src/work/jacint/max_save.h
author alpar
Fri, 25 Mar 2005 16:19:03 +0000
changeset 1263 a490938ad0aa
parent 921 818510fa3d99
permissions -rw-r--r--
- LpGlpk added to the makefile
- missing const_cast<>() added
- prop for two new functions (solve() and solution())
jacint@620
     1
// -*- C++ -*-
alpar@921
     2
#ifndef LEMON_MAX_FLOW_H
alpar@921
     3
#define LEMON_MAX_FLOW_H
jacint@620
     4
jacint@620
     5
///\ingroup galgs
jacint@620
     6
///\file
jacint@620
     7
///\brief Maximum flow algorithm.
jacint@620
     8
jacint@620
     9
#define H0 20
jacint@620
    10
#define H1 1
jacint@620
    11
jacint@620
    12
#include <vector>
jacint@620
    13
#include <queue>
jacint@620
    14
#include <stack>
jacint@620
    15
jacint@620
    16
#include <graph_wrapper.h>
jacint@620
    17
#include <bfs_iterator.h>
jacint@620
    18
#include <invalid.h>
jacint@620
    19
#include <maps.h>
jacint@620
    20
#include <for_each_macros.h>
jacint@620
    21
jacint@620
    22
/// \file
jacint@620
    23
/// \brief Dimacs file format reader.
jacint@620
    24
alpar@921
    25
namespace lemon {
jacint@620
    26
jacint@620
    27
  /// \addtogroup galgs
jacint@620
    28
  /// @{
jacint@620
    29
jacint@620
    30
  ///Maximum flow algorithms class.
jacint@620
    31
jacint@620
    32
  ///This class provides various algorithms for finding a flow of
jacint@620
    33
  ///maximum value in a directed graph. The \e source node, the \e
jacint@620
    34
  ///target node, the \e capacity of the edges and the \e starting \e
jacint@620
    35
  ///flow value of the edges can be passed to the algorithm by the
jacint@620
    36
  ///constructor. It is possible to change these quantities using the
jacint@620
    37
  ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
jacint@620
    38
  ///\ref resetFlow. Before any subsequent runs of any algorithm of
jacint@620
    39
  ///the class \ref resetFlow should be called, otherwise it will
jacint@620
    40
  ///start from a maximum flow.
jacint@620
    41
jacint@620
    42
  ///After running an algorithm of the class, the maximum value of a
jacint@620
    43
  ///value can be obtained by calling \ref flowValue(). The minimum
jacint@620
    44
  ///value cut can be written into a \c node map of \c bools by
jacint@620
    45
  ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
jacint@620
    46
  ///the inclusionwise minimum and maximum of the minimum value
jacint@620
    47
  ///cuts, resp.)
jacint@620
    48
jacint@620
    49
  ///\param Graph The undirected graph type the algorithm runs on.
jacint@620
    50
  ///\param Num The number type of the capacities and the flow values.
jacint@620
    51
  ///\param The type of the capacity map.
jacint@620
    52
  ///\param The type of the flow map.
jacint@620
    53
jacint@620
    54
  ///\author Marton Makai, Jacint Szabo
jacint@620
    55
  template <typename Graph, typename Num, 
jacint@620
    56
	    typename CapMap=typename Graph::template EdgeMap<Num>, 
jacint@620
    57
            typename FlowMap=typename Graph::template EdgeMap<Num> >
jacint@620
    58
  class MaxFlow {
jacint@620
    59
    
jacint@620
    60
    typedef typename Graph::Node Node;
jacint@620
    61
    typedef typename Graph::NodeIt NodeIt;
jacint@620
    62
    typedef typename Graph::OutEdgeIt OutEdgeIt;
jacint@620
    63
    typedef typename Graph::InEdgeIt InEdgeIt;
jacint@620
    64
jacint@620
    65
    typedef typename std::vector<std::stack<Node> > VecStack;
jacint@620
    66
    typedef typename Graph::template NodeMap<Node> NNMap;
jacint@620
    67
    typedef typename std::vector<Node> VecNode;
jacint@620
    68
    
jacint@620
    69
    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
jacint@620
    70
    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
jacint@620
    71
    typedef typename ResGW::Edge ResGWEdge;
jacint@620
    72
    //typedef typename ResGW::template NodeMap<bool> ReachedMap;  //fixme
jacint@620
    73
    typedef typename Graph::template NodeMap<int> ReachedMap;
jacint@620
    74
    
jacint@620
    75
    const Graph* g;
jacint@620
    76
    Node s;
jacint@620
    77
    Node t;
jacint@620
    78
    const CapMap* capacity;  
jacint@620
    79
    FlowMap* flow;
jacint@620
    80
    int n;          //the number of nodes of G
jacint@620
    81
jacint@620
    82
    //level works as a bool map in augmenting path algorithms and is
jacint@620
    83
    //used by bfs for storing reached information.  In preflow, it
jacint@620
    84
    //shows the levels of nodes. 
jacint@620
    85
    ReachedMap level;
jacint@620
    86
    
jacint@620
    87
    //excess is needed only in preflow
jacint@620
    88
    typename Graph::template NodeMap<Num> excess; 
jacint@620
    89
jacint@620
    90
jacint@620
    91
    //fixme
jacint@620
    92
    //   protected:
jacint@620
    93
    //     MaxFlow() { }
jacint@620
    94
    //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
jacint@620
    95
    // 	     FlowMap& _flow) 
jacint@620
    96
    //       {
jacint@620
    97
    // 	g=&_G; 
jacint@620
    98
    // 	s=_s; 
jacint@620
    99
    // 	t=_t; 
jacint@620
   100
    // 	capacity=&_capacity;
jacint@620
   101
    // 	flow=&_flow;
jacint@620
   102
    // 	n=_G.nodeNum;
jacint@620
   103
    // 	level.set (_G); //kellene vmi ilyesmi fv 
jacint@620
   104
    // 	excess(_G,0); //itt is
jacint@620
   105
    //       }
jacint@620
   106
jacint@620
   107
  public:
jacint@620
   108
 
jacint@620
   109
    ///Indicates the property of the starting flow. 
jacint@620
   110
jacint@620
   111
    ///Indicates the property of the starting flow. The meanings: 
jacint@620
   112
    ///- \c ZERO_FLOW: constant zero flow
jacint@620
   113
    ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
jacint@620
   114
    ///the sum of the out-flows in every node except the source and
jacint@620
   115
    ///the target.
jacint@620
   116
    ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
jacint@620
   117
    ///least the sum of the out-flows in every node except the source.
jacint@620
   118
    enum flowEnum{
jacint@620
   119
      ZERO_FLOW=0,
jacint@620
   120
      GEN_FLOW=1,
jacint@620
   121
      PRE_FLOW=2
jacint@620
   122
    };
jacint@620
   123
jacint@620
   124
    MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
jacint@620
   125
	    FlowMap& _flow) :
jacint@620
   126
      g(&_G), s(_s), t(_t), capacity(&_capacity), 
jacint@620
   127
      flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {}
jacint@620
   128
jacint@620
   129
    ///Runs a maximum flow algorithm.
jacint@620
   130
jacint@620
   131
    ///Runs a preflow algorithm, which is the fastest maximum flow
jacint@620
   132
    ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
jacint@620
   133
    ///\pre The starting flow must be a 
jacint@620
   134
    /// - constant zero flow if \c fe is \c ZERO_FLOW,
jacint@620
   135
    /// - an arbitary flow if \c fe is \c GEN_FLOW, 
jacint@620
   136
    /// - an arbitary preflow if \c fe is \c PRE_FLOW.
jacint@620
   137
    void run( flowEnum fe=ZERO_FLOW ) {
jacint@620
   138
      preflow(fe);
jacint@620
   139
    }
jacint@620
   140
    
jacint@620
   141
    ///Runs a preflow algorithm.
jacint@620
   142
jacint@620
   143
    ///Runs a preflow algorithm. The preflow algorithms provide the
jacint@620
   144
    ///fastest way to compute a maximum flow in a directed graph.
jacint@620
   145
    ///\pre The starting flow must be a 
jacint@620
   146
    /// - constant zero flow if \c fe is \c ZERO_FLOW,
jacint@620
   147
    /// - an arbitary flow if \c fe is \c GEN_FLOW, 
jacint@620
   148
    /// - an arbitary preflow if \c fe is \c PRE_FLOW.
jacint@620
   149
    void preflow(flowEnum fe) {
jacint@620
   150
      preflowPhase1(fe);
jacint@620
   151
      preflowPhase2();
jacint@620
   152
    }
jacint@620
   153
    // Heuristics: 
jacint@620
   154
    //   2 phase
jacint@620
   155
    //   gap
jacint@620
   156
    //   list 'level_list' on the nodes on level i implemented by hand
jacint@620
   157
    //   stack 'active' on the active nodes on level i
jacint@620
   158
    //   runs heuristic 'highest label' for H1*n relabels
jacint@620
   159
    //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
jacint@620
   160
    //   Parameters H0 and H1 are initialized to 20 and 1.
jacint@620
   161
jacint@620
   162
    ///Runs the first phase of the preflow algorithm.
jacint@620
   163
    
jacint@620
   164
    ///The preflow algorithm consists of two phases, this method runs the
jacint@620
   165
    ///first phase. After the first phase the maximum flow value and a
jacint@620
   166
    ///minimum value cut can already be computed, though a maximum flow
jacint@620
   167
    ///is net yet obtained. So after calling this method \ref flowValue
jacint@620
   168
    ///and \ref actMinCut gives proper results. 
jacint@620
   169
    ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
jacint@620
   170
    ///give minimum value cuts unless calling \ref preflowPhase2.
jacint@620
   171
    ///\pre The starting flow must be a 
jacint@620
   172
    /// - constant zero flow if \c fe is \c ZERO_FLOW,
jacint@620
   173
    /// - an arbitary flow if \c fe is \c GEN_FLOW, 
jacint@620
   174
    /// - an arbitary preflow if \c fe is \c PRE_FLOW.
jacint@620
   175
    void preflowPhase1( flowEnum fe );
jacint@620
   176
jacint@620
   177
    ///Runs the second phase of the preflow algorithm.
jacint@620
   178
    
jacint@620
   179
    ///The preflow algorithm consists of two phases, this method runs
jacint@620
   180
    ///the second phase. After calling \ref preflowPhase1 and then
jacint@620
   181
    ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
jacint@620
   182
    ///\ref minMinCut and \ref maxMinCut give proper results.
jacint@620
   183
    ///\pre \ref preflowPhase1 must be called before.
jacint@620
   184
    void preflowPhase2();
jacint@620
   185
jacint@620
   186
    /// Starting from a flow, this method searches for an augmenting path 
jacint@620
   187
    /// according to the Edmonds-Karp algorithm 
jacint@620
   188
    /// and augments the flow on if any. 
jacint@620
   189
    /// The return value shows if the augmentation was successful.
jacint@620
   190
    bool augmentOnShortestPath();
jacint@620
   191
jacint@620
   192
    /// Starting from a flow, this method searches for an augmenting blockin 
jacint@620
   193
    /// flow according to Dinits' algorithm and augments the flow on if any. 
jacint@620
   194
    /// The blocking flow is computed in a physically constructed 
jacint@620
   195
    /// residual graph of type \c Mutablegraph.
jacint@620
   196
    /// The return value show sif the augmentation was succesful.
jacint@620
   197
    template<typename MutableGraph> bool augmentOnBlockingFlow();
jacint@620
   198
jacint@620
   199
    /// The same as \c augmentOnBlockingFlow<MutableGraph> but the 
jacint@620
   200
    /// residual graph is not constructed physically.
jacint@620
   201
    /// The return value shows if the augmentation was succesful.
jacint@620
   202
    bool augmentOnBlockingFlow2();
jacint@620
   203
jacint@620
   204
    /// Returns the actual flow value.
jacint@620
   205
    /// More precisely, it returns the negative excess of s, thus 
jacint@620
   206
    /// this works also for preflows.
jacint@620
   207
    ///Can be called already after \ref preflowPhase1.
jacint@620
   208
jacint@620
   209
    Num flowValue() { 
jacint@620
   210
      Num a=0;
jacint@620
   211
      FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e];
jacint@620
   212
      FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e];
jacint@620
   213
      return a;
jacint@620
   214
      //marci figyu: excess[t] epp ezt adja preflow 0. fazisa utan
jacint@620
   215
    }
jacint@620
   216
jacint@620
   217
    ///Returns a minimum value cut after calling \ref preflowPhase1.
jacint@620
   218
jacint@620
   219
    ///After the first phase of the preflow algorithm the maximum flow
jacint@620
   220
    ///value and a minimum value cut can already be computed. This
jacint@620
   221
    ///method can be called after running \ref preflowPhase1 for
jacint@620
   222
    ///obtaining a minimum value cut.
jacint@620
   223
    ///\warning: Gives proper result only right after calling \ref
jacint@620
   224
    ///preflowPhase1.
jacint@620
   225
    ///\todo We have to make some status variable which shows the actual state 
jacint@620
   226
    /// of the class. This enables us to determine which methods are valid 
jacint@620
   227
    /// for MinCut computation
jacint@620
   228
    template<typename _CutMap>
jacint@620
   229
    void actMinCut(_CutMap& M) {
jacint@620
   230
      NodeIt v;
jacint@620
   231
      for(g->first(v); g->valid(v); g->next(v)) {
jacint@620
   232
	if ( level[v] < n ) {
jacint@620
   233
	  M.set(v,false);
jacint@620
   234
	} else {
jacint@620
   235
	  M.set(v,true);
jacint@620
   236
	}
jacint@620
   237
      }
jacint@620
   238
    }
jacint@620
   239
    
jacint@620
   240
    ///Returns the inclusionwise minimum of the minimum value cuts.
jacint@620
   241
jacint@620
   242
    ///Sets \c M to the characteristic vector of the minimum value cut
jacint@620
   243
    ///which is inclusionwise minimum. It is computed by processing
jacint@620
   244
    ///a bfs from the source node \c s in the residual graph.
jacint@620
   245
    ///\pre M should be a node map of bools initialized to false.
jacint@620
   246
    ///\pre \c flow must be a maximum flow.
jacint@620
   247
    template<typename _CutMap>
jacint@620
   248
    void minMinCut(_CutMap& M) {
jacint@620
   249
    
jacint@620
   250
      std::queue<Node> queue;
jacint@620
   251
      
jacint@620
   252
      M.set(s,true);      
jacint@620
   253
      queue.push(s);
jacint@620
   254
jacint@620
   255
      while (!queue.empty()) {
jacint@620
   256
        Node w=queue.front();
jacint@620
   257
	queue.pop();
jacint@620
   258
jacint@620
   259
	OutEdgeIt e;
jacint@620
   260
	for(g->first(e,w) ; g->valid(e); g->next(e)) {
alpar@986
   261
	  Node v=g->target(e);
jacint@620
   262
	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
jacint@620
   263
	    queue.push(v);
jacint@620
   264
	    M.set(v, true);
jacint@620
   265
	  }
jacint@620
   266
	} 
jacint@620
   267
jacint@620
   268
	InEdgeIt f;
jacint@620
   269
	for(g->first(f,w) ; g->valid(f); g->next(f)) {
alpar@986
   270
	  Node v=g->source(f);
jacint@620
   271
	  if (!M[v] && (*flow)[f] > 0 ) {
jacint@620
   272
	    queue.push(v);
jacint@620
   273
	    M.set(v, true);
jacint@620
   274
	  }
jacint@620
   275
	} 
jacint@620
   276
      }
jacint@620
   277
    }
jacint@620
   278
jacint@620
   279
jacint@620
   280
    ///Returns the inclusionwise maximum of the minimum value cuts.
jacint@620
   281
jacint@620
   282
    ///Sets \c M to the characteristic vector of the minimum value cut
jacint@620
   283
    ///which is inclusionwise maximum. It is computed by processing a
jacint@620
   284
    ///backward bfs from the target node \c t in the residual graph.
jacint@620
   285
    ///\pre M should be a node map of bools initialized to false.
jacint@620
   286
    ///\pre \c flow must be a maximum flow.
jacint@620
   287
    template<typename _CutMap>
jacint@620
   288
    void maxMinCut(_CutMap& M) {
jacint@620
   289
jacint@620
   290
      NodeIt v;
jacint@620
   291
      for(g->first(v) ; g->valid(v); g->next(v)) {
jacint@620
   292
	M.set(v, true);
jacint@620
   293
      }
jacint@620
   294
jacint@620
   295
      std::queue<Node> queue;
jacint@620
   296
      
jacint@620
   297
      M.set(t,false);        
jacint@620
   298
      queue.push(t);
jacint@620
   299
jacint@620
   300
      while (!queue.empty()) {
jacint@620
   301
        Node w=queue.front();
jacint@620
   302
	queue.pop();
jacint@620
   303
jacint@620
   304
jacint@620
   305
	InEdgeIt e;
jacint@620
   306
	for(g->first(e,w) ; g->valid(e); g->next(e)) {
alpar@986
   307
	  Node v=g->source(e);
jacint@620
   308
	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
jacint@620
   309
	    queue.push(v);
jacint@620
   310
	    M.set(v, false);
jacint@620
   311
	  }
jacint@620
   312
	}
jacint@620
   313
	
jacint@620
   314
	OutEdgeIt f;
jacint@620
   315
	for(g->first(f,w) ; g->valid(f); g->next(f)) {
alpar@986
   316
	  Node v=g->target(f);
jacint@620
   317
	  if (M[v] && (*flow)[f] > 0 ) {
jacint@620
   318
	    queue.push(v);
jacint@620
   319
	    M.set(v, false);
jacint@620
   320
	  }
jacint@620
   321
	}
jacint@620
   322
      }
jacint@620
   323
    }
jacint@620
   324
jacint@620
   325
jacint@620
   326
    ///Returns a minimum value cut.
jacint@620
   327
jacint@620
   328
    ///Sets \c M to the characteristic vector of a minimum value cut.
jacint@620
   329
    ///\pre M should be a node map of bools initialized to false.
jacint@620
   330
    ///\pre \c flow must be a maximum flow.
jacint@620
   331
    template<typename CutMap>
jacint@620
   332
    void minCut(CutMap& M) { minMinCut(M); }
jacint@620
   333
jacint@620
   334
    ///Resets the source node to \c _s.
jacint@620
   335
jacint@620
   336
    ///Resets the source node to \c _s.
jacint@620
   337
    ///
jacint@620
   338
    void resetSource(Node _s) { s=_s; }
jacint@620
   339
jacint@620
   340
jacint@620
   341
    ///Resets the target node to \c _t.
jacint@620
   342
jacint@620
   343
    ///Resets the target node to \c _t.
jacint@620
   344
    ///
jacint@620
   345
    void resetTarget(Node _t) { t=_t; }
jacint@620
   346
   
jacint@620
   347
    /// Resets the edge map of the capacities to _cap.
jacint@620
   348
jacint@620
   349
    /// Resets the edge map of the capacities to _cap.
jacint@620
   350
    ///
jacint@620
   351
    void resetCap(const CapMap& _cap) { capacity=&_cap; }
jacint@620
   352
    
jacint@620
   353
    /// Resets the edge map of the flows to _flow.
jacint@620
   354
jacint@620
   355
    /// Resets the edge map of the flows to _flow.
jacint@620
   356
    ///
jacint@620
   357
    void resetFlow(FlowMap& _flow) { flow=&_flow; }
jacint@620
   358
jacint@620
   359
jacint@620
   360
  private:
jacint@620
   361
jacint@620
   362
    int push(Node w, VecStack& active) {
jacint@620
   363
      
jacint@620
   364
      int lev=level[w];
jacint@620
   365
      Num exc=excess[w];
jacint@620
   366
      int newlevel=n;       //bound on the next level of w
jacint@620
   367
	  
jacint@620
   368
      OutEdgeIt e;
jacint@620
   369
      for(g->first(e,w); g->valid(e); g->next(e)) {
jacint@620
   370
	    
jacint@620
   371
	if ( (*flow)[e] >= (*capacity)[e] ) continue; 
alpar@986
   372
	Node v=g->target(e);            
jacint@620
   373
	    
jacint@620
   374
	if( lev > level[v] ) { //Push is allowed now
jacint@620
   375
	  
jacint@620
   376
	  if ( excess[v]<=0 && v!=t && v!=s ) {
jacint@620
   377
	    int lev_v=level[v];
jacint@620
   378
	    active[lev_v].push(v);
jacint@620
   379
	  }
jacint@620
   380
	  
jacint@620
   381
	  Num cap=(*capacity)[e];
jacint@620
   382
	  Num flo=(*flow)[e];
jacint@620
   383
	  Num remcap=cap-flo;
jacint@620
   384
	  
jacint@620
   385
	  if ( remcap >= exc ) { //A nonsaturating push.
jacint@620
   386
	    
jacint@620
   387
	    flow->set(e, flo+exc);
jacint@620
   388
	    excess.set(v, excess[v]+exc);
jacint@620
   389
	    exc=0;
jacint@620
   390
	    break; 
jacint@620
   391
	    
jacint@620
   392
	  } else { //A saturating push.
jacint@620
   393
	    flow->set(e, cap);
jacint@620
   394
	    excess.set(v, excess[v]+remcap);
jacint@620
   395
	    exc-=remcap;
jacint@620
   396
	  }
jacint@620
   397
	} else if ( newlevel > level[v] ) newlevel = level[v];
jacint@620
   398
      } //for out edges wv 
jacint@620
   399
      
jacint@620
   400
      if ( exc > 0 ) {	
jacint@620
   401
	InEdgeIt e;
jacint@620
   402
	for(g->first(e,w); g->valid(e); g->next(e)) {
jacint@620
   403
	  
jacint@620
   404
	  if( (*flow)[e] <= 0 ) continue; 
alpar@986
   405
	  Node v=g->source(e); 
jacint@620
   406
	  
jacint@620
   407
	  if( lev > level[v] ) { //Push is allowed now
jacint@620
   408
	    
jacint@620
   409
	    if ( excess[v]<=0 && v!=t && v!=s ) {
jacint@620
   410
	      int lev_v=level[v];
jacint@620
   411
	      active[lev_v].push(v);
jacint@620
   412
	    }
jacint@620
   413
	    
jacint@620
   414
	    Num flo=(*flow)[e];
jacint@620
   415
	    
jacint@620
   416
	    if ( flo >= exc ) { //A nonsaturating push.
jacint@620
   417
	      
jacint@620
   418
	      flow->set(e, flo-exc);
jacint@620
   419
	      excess.set(v, excess[v]+exc);
jacint@620
   420
	      exc=0;
jacint@620
   421
	      break; 
jacint@620
   422
	    } else {  //A saturating push.
jacint@620
   423
	      
jacint@620
   424
	      excess.set(v, excess[v]+flo);
jacint@620
   425
	      exc-=flo;
jacint@620
   426
	      flow->set(e,0);
jacint@620
   427
	    }  
jacint@620
   428
	  } else if ( newlevel > level[v] ) newlevel = level[v];
jacint@620
   429
	} //for in edges vw
jacint@620
   430
	
jacint@620
   431
      } // if w still has excess after the out edge for cycle
jacint@620
   432
      
jacint@620
   433
      excess.set(w, exc);
jacint@620
   434
      
jacint@620
   435
      return newlevel;
jacint@620
   436
    }
jacint@620
   437
jacint@620
   438
jacint@620
   439
    void preflowPreproc ( flowEnum fe, VecStack& active, 
jacint@620
   440
			  VecNode& level_list, NNMap& left, NNMap& right ) {
jacint@620
   441
jacint@620
   442
			    std::queue<Node> bfs_queue;
jacint@620
   443
      
jacint@620
   444
			    switch ( fe ) {
jacint@620
   445
			    case ZERO_FLOW: 
jacint@620
   446
			      {
jacint@620
   447
				//Reverse_bfs from t, to find the starting level.
jacint@620
   448
				level.set(t,0);
jacint@620
   449
				bfs_queue.push(t);
jacint@620
   450
	
jacint@620
   451
				while (!bfs_queue.empty()) {
jacint@620
   452
	    
jacint@620
   453
				  Node v=bfs_queue.front();	
jacint@620
   454
				  bfs_queue.pop();
jacint@620
   455
				  int l=level[v]+1;
jacint@620
   456
	    
jacint@620
   457
				  InEdgeIt e;
jacint@620
   458
				  for(g->first(e,v); g->valid(e); g->next(e)) {
alpar@986
   459
				    Node w=g->source(e);
jacint@620
   460
				    if ( level[w] == n && w != s ) {
jacint@620
   461
				      bfs_queue.push(w);
jacint@620
   462
				      Node first=level_list[l];
jacint@620
   463
				      if ( g->valid(first) ) left.set(first,w);
jacint@620
   464
				      right.set(w,first);
jacint@620
   465
				      level_list[l]=w;
jacint@620
   466
				      level.set(w, l);
jacint@620
   467
				    }
jacint@620
   468
				  }
jacint@620
   469
				}
jacint@620
   470
	  
jacint@620
   471
				//the starting flow
jacint@620
   472
				OutEdgeIt e;
jacint@620
   473
				for(g->first(e,s); g->valid(e); g->next(e)) 
jacint@620
   474
				  {
jacint@620
   475
				    Num c=(*capacity)[e];
jacint@620
   476
				    if ( c <= 0 ) continue;
alpar@986
   477
				    Node w=g->target(e);
jacint@620
   478
				    if ( level[w] < n ) {	  
jacint@620
   479
				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
jacint@620
   480
				      flow->set(e, c); 
jacint@620
   481
				      excess.set(w, excess[w]+c);
jacint@620
   482
				    }
jacint@620
   483
				  }
jacint@620
   484
				break;
jacint@620
   485
			      }
jacint@620
   486
	
jacint@620
   487
			    case GEN_FLOW:
jacint@620
   488
			    case PRE_FLOW:
jacint@620
   489
			      {
jacint@620
   490
				//Reverse_bfs from t in the residual graph, 
jacint@620
   491
				//to find the starting level.
jacint@620
   492
				level.set(t,0);
jacint@620
   493
				bfs_queue.push(t);
jacint@620
   494
	  
jacint@620
   495
				while (!bfs_queue.empty()) {
jacint@620
   496
	    
jacint@620
   497
				  Node v=bfs_queue.front();	
jacint@620
   498
				  bfs_queue.pop();
jacint@620
   499
				  int l=level[v]+1;
jacint@620
   500
	    
jacint@620
   501
				  InEdgeIt e;
jacint@620
   502
				  for(g->first(e,v); g->valid(e); g->next(e)) {
jacint@620
   503
				    if ( (*capacity)[e] <= (*flow)[e] ) continue;
alpar@986
   504
				    Node w=g->source(e);
jacint@620
   505
				    if ( level[w] == n && w != s ) {
jacint@620
   506
				      bfs_queue.push(w);
jacint@620
   507
				      Node first=level_list[l];
jacint@620
   508
				      if ( g->valid(first) ) left.set(first,w);
jacint@620
   509
				      right.set(w,first);
jacint@620
   510
				      level_list[l]=w;
jacint@620
   511
				      level.set(w, l);
jacint@620
   512
				    }
jacint@620
   513
				  }
jacint@620
   514
	    
jacint@620
   515
				  OutEdgeIt f;
jacint@620
   516
				  for(g->first(f,v); g->valid(f); g->next(f)) {
jacint@620
   517
				    if ( 0 >= (*flow)[f] ) continue;
alpar@986
   518
				    Node w=g->target(f);
jacint@620
   519
				    if ( level[w] == n && w != s ) {
jacint@620
   520
				      bfs_queue.push(w);
jacint@620
   521
				      Node first=level_list[l];
jacint@620
   522
				      if ( g->valid(first) ) left.set(first,w);
jacint@620
   523
				      right.set(w,first);
jacint@620
   524
				      level_list[l]=w;
jacint@620
   525
				      level.set(w, l);
jacint@620
   526
				    }
jacint@620
   527
				  }
jacint@620
   528
				}
jacint@620
   529
	  
jacint@620
   530
	  
jacint@620
   531
				//the starting flow
jacint@620
   532
				OutEdgeIt e;
jacint@620
   533
				for(g->first(e,s); g->valid(e); g->next(e)) 
jacint@620
   534
				  {
jacint@620
   535
				    Num rem=(*capacity)[e]-(*flow)[e];
jacint@620
   536
				    if ( rem <= 0 ) continue;
alpar@986
   537
				    Node w=g->target(e);
jacint@620
   538
				    if ( level[w] < n ) {	  
jacint@620
   539
				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
jacint@620
   540
				      flow->set(e, (*capacity)[e]); 
jacint@620
   541
				      excess.set(w, excess[w]+rem);
jacint@620
   542
				    }
jacint@620
   543
				  }
jacint@620
   544
	  
jacint@620
   545
				InEdgeIt f;
jacint@620
   546
				for(g->first(f,s); g->valid(f); g->next(f)) 
jacint@620
   547
				  {
jacint@620
   548
				    if ( (*flow)[f] <= 0 ) continue;
alpar@986
   549
				    Node w=g->source(f);
jacint@620
   550
				    if ( level[w] < n ) {	  
jacint@620
   551
				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
jacint@620
   552
				      excess.set(w, excess[w]+(*flow)[f]);
jacint@620
   553
				      flow->set(f, 0); 
jacint@620
   554
				    }
jacint@620
   555
				  }  
jacint@620
   556
				break;
jacint@620
   557
			      } //case PRE_FLOW
jacint@620
   558
			    }
jacint@620
   559
			  } //preflowPreproc
jacint@620
   560
jacint@620
   561
jacint@620
   562
jacint@620
   563
    void relabel(Node w, int newlevel, VecStack& active,  
jacint@620
   564
		 VecNode& level_list, NNMap& left, 
jacint@620
   565
		 NNMap& right, int& b, int& k, bool what_heur ) 
jacint@620
   566
    {
jacint@620
   567
jacint@620
   568
      Num lev=level[w];	
jacint@620
   569
      
jacint@620
   570
      Node right_n=right[w];
jacint@620
   571
      Node left_n=left[w];
jacint@620
   572
      
jacint@620
   573
      //unlacing starts
jacint@620
   574
      if ( g->valid(right_n) ) {
jacint@620
   575
	if ( g->valid(left_n) ) {
jacint@620
   576
	  right.set(left_n, right_n);
jacint@620
   577
	  left.set(right_n, left_n);
jacint@620
   578
	} else {
jacint@620
   579
	  level_list[lev]=right_n;   
jacint@620
   580
	  left.set(right_n, INVALID);
jacint@620
   581
	} 
jacint@620
   582
      } else {
jacint@620
   583
	if ( g->valid(left_n) ) {
jacint@620
   584
	  right.set(left_n, INVALID);
jacint@620
   585
	} else { 
jacint@620
   586
	  level_list[lev]=INVALID;   
jacint@620
   587
	} 
jacint@620
   588
      } 
jacint@620
   589
      //unlacing ends
jacint@620
   590
		
jacint@620
   591
      if ( !g->valid(level_list[lev]) ) {
jacint@620
   592
	      
jacint@620
   593
	//gapping starts
jacint@620
   594
	for (int i=lev; i!=k ; ) {
jacint@620
   595
	  Node v=level_list[++i];
jacint@620
   596
	  while ( g->valid(v) ) {
jacint@620
   597
	    level.set(v,n);
jacint@620
   598
	    v=right[v];
jacint@620
   599
	  }
jacint@620
   600
	  level_list[i]=INVALID;
jacint@620
   601
	  if ( !what_heur ) {
jacint@620
   602
	    while ( !active[i].empty() ) {
jacint@620
   603
	      active[i].pop();    //FIXME: ezt szebben kene
jacint@620
   604
	    }
jacint@620
   605
	  }	     
jacint@620
   606
	}
jacint@620
   607
	
jacint@620
   608
	level.set(w,n);
jacint@620
   609
	b=lev-1;
jacint@620
   610
	k=b;
jacint@620
   611
	//gapping ends
jacint@620
   612
	
jacint@620
   613
      } else {
jacint@620
   614
	
jacint@620
   615
	if ( newlevel == n ) level.set(w,n); 
jacint@620
   616
	else {
jacint@620
   617
	  level.set(w,++newlevel);
jacint@620
   618
	  active[newlevel].push(w);
jacint@620
   619
	  if ( what_heur ) b=newlevel;
jacint@620
   620
	  if ( k < newlevel ) ++k;      //now k=newlevel
jacint@620
   621
	  Node first=level_list[newlevel];
jacint@620
   622
	  if ( g->valid(first) ) left.set(first,w);
jacint@620
   623
	  right.set(w,first);
jacint@620
   624
	  left.set(w,INVALID);
jacint@620
   625
	  level_list[newlevel]=w;
jacint@620
   626
	}
jacint@620
   627
      }
jacint@620
   628
      
jacint@620
   629
    } //relabel
jacint@620
   630
jacint@620
   631
jacint@620
   632
    template<typename MapGraphWrapper> 
jacint@620
   633
    class DistanceMap {
jacint@620
   634
    protected:
jacint@620
   635
      const MapGraphWrapper* g;
jacint@620
   636
      typename MapGraphWrapper::template NodeMap<int> dist; 
jacint@620
   637
    public:
jacint@620
   638
      DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
jacint@620
   639
      void set(const typename MapGraphWrapper::Node& n, int a) { 
jacint@620
   640
	dist.set(n, a); 
jacint@620
   641
      }
jacint@620
   642
      int operator[](const typename MapGraphWrapper::Node& n) 
jacint@620
   643
      { return dist[n]; }
jacint@620
   644
      //       int get(const typename MapGraphWrapper::Node& n) const { 
jacint@620
   645
      // 	return dist[n]; }
jacint@620
   646
      //       bool get(const typename MapGraphWrapper::Edge& e) const { 
alpar@986
   647
      // 	return (dist.get(g->source(e))<dist.get(g->target(e))); }
jacint@620
   648
      bool operator[](const typename MapGraphWrapper::Edge& e) const { 
alpar@986
   649
	return (dist[g->source(e)]<dist[g->target(e)]); 
jacint@620
   650
      }
jacint@620
   651
    };
jacint@620
   652
    
jacint@620
   653
  };
jacint@620
   654
jacint@620
   655
jacint@620
   656
  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
jacint@620
   657
  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1( flowEnum fe ) 
jacint@620
   658
  {
jacint@620
   659
      
jacint@620
   660
    int heur0=(int)(H0*n);  //time while running 'bound decrease' 
jacint@620
   661
    int heur1=(int)(H1*n);  //time while running 'highest label'
jacint@620
   662
    int heur=heur1;         //starting time interval (#of relabels)
jacint@620
   663
    int numrelabel=0;
jacint@620
   664
     
jacint@620
   665
    bool what_heur=1;       
jacint@620
   666
    //It is 0 in case 'bound decrease' and 1 in case 'highest label'
jacint@620
   667
jacint@620
   668
    bool end=false;     
jacint@620
   669
    //Needed for 'bound decrease', true means no active nodes are above bound b.
jacint@620
   670
jacint@620
   671
    int k=n-2;  //bound on the highest level under n containing a node
jacint@620
   672
    int b=k;    //bound on the highest level under n of an active node
jacint@620
   673
      
jacint@620
   674
    VecStack active(n);
jacint@620
   675
      
jacint@620
   676
    NNMap left(*g, INVALID);
jacint@620
   677
    NNMap right(*g, INVALID);
jacint@620
   678
    VecNode level_list(n,INVALID);
jacint@620
   679
    //List of the nodes in level i<n, set to n.
jacint@620
   680
jacint@620
   681
    NodeIt v;
jacint@620
   682
    for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
jacint@620
   683
    //setting each node to level n
jacint@620
   684
      
jacint@620
   685
    switch ( fe ) {
jacint@620
   686
    case PRE_FLOW:
jacint@620
   687
      {
jacint@620
   688
	//counting the excess
jacint@620
   689
	NodeIt v;
jacint@620
   690
	for(g->first(v); g->valid(v); g->next(v)) {
jacint@620
   691
	  Num exc=0;
jacint@620
   692
	  
jacint@620
   693
	  InEdgeIt e;
jacint@620
   694
	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
jacint@620
   695
	  OutEdgeIt f;
jacint@620
   696
	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
jacint@620
   697
	    
jacint@620
   698
	  excess.set(v,exc);	  
jacint@620
   699
	    
jacint@620
   700
	  //putting the active nodes into the stack
jacint@620
   701
	  int lev=level[v];
jacint@620
   702
	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
jacint@620
   703
	}
jacint@620
   704
	break;
jacint@620
   705
      }
jacint@620
   706
    case GEN_FLOW:
jacint@620
   707
      {
jacint@620
   708
	//Counting the excess of t
jacint@620
   709
	Num exc=0;
jacint@620
   710
	  
jacint@620
   711
	InEdgeIt e;
jacint@620
   712
	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
jacint@620
   713
	OutEdgeIt f;
jacint@620
   714
	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
jacint@620
   715
	  
jacint@620
   716
	excess.set(t,exc);	
jacint@620
   717
	  
jacint@620
   718
	break;
jacint@620
   719
      }
jacint@620
   720
    default:
jacint@620
   721
      break;
jacint@620
   722
    }
jacint@620
   723
      
jacint@620
   724
    preflowPreproc( fe, active, level_list, left, right );
jacint@620
   725
    //End of preprocessing 
jacint@620
   726
      
jacint@620
   727
      
jacint@620
   728
    //Push/relabel on the highest level active nodes.
jacint@620
   729
    while ( true ) {
jacint@620
   730
      if ( b == 0 ) {
jacint@620
   731
	if ( !what_heur && !end && k > 0 ) {
jacint@620
   732
	  b=k;
jacint@620
   733
	  end=true;
jacint@620
   734
	} else break;
jacint@620
   735
      }
jacint@620
   736
	
jacint@620
   737
      if ( active[b].empty() ) --b; 
jacint@620
   738
      else {
jacint@620
   739
	end=false;  
jacint@620
   740
	Node w=active[b].top();
jacint@620
   741
	active[b].pop();
jacint@620
   742
	int newlevel=push(w,active);
jacint@620
   743
	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, 
jacint@620
   744
				     left, right, b, k, what_heur);
jacint@620
   745
	  
jacint@620
   746
	++numrelabel; 
jacint@620
   747
	if ( numrelabel >= heur ) {
jacint@620
   748
	  numrelabel=0;
jacint@620
   749
	  if ( what_heur ) {
jacint@620
   750
	    what_heur=0;
jacint@620
   751
	    heur=heur0;
jacint@620
   752
	    end=false;
jacint@620
   753
	  } else {
jacint@620
   754
	    what_heur=1;
jacint@620
   755
	    heur=heur1;
jacint@620
   756
	    b=k; 
jacint@620
   757
	  }
jacint@620
   758
	}
jacint@620
   759
      } 
jacint@620
   760
    } 
jacint@620
   761
  }
jacint@620
   762
jacint@620
   763
jacint@620
   764
jacint@620
   765
  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
jacint@620
   766
  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2() 
jacint@620
   767
  {
jacint@620
   768
      
jacint@620
   769
    int k=n-2;  //bound on the highest level under n containing a node
jacint@620
   770
    int b=k;    //bound on the highest level under n of an active node
jacint@620
   771
      
jacint@620
   772
    VecStack active(n);
jacint@620
   773
    level.set(s,0);
jacint@620
   774
    std::queue<Node> bfs_queue;
jacint@620
   775
    bfs_queue.push(s);
jacint@620
   776
	    
jacint@620
   777
    while (!bfs_queue.empty()) {
jacint@620
   778
	
jacint@620
   779
      Node v=bfs_queue.front();	
jacint@620
   780
      bfs_queue.pop();
jacint@620
   781
      int l=level[v]+1;
jacint@620
   782
	      
jacint@620
   783
      InEdgeIt e;
jacint@620
   784
      for(g->first(e,v); g->valid(e); g->next(e)) {
jacint@620
   785
	if ( (*capacity)[e] <= (*flow)[e] ) continue;
alpar@986
   786
	Node u=g->source(e);
jacint@620
   787
	if ( level[u] >= n ) { 
jacint@620
   788
	  bfs_queue.push(u);
jacint@620
   789
	  level.set(u, l);
jacint@620
   790
	  if ( excess[u] > 0 ) active[l].push(u);
jacint@620
   791
	}
jacint@620
   792
      }
jacint@620
   793
	
jacint@620
   794
      OutEdgeIt f;
jacint@620
   795
      for(g->first(f,v); g->valid(f); g->next(f)) {
jacint@620
   796
	if ( 0 >= (*flow)[f] ) continue;
alpar@986
   797
	Node u=g->target(f);
jacint@620
   798
	if ( level[u] >= n ) { 
jacint@620
   799
	  bfs_queue.push(u);
jacint@620
   800
	  level.set(u, l);
jacint@620
   801
	  if ( excess[u] > 0 ) active[l].push(u);
jacint@620
   802
	}
jacint@620
   803
      }
jacint@620
   804
    }
jacint@620
   805
    b=n-2;
jacint@620
   806
jacint@620
   807
    while ( true ) {
jacint@620
   808
	
jacint@620
   809
      if ( b == 0 ) break;
jacint@620
   810
jacint@620
   811
      if ( active[b].empty() ) --b; 
jacint@620
   812
      else {
jacint@620
   813
	Node w=active[b].top();
jacint@620
   814
	active[b].pop();
jacint@620
   815
	int newlevel=push(w,active);	  
jacint@620
   816
jacint@620
   817
	//relabel
jacint@620
   818
	if ( excess[w] > 0 ) {
jacint@620
   819
	  level.set(w,++newlevel);
jacint@620
   820
	  active[newlevel].push(w);
jacint@620
   821
	  b=newlevel;
jacint@620
   822
	}
jacint@620
   823
      }  // if stack[b] is nonempty
jacint@620
   824
    } // while(true)
jacint@620
   825
  }
jacint@620
   826
jacint@620
   827
jacint@620
   828
jacint@620
   829
  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
jacint@620
   830
  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() 
jacint@620
   831
  {
jacint@620
   832
    ResGW res_graph(*g, *capacity, *flow);
jacint@620
   833
    bool _augment=false;
jacint@620
   834
      
jacint@620
   835
    //ReachedMap level(res_graph);
jacint@620
   836
    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
jacint@620
   837
    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
jacint@620
   838
    bfs.pushAndSetReached(s);
jacint@620
   839
	
jacint@620
   840
    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); 
jacint@620
   841
    pred.set(s, INVALID);
jacint@620
   842
      
jacint@620
   843
    typename ResGW::template NodeMap<Num> free(res_graph);
jacint@620
   844
	
jacint@620
   845
    //searching for augmenting path
jacint@620
   846
    while ( !bfs.finished() ) { 
jacint@620
   847
      ResGWOutEdgeIt e=bfs;
jacint@620
   848
      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
alpar@986
   849
	Node v=res_graph.source(e);
alpar@986
   850
	Node w=res_graph.target(e);
jacint@620
   851
	pred.set(w, e);
jacint@620
   852
	if (res_graph.valid(pred[v])) {
jacint@620
   853
	  free.set(w, std::min(free[v], res_graph.resCap(e)));
jacint@620
   854
	} else {
jacint@620
   855
	  free.set(w, res_graph.resCap(e)); 
jacint@620
   856
	}
alpar@986
   857
	if (res_graph.target(e)==t) { _augment=true; break; }
jacint@620
   858
      }
jacint@620
   859
	
jacint@620
   860
      ++bfs;
jacint@620
   861
    } //end of searching augmenting path
jacint@620
   862
jacint@620
   863
    if (_augment) {
jacint@620
   864
      Node n=t;
jacint@620
   865
      Num augment_value=free[t];
jacint@620
   866
      while (res_graph.valid(pred[n])) { 
jacint@620
   867
	ResGWEdge e=pred[n];
jacint@620
   868
	res_graph.augment(e, augment_value); 
alpar@986
   869
	n=res_graph.source(e);
jacint@620
   870
      }
jacint@620
   871
    }
jacint@620
   872
jacint@620
   873
    return _augment;
jacint@620
   874
  }
jacint@620
   875
jacint@620
   876
jacint@620
   877
jacint@620
   878
jacint@620
   879
jacint@620
   880
jacint@620
   881
jacint@620
   882
jacint@620
   883
jacint@620
   884
  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
jacint@620
   885
  template<typename MutableGraph> 
jacint@620
   886
  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() 
jacint@620
   887
  {      
jacint@620
   888
    typedef MutableGraph MG;
jacint@620
   889
    bool _augment=false;
jacint@620
   890
jacint@620
   891
    ResGW res_graph(*g, *capacity, *flow);
jacint@620
   892
jacint@620
   893
    //bfs for distances on the residual graph
jacint@620
   894
    //ReachedMap level(res_graph);
jacint@620
   895
    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
jacint@620
   896
    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
jacint@620
   897
    bfs.pushAndSetReached(s);
jacint@620
   898
    typename ResGW::template NodeMap<int> 
jacint@620
   899
      dist(res_graph); //filled up with 0's
jacint@620
   900
jacint@620
   901
    //F will contain the physical copy of the residual graph
jacint@620
   902
    //with the set of edges which are on shortest paths
jacint@620
   903
    MG F;
jacint@620
   904
    typename ResGW::template NodeMap<typename MG::Node> 
jacint@620
   905
      res_graph_to_F(res_graph);
jacint@620
   906
    {
jacint@620
   907
      typename ResGW::NodeIt n;
jacint@620
   908
      for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
jacint@620
   909
	res_graph_to_F.set(n, F.addNode());
jacint@620
   910
      }
jacint@620
   911
    }
jacint@620
   912
jacint@620
   913
    typename MG::Node sF=res_graph_to_F[s];
jacint@620
   914
    typename MG::Node tF=res_graph_to_F[t];
jacint@620
   915
    typename MG::template EdgeMap<ResGWEdge> original_edge(F);
jacint@620
   916
    typename MG::template EdgeMap<Num> residual_capacity(F);
jacint@620
   917
jacint@620
   918
    while ( !bfs.finished() ) { 
jacint@620
   919
      ResGWOutEdgeIt e=bfs;
jacint@620
   920
      if (res_graph.valid(e)) {
jacint@620
   921
	if (bfs.isBNodeNewlyReached()) {
alpar@986
   922
	  dist.set(res_graph.target(e), dist[res_graph.source(e)]+1);
alpar@986
   923
	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)], res_graph_to_F[res_graph.target(e)]);
jacint@620
   924
	  original_edge.update();
jacint@620
   925
	  original_edge.set(f, e);
jacint@620
   926
	  residual_capacity.update();
jacint@620
   927
	  residual_capacity.set(f, res_graph.resCap(e));
jacint@620
   928
	} else {
alpar@986
   929
	  if (dist[res_graph.target(e)]==(dist[res_graph.source(e)]+1)) {
alpar@986
   930
	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)], res_graph_to_F[res_graph.target(e)]);
jacint@620
   931
	    original_edge.update();
jacint@620
   932
	    original_edge.set(f, e);
jacint@620
   933
	    residual_capacity.update();
jacint@620
   934
	    residual_capacity.set(f, res_graph.resCap(e));
jacint@620
   935
	  }
jacint@620
   936
	}
jacint@620
   937
      }
jacint@620
   938
      ++bfs;
jacint@620
   939
    } //computing distances from s in the residual graph
jacint@620
   940
jacint@620
   941
    bool __augment=true;
jacint@620
   942
jacint@620
   943
    while (__augment) {
jacint@620
   944
      __augment=false;
jacint@620
   945
      //computing blocking flow with dfs
jacint@620
   946
      DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
jacint@620
   947
      typename MG::template NodeMap<typename MG::Edge> pred(F);
jacint@620
   948
      pred.set(sF, INVALID);
jacint@620
   949
      //invalid iterators for sources
jacint@620
   950
jacint@620
   951
      typename MG::template NodeMap<Num> free(F);
jacint@620
   952
jacint@620
   953
      dfs.pushAndSetReached(sF);      
jacint@620
   954
      while (!dfs.finished()) {
jacint@620
   955
	++dfs;
jacint@620
   956
	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
jacint@620
   957
	  if (dfs.isBNodeNewlyReached()) {
jacint@620
   958
	    typename MG::Node v=F.aNode(dfs);
jacint@620
   959
	    typename MG::Node w=F.bNode(dfs);
jacint@620
   960
	    pred.set(w, dfs);
jacint@620
   961
	    if (F.valid(pred[v])) {
jacint@620
   962
	      free.set(w, std::min(free[v], residual_capacity[dfs]));
jacint@620
   963
	    } else {
jacint@620
   964
	      free.set(w, residual_capacity[dfs]); 
jacint@620
   965
	    }
jacint@620
   966
	    if (w==tF) { 
jacint@620
   967
	      __augment=true; 
jacint@620
   968
	      _augment=true;
jacint@620
   969
	      break; 
jacint@620
   970
	    }
jacint@620
   971
	      
jacint@620
   972
	  } else {
jacint@620
   973
	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
jacint@620
   974
	  }
jacint@620
   975
	} 
jacint@620
   976
      }
jacint@620
   977
jacint@620
   978
      if (__augment) {
jacint@620
   979
	typename MG::Node n=tF;
jacint@620
   980
	Num augment_value=free[tF];
jacint@620
   981
	while (F.valid(pred[n])) { 
jacint@620
   982
	  typename MG::Edge e=pred[n];
jacint@620
   983
	  res_graph.augment(original_edge[e], augment_value); 
alpar@986
   984
	  n=F.source(e);
jacint@620
   985
	  if (residual_capacity[e]==augment_value) 
jacint@620
   986
	    F.erase(e); 
jacint@620
   987
	  else 
jacint@620
   988
	    residual_capacity.set(e, residual_capacity[e]-augment_value);
jacint@620
   989
	}
jacint@620
   990
      }
jacint@620
   991
	
jacint@620
   992
    }
jacint@620
   993
            
jacint@620
   994
    return _augment;
jacint@620
   995
  }
jacint@620
   996
jacint@620
   997
jacint@620
   998
jacint@620
   999
jacint@620
  1000
jacint@620
  1001
jacint@620
  1002
  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
jacint@620
  1003
  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() 
jacint@620
  1004
  {
jacint@620
  1005
    bool _augment=false;
jacint@620
  1006
jacint@620
  1007
    ResGW res_graph(*g, *capacity, *flow);
jacint@620
  1008
      
jacint@620
  1009
    //ReachedMap level(res_graph);
jacint@620
  1010
    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
jacint@620
  1011
    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
jacint@620
  1012
jacint@620
  1013
    bfs.pushAndSetReached(s);
jacint@620
  1014
    DistanceMap<ResGW> dist(res_graph);
jacint@620
  1015
    while ( !bfs.finished() ) { 
jacint@620
  1016
      ResGWOutEdgeIt e=bfs;
jacint@620
  1017
      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
alpar@986
  1018
	dist.set(res_graph.target(e), dist[res_graph.source(e)]+1);
jacint@620
  1019
      }
jacint@620
  1020
      ++bfs;
jacint@620
  1021
    } //computing distances from s in the residual graph
jacint@620
  1022
jacint@620
  1023
      //Subgraph containing the edges on some shortest paths
jacint@620
  1024
    ConstMap<typename ResGW::Node, bool> true_map(true);
jacint@620
  1025
    typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, 
jacint@620
  1026
      DistanceMap<ResGW> > FilterResGW;
jacint@620
  1027
    FilterResGW filter_res_graph(res_graph, true_map, dist);
jacint@620
  1028
jacint@620
  1029
    //Subgraph, which is able to delete edges which are already 
jacint@620
  1030
    //met by the dfs
jacint@620
  1031
    typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> 
jacint@620
  1032
      first_out_edges(filter_res_graph);
jacint@620
  1033
    typename FilterResGW::NodeIt v;
jacint@620
  1034
    for(filter_res_graph.first(v); filter_res_graph.valid(v); 
jacint@620
  1035
	filter_res_graph.next(v)) 
jacint@620
  1036
      {
jacint@620
  1037
 	typename FilterResGW::OutEdgeIt e;
jacint@620
  1038
 	filter_res_graph.first(e, v);
jacint@620
  1039
 	first_out_edges.set(v, e);
jacint@620
  1040
      }
jacint@620
  1041
    typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
jacint@620
  1042
      template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
jacint@620
  1043
    ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
jacint@620
  1044
jacint@620
  1045
    bool __augment=true;
jacint@620
  1046
jacint@620
  1047
    while (__augment) {
jacint@620
  1048
jacint@620
  1049
      __augment=false;
jacint@620
  1050
      //computing blocking flow with dfs
jacint@620
  1051
      DfsIterator< ErasingResGW, 
jacint@620
  1052
	typename ErasingResGW::template NodeMap<bool> > 
jacint@620
  1053
	dfs(erasing_res_graph);
jacint@620
  1054
      typename ErasingResGW::
jacint@620
  1055
	template NodeMap<typename ErasingResGW::OutEdgeIt> 
jacint@620
  1056
	pred(erasing_res_graph); 
jacint@620
  1057
      pred.set(s, INVALID);
jacint@620
  1058
      //invalid iterators for sources
jacint@620
  1059
jacint@620
  1060
      typename ErasingResGW::template NodeMap<Num> 
jacint@620
  1061
	free1(erasing_res_graph);
jacint@620
  1062
jacint@620
  1063
      dfs.pushAndSetReached(
jacint@620
  1064
			    typename ErasingResGW::Node(
jacint@620
  1065
							typename FilterResGW::Node(
jacint@620
  1066
										   typename ResGW::Node(s)
jacint@620
  1067
										   )
jacint@620
  1068
							)
jacint@620
  1069
			    );
jacint@620
  1070
      while (!dfs.finished()) {
jacint@620
  1071
	++dfs;
jacint@620
  1072
	if (erasing_res_graph.valid(
jacint@620
  1073
				    typename ErasingResGW::OutEdgeIt(dfs))) 
jacint@620
  1074
 	  { 
jacint@620
  1075
  	    if (dfs.isBNodeNewlyReached()) {
jacint@620
  1076
	  
jacint@620
  1077
 	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
jacint@620
  1078
 	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
jacint@620
  1079
jacint@620
  1080
 	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
jacint@620
  1081
 	      if (erasing_res_graph.valid(pred[v])) {
jacint@620
  1082
 		free1.set(w, std::min(free1[v], res_graph.resCap(
jacint@620
  1083
								 typename ErasingResGW::OutEdgeIt(dfs))));
jacint@620
  1084
 	      } else {
jacint@620
  1085
 		free1.set(w, res_graph.resCap(
jacint@620
  1086
					      typename ErasingResGW::OutEdgeIt(dfs))); 
jacint@620
  1087
 	      }
jacint@620
  1088
	      
jacint@620
  1089
 	      if (w==t) { 
jacint@620
  1090
 		__augment=true; 
jacint@620
  1091
 		_augment=true;
jacint@620
  1092
 		break; 
jacint@620
  1093
 	      }
jacint@620
  1094
 	    } else {
jacint@620
  1095
 	      erasing_res_graph.erase(dfs);
jacint@620
  1096
	    }
jacint@620
  1097
	  }
jacint@620
  1098
      }	
jacint@620
  1099
jacint@620
  1100
      if (__augment) {
jacint@620
  1101
	typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t));
jacint@620
  1102
	// 	  typename ResGW::NodeMap<Num> a(res_graph);
jacint@620
  1103
	// 	  typename ResGW::Node b;
jacint@620
  1104
	// 	  Num j=a[b];
jacint@620
  1105
	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
jacint@620
  1106
	// 	  typename FilterResGW::Node b1;
jacint@620
  1107
	// 	  Num j1=a1[b1];
jacint@620
  1108
	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
jacint@620
  1109
	// 	  typename ErasingResGW::Node b2;
jacint@620
  1110
	// 	  Num j2=a2[b2];
jacint@620
  1111
	Num augment_value=free1[n];
jacint@620
  1112
	while (erasing_res_graph.valid(pred[n])) { 
jacint@620
  1113
	  typename ErasingResGW::OutEdgeIt e=pred[n];
jacint@620
  1114
	  res_graph.augment(e, augment_value);
alpar@986
  1115
	  n=erasing_res_graph.source(e);
jacint@620
  1116
	  if (res_graph.resCap(e)==0)
jacint@620
  1117
	    erasing_res_graph.erase(e);
jacint@620
  1118
	}
jacint@620
  1119
      }
jacint@620
  1120
      
jacint@620
  1121
    } //while (__augment) 
jacint@620
  1122
            
jacint@620
  1123
    return _augment;
jacint@620
  1124
  }
jacint@620
  1125
jacint@620
  1126
jacint@620
  1127
jacint@620
  1128
  /// @}
jacint@620
  1129
  
alpar@921
  1130
} //END OF NAMESPACE LEMON
jacint@620
  1131
alpar@921
  1132
#endif //LEMON_MAX_FLOW_H
jacint@620
  1133
jacint@620
  1134
jacint@620
  1135
jacint@620
  1136