Node& node) const {
|
deba@1693
|
140 |
edge.id = (node.id ^ 1) * _dim;
|
deba@1693
|
141 |
}
|
deba@1693
|
142 |
|
deba@1693
|
143 |
void nextIn(Edge& edge) const {
|
deba@1693
|
144 |
int cnt = edge.id % _dim;
|
deba@1693
|
145 |
if ((cnt + 1) % _dim == 0) {
|
deba@1693
|
146 |
edge.id = -1;
|
deba@1693
|
147 |
} else {
|
deba@1693
|
148 |
edge.id = ((edge.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
|
deba@1693
|
149 |
}
|
deba@1693
|
150 |
}
|
deba@1693
|
151 |
|
deba@1693
|
152 |
int dimension() const {
|
deba@1693
|
153 |
return _dim;
|
deba@1693
|
154 |
}
|
deba@1693
|
155 |
|
deba@1693
|
156 |
bool projection(Node node, int n) const {
|
deba@1693
|
157 |
return (bool)(node.id & (1 << n));
|
deba@1693
|
158 |
}
|
deba@1693
|
159 |
|
deba@1693
|
160 |
int dimension(Edge edge) const {
|
deba@1693
|
161 |
return edge.id % _dim;
|
deba@1693
|
162 |
}
|
deba@1693
|
163 |
|
deba@1693
|
164 |
int index(Node node) const {
|
deba@1693
|
165 |
return node.id;
|
deba@1693
|
166 |
}
|
deba@1693
|
167 |
|
deba@1986
|
168 |
Node operator()(int index) const {
|
deba@1693
|
169 |
return Node(index);
|
deba@1693
|
170 |
}
|
deba@1693
|
171 |
|
deba@1693
|
172 |
private:
|
deba@1693
|
173 |
int _dim, _nodeNum;
|
deba@1693
|
174 |
};
|
deba@1693
|
175 |
|
deba@1693
|
176 |
|
deba@1979
|
177 |
typedef GraphExtender<HyperCubeGraphBase> ExtendedHyperCubeGraphBase;
|
deba@1693
|
178 |
|
deba@1693
|
179 |
/// \ingroup graphs
|
deba@1693
|
180 |
///
|
deba@1693
|
181 |
/// \brief HyperCube graph class
|
deba@1693
|
182 |
///
|
deba@1693
|
183 |
/// This class implements a special graph type. The nodes of the
|
deba@1693
|
184 |
/// graph can be indiced with integers with at most \c dim binary length.
|
deba@1693
|
185 |
/// Two nodes are connected in the graph if the indices differ only
|
deba@1693
|
186 |
/// on one position in the binary form.
|
deba@1693
|
187 |
///
|
deba@1693
|
188 |
/// \note The type of the \c ids is chosen to \c int because efficiency
|
deba@1693
|
189 |
/// reasons. This way the maximal dimension of this implementation
|
deba@1693
|
190 |
/// is 26.
|
deba@1693
|
191 |
///
|
deba@2111
|
192 |
/// The graph type is fully conform to the \ref concept::Graph
|
klao@1909
|
193 |
/// concept but it does not conform to the \ref concept::UGraph.
|
deba@1693
|
194 |
///
|
deba@1693
|
195 |
/// \author Balazs Dezso
|
deba@1693
|
196 |
class HyperCubeGraph : public ExtendedHyperCubeGraphBase {
|
deba@1693
|
197 |
public:
|
deba@1693
|
198 |
|
deba@2223
|
199 |
typedef ExtendedHyperCubeGraphBase Parent;
|
deba@2223
|
200 |
|
deba@1693
|
201 |
/// \brief Construct a graph with \c dim dimension.
|
deba@1693
|
202 |
///
|
deba@1693
|
203 |
/// Construct a graph with \c dim dimension.
|
deba@1693
|
204 |
HyperCubeGraph(int dim) { construct(dim); }
|
deba@1693
|
205 |
|
deba@2223
|
206 |
/// \brief Gives back the number of the dimensions.
|
deba@2223
|
207 |
///
|
deba@2223
|
208 |
/// Gives back the number of the dimensions.
|
deba@2223
|
209 |
int dimension() const {
|
deba@2223
|
210 |
return Parent::dimension();
|
deba@2223
|
211 |
}
|
deba@2223
|
212 |
|
deba@2223
|
213 |
/// \brief Returns true if the n'th bit of the node is one.
|
deba@2223
|
214 |
///
|
deba@2223
|
215 |
/// Returns true if the n'th bit of the node is one.
|
deba@2223
|
216 |
bool projection(Node node, int n) const {
|
deba@2223
|
217 |
return Parent::projection(node, n);
|
deba@2223
|
218 |
}
|
deba@2223
|
219 |
|
deba@2223
|
220 |
/// \brief The dimension id of the edge.
|
deba@2223
|
221 |
///
|
deba@2223
|
222 |
/// It returns the dimension id of the edge. It can
|
deba@2223
|
223 |
/// be in the \f$ \{0, 1, \dots, dim-1\} \f$ intervall.
|
deba@2223
|
224 |
int dimension(Edge edge) const {
|
deba@2223
|
225 |
return Parent::dimension(edge);
|
deba@2223
|
226 |
}
|
deba@2223
|
227 |
|
deba@2223
|
228 |
/// \brief Gives back the index of the node.
|
deba@2223
|
229 |
///
|
deba@2223
|
230 |
/// Gives back the index of the node. The lower bits of the
|
deba@2223
|
231 |
/// integer describes the node.
|
deba@2223
|
232 |
int index(Node node) const {
|
deba@2223
|
233 |
return Parent::index(node);
|
deba@2223
|
234 |
}
|
deba@2223
|
235 |
|
deba@2223
|
236 |
/// \brief Gives back the node by its index.
|
deba@2223
|
237 |
///
|
deba@2223
|
238 |
/// Gives back the node by its index.
|
deba@2223
|
239 |
Node operator()(int index) const {
|
deba@2223
|
240 |
return Parent::operator()(index);
|
deba@2223
|
241 |
}
|
deba@2223
|
242 |
|
deba@2223
|
243 |
/// \brief Number of nodes.
|
deba@2223
|
244 |
int nodeNum() const { return Parent::nodeNum(); }
|
deba@2223
|
245 |
/// \brief Number of edges.
|
deba@2223
|
246 |
int edgeNum() const { return Parent::edgeNum(); }
|
deba@2223
|
247 |
|
deba@1693
|
248 |
/// \brief Linear combination map.
|
deba@1693
|
249 |
///
|
deba@1693
|
250 |
/// It makes possible to give back a linear combination
|
deba@1693
|
251 |
/// for each node. This function works like the \c std::accumulate
|
deba@1693
|
252 |
/// so it accumulates the \c bf binary function with the \c fv
|
deba@1693
|
253 |
/// first value. The map accumulates only on that dimensions where
|
deba@1693
|
254 |
/// the node's index is one. The accumulated values should be
|
deba@1693
|
255 |
/// given by the \c begin and \c end iterators and this range's length
|
deba@1693
|
256 |
/// should be the dimension number of the graph.
|
deba@1693
|
257 |
///
|
alpar@1946
|
258 |
///\code
|
deba@1693
|
259 |
/// const int DIM = 3;
|
deba@1693
|
260 |
/// HyperCubeGraph graph(DIM);
|
alpar@2207
|
261 |
/// dim2::Point<double> base[DIM];
|
deba@1693
|
262 |
/// for (int k = 0; k < DIM; ++k) {
|
deba@2242
|
263 |
/// base[k].x = rnd();
|
deba@2242
|
264 |
/// base[k].y = rnd();
|
deba@1693
|
265 |
/// }
|
alpar@2207
|
266 |
/// HyperCubeGraph::HyperMap<dim2::Point<double> >
|
alpar@2207
|
267 |
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
|
alpar@1946
|
268 |
///\endcode
|
deba@1693
|
269 |
///
|
deba@1693
|
270 |
/// \see HyperCubeGraph
|
deba@1693
|
271 |
template <typename T, typename BF = std::plus<T> >
|
deba@1693
|
272 |
class HyperMap {
|
deba@1693
|
273 |
public:
|
deba@1693
|
274 |
|
deba@1693
|
275 |
typedef Node Key;
|
deba@1693
|
276 |
typedef T Value;
|
deba@1693
|
277 |
|
deba@1693
|
278 |
|
deba@1693
|
279 |
/// \brief Constructor for HyperMap.
|
deba@1693
|
280 |
///
|
deba@1693
|
281 |
/// Construct a HyperMap for the given graph. The accumulated values
|
deba@1693
|
282 |
/// should be given by the \c begin and \c end iterators and this
|
deba@1693
|
283 |
/// range's length should be the dimension number of the graph.
|
deba@1693
|
284 |
///
|
deba@1693
|
285 |
/// This function accumulates the \c bf binary function with
|
deba@1693
|
286 |
/// the \c fv first value. The map accumulates only on that dimensions
|
deba@1693
|
287 |
/// where the node's index is one.
|
deba@1693
|
288 |
template <typename It>
|
deba@1693
|
289 |
HyperMap(const Graph& graph, It begin, It end,
|
deba@1693
|
290 |
T fv = 0.0, const BF& bf = BF())
|
deba@1693
|
291 |
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) {
|
deba@1963
|
292 |
LEMON_ASSERT(_values.size() == graph.dimension(),
|
deba@1791
|
293 |
"Wrong size of dimension");
|
deba@1693
|
294 |
}
|
deba@1693
|
295 |
|
deba@1693
|
296 |
/// \brief Gives back the partial accumulated value.
|
deba@1693
|
297 |
///
|
deba@1693
|
298 |
/// Gives back the partial accumulated value.
|
deba@1693
|
299 |
Value operator[](Key k) const {
|
deba@1693
|
300 |
Value val = _first_value;
|
deba@1693
|
301 |
int id = _graph.index(k);
|
deba@1693
|
302 |
int n = 0;
|
deba@1693
|
303 |
while (id != 0) {
|
deba@1693
|
304 |
if (id & 1) {
|
deba@1998
|
305 |
val = _bin_func(val, _values[n]);
|
deba@1693
|
306 |
}
|
deba@1693
|
307 |
id >>= 1;
|
deba@1693
|
308 |
++n;
|
deba@1693
|
309 |
}
|
deba@1693
|
310 |
return val;
|
deba@1693
|
311 |
}
|
deba@1693
|
312 |
|
deba@1693
|
313 |
private:
|
deba@1693
|
314 |
const Graph& _graph;
|
deba@1693
|
315 |
std::vector<T> _values;
|
deba@1693
|
316 |
T _first_value;
|
deba@1693
|
317 |
BF _bin_func;
|
deba@1693
|
318 |
};
|
deba@1693
|
319 |
};
|
deba@1693
|
320 |
}
|
deba@1693
|
321 |
#endif
|
deba@1693
|
322 |
|