deba@1186
|
1 |
/* -*- C++ -*-
|
deba@1186
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@1956
|
5 |
* Copyright (C) 2003-2006
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@1186
|
8 |
*
|
deba@1186
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@1186
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@1186
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@1186
|
12 |
*
|
deba@1186
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@1186
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@1186
|
15 |
* purpose.
|
deba@1186
|
16 |
*
|
deba@1186
|
17 |
*/
|
deba@1186
|
18 |
|
deba@1186
|
19 |
#ifndef LEMON_RADIX_HEAP_H
|
deba@1186
|
20 |
#define LEMON_RADIX_HEAP_H
|
deba@1186
|
21 |
|
deba@1186
|
22 |
///\ingroup auxdat
|
deba@1186
|
23 |
///\file
|
deba@1186
|
24 |
///\brief Radix Heap implementation.
|
deba@1186
|
25 |
|
deba@1186
|
26 |
#include <vector>
|
deba@1186
|
27 |
#include <lemon/error.h>
|
deba@1186
|
28 |
|
deba@1186
|
29 |
namespace lemon {
|
deba@1186
|
30 |
|
deba@1331
|
31 |
/// \brief Exception thrown by RadixHeap.
|
deba@1331
|
32 |
///
|
deba@1331
|
33 |
/// This Exception is thrown when a smaller priority
|
deba@1331
|
34 |
/// is inserted into the \e RadixHeap then the last time erased.
|
deba@1331
|
35 |
/// \see RadixHeap
|
deba@1331
|
36 |
/// \author Balazs Dezso
|
deba@1186
|
37 |
|
deba@1331
|
38 |
class UnderFlowPriorityError : public RuntimeError {
|
deba@1186
|
39 |
public:
|
alpar@2151
|
40 |
virtual const char* what() const throw() {
|
deba@1331
|
41 |
return "lemon::UnderFlowPriorityError";
|
deba@1186
|
42 |
}
|
deba@1186
|
43 |
};
|
deba@1186
|
44 |
|
deba@1717
|
45 |
/// \ingroup auxdata
|
deba@1717
|
46 |
///
|
deba@1331
|
47 |
/// \brief A Radix Heap implementation.
|
deba@1331
|
48 |
///
|
deba@1331
|
49 |
/// This class implements the \e radix \e heap data structure. A \e heap
|
deba@1331
|
50 |
/// is a data structure for storing items with specified values called \e
|
deba@1331
|
51 |
/// priorities in such a way that finding the item with minimum priority is
|
deba@1331
|
52 |
/// efficient. This heap type can store only items with \e int priority.
|
deba@1331
|
53 |
/// In a heap one can change the priority of an item, add or erase an
|
deba@1331
|
54 |
/// item, but the priority cannot be decreased under the last removed
|
deba@1331
|
55 |
/// item's priority.
|
deba@1331
|
56 |
///
|
deba@1331
|
57 |
/// \param _Item Type of the items to be stored.
|
deba@1331
|
58 |
/// \param _ItemIntMap A read and writable Item int map, used internally
|
deba@1331
|
59 |
/// to handle the cross references.
|
deba@1331
|
60 |
///
|
deba@1331
|
61 |
/// \see BinHeap
|
deba@1331
|
62 |
/// \see Dijkstra
|
deba@1331
|
63 |
/// \author Balazs Dezso
|
deba@1331
|
64 |
|
deba@1186
|
65 |
template <typename _Item, typename _ItemIntMap>
|
deba@1186
|
66 |
class RadixHeap {
|
deba@1186
|
67 |
|
deba@1186
|
68 |
public:
|
deba@1186
|
69 |
typedef _Item Item;
|
deba@1186
|
70 |
typedef int Prio;
|
deba@1186
|
71 |
typedef _ItemIntMap ItemIntMap;
|
deba@1186
|
72 |
|
deba@1331
|
73 |
/// \brief Type to represent the items states.
|
deba@1186
|
74 |
///
|
deba@1331
|
75 |
/// Each Item element have a state associated to it. It may be "in heap",
|
alpar@1336
|
76 |
/// "pre heap" or "post heap". The latter two are indifferent from the
|
deba@1331
|
77 |
/// heap's point of view, but may be useful to the user.
|
deba@1331
|
78 |
///
|
alpar@1336
|
79 |
/// The ItemIntMap \e should be initialized in such way that it maps
|
deba@1331
|
80 |
/// PRE_HEAP (-1) to any element to be put in the heap...
|
deba@1186
|
81 |
enum state_enum {
|
deba@1186
|
82 |
IN_HEAP = 0,
|
deba@1186
|
83 |
PRE_HEAP = -1,
|
deba@1186
|
84 |
POST_HEAP = -2
|
deba@1186
|
85 |
};
|
deba@1186
|
86 |
|
deba@1186
|
87 |
private:
|
deba@1186
|
88 |
|
deba@1186
|
89 |
struct RadixItem {
|
deba@1186
|
90 |
int prev, next, box;
|
deba@1186
|
91 |
Item item;
|
deba@1186
|
92 |
int prio;
|
deba@1186
|
93 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
|
deba@1186
|
94 |
};
|
deba@1186
|
95 |
|
deba@1186
|
96 |
struct RadixBox {
|
deba@1186
|
97 |
int first;
|
deba@1186
|
98 |
int min, size;
|
deba@1186
|
99 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
|
deba@1186
|
100 |
};
|
deba@1186
|
101 |
|
deba@1186
|
102 |
std::vector<RadixItem> data;
|
deba@1186
|
103 |
std::vector<RadixBox> boxes;
|
deba@1186
|
104 |
|
deba@1186
|
105 |
ItemIntMap &iim;
|
deba@1186
|
106 |
|
deba@1186
|
107 |
|
deba@1186
|
108 |
public:
|
deba@1331
|
109 |
/// \brief The constructor.
|
deba@1331
|
110 |
///
|
deba@1331
|
111 |
/// The constructor.
|
deba@1331
|
112 |
///
|
deba@1331
|
113 |
/// \param _iim It should be given to the constructor, since it is used
|
deba@1331
|
114 |
/// internally to handle the cross references. The value of the map
|
deba@1331
|
115 |
/// should be PRE_HEAP (-1) for each element.
|
deba@1331
|
116 |
///
|
deba@1717
|
117 |
/// \param minimal The initial minimal value of the heap.
|
deba@1331
|
118 |
/// \param capacity It determines the initial capacity of the heap.
|
deba@1717
|
119 |
RadixHeap(ItemIntMap &_iim, int minimal = 0, int capacity = 0)
|
deba@1717
|
120 |
: iim(_iim) {
|
deba@1717
|
121 |
boxes.push_back(RadixBox(minimal, 1));
|
deba@1717
|
122 |
boxes.push_back(RadixBox(minimal + 1, 1));
|
deba@1717
|
123 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
|
deba@1186
|
124 |
extend();
|
deba@1186
|
125 |
}
|
deba@1186
|
126 |
}
|
deba@1186
|
127 |
|
deba@1331
|
128 |
/// The number of items stored in the heap.
|
deba@1331
|
129 |
///
|
deba@1331
|
130 |
/// \brief Returns the number of items stored in the heap.
|
deba@1186
|
131 |
int size() const { return data.size(); }
|
deba@1331
|
132 |
/// \brief Checks if the heap stores no items.
|
deba@1331
|
133 |
///
|
deba@1331
|
134 |
/// Returns \c true if and only if the heap stores no items.
|
deba@1186
|
135 |
bool empty() const { return data.empty(); }
|
deba@1186
|
136 |
|
deba@1717
|
137 |
/// \brief Make empty this heap.
|
deba@1717
|
138 |
///
|
deba@2050
|
139 |
/// Make empty this heap. It does not change the cross reference
|
deba@2050
|
140 |
/// map. If you want to reuse a heap what is not surely empty you
|
deba@2050
|
141 |
/// should first clear the heap and after that you should set the
|
deba@2050
|
142 |
/// cross reference map for each item to \c PRE_HEAP.
|
deba@1717
|
143 |
void clear(int minimal = 0, int capacity = 0) {
|
deba@1717
|
144 |
data.clear(); boxes.clear();
|
deba@1717
|
145 |
boxes.push_back(RadixBox(minimal, 1));
|
deba@1717
|
146 |
boxes.push_back(RadixBox(minimal + 1, 1));
|
deba@1717
|
147 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
|
deba@1717
|
148 |
extend();
|
deba@1717
|
149 |
}
|
deba@1717
|
150 |
}
|
deba@1717
|
151 |
|
deba@1186
|
152 |
private:
|
deba@1186
|
153 |
|
deba@1186
|
154 |
bool upper(int box, Prio prio) {
|
deba@1186
|
155 |
return prio < boxes[box].min;
|
deba@1186
|
156 |
}
|
deba@1186
|
157 |
|
deba@1186
|
158 |
bool lower(int box, Prio prio) {
|
deba@1186
|
159 |
return prio >= boxes[box].min + boxes[box].size;
|
deba@1186
|
160 |
}
|
deba@1186
|
161 |
|
deba@1186
|
162 |
/// \brief Remove item from the box list.
|
deba@1186
|
163 |
void remove(int index) {
|
deba@1186
|
164 |
if (data[index].prev >= 0) {
|
deba@1186
|
165 |
data[data[index].prev].next = data[index].next;
|
deba@1186
|
166 |
} else {
|
deba@1186
|
167 |
boxes[data[index].box].first = data[index].next;
|
deba@1186
|
168 |
}
|
deba@1186
|
169 |
if (data[index].next >= 0) {
|
deba@1186
|
170 |
data[data[index].next].prev = data[index].prev;
|
deba@1186
|
171 |
}
|
deba@1186
|
172 |
}
|
deba@1186
|
173 |
|
deba@1186
|
174 |
/// \brief Insert item into the box list.
|
deba@1186
|
175 |
void insert(int box, int index) {
|
deba@1186
|
176 |
if (boxes[box].first == -1) {
|
deba@1186
|
177 |
boxes[box].first = index;
|
deba@1186
|
178 |
data[index].next = data[index].prev = -1;
|
deba@1186
|
179 |
} else {
|
deba@1186
|
180 |
data[index].next = boxes[box].first;
|
deba@1186
|
181 |
data[boxes[box].first].prev = index;
|
deba@1186
|
182 |
data[index].prev = -1;
|
deba@1186
|
183 |
boxes[box].first = index;
|
deba@1186
|
184 |
}
|
deba@1186
|
185 |
data[index].box = box;
|
deba@1186
|
186 |
}
|
deba@1186
|
187 |
|
deba@1186
|
188 |
/// \brief Add a new box to the box list.
|
deba@1186
|
189 |
void extend() {
|
deba@1186
|
190 |
int min = boxes.back().min + boxes.back().size;
|
deba@1186
|
191 |
int size = 2 * boxes.back().size;
|
deba@1186
|
192 |
boxes.push_back(RadixBox(min, size));
|
deba@1186
|
193 |
}
|
deba@1186
|
194 |
|
deba@1186
|
195 |
/// \brief Move an item up into the proper box.
|
deba@1186
|
196 |
void bubble_up(int index) {
|
deba@1205
|
197 |
if (!lower(data[index].box, data[index].prio)) return;
|
deba@1186
|
198 |
remove(index);
|
deba@1186
|
199 |
int box = findUp(data[index].box, data[index].prio);
|
deba@1186
|
200 |
insert(box, index);
|
deba@1186
|
201 |
}
|
deba@1186
|
202 |
|
deba@1186
|
203 |
/// \brief Find up the proper box for the item with the given prio.
|
deba@1186
|
204 |
int findUp(int start, int prio) {
|
deba@1186
|
205 |
while (lower(start, prio)) {
|
deba@1186
|
206 |
if (++start == (int)boxes.size()) {
|
deba@1186
|
207 |
extend();
|
deba@1186
|
208 |
}
|
deba@1186
|
209 |
}
|
deba@1186
|
210 |
return start;
|
deba@1186
|
211 |
}
|
deba@1186
|
212 |
|
deba@1186
|
213 |
/// \brief Move an item down into the proper box.
|
deba@1186
|
214 |
void bubble_down(int index) {
|
deba@1186
|
215 |
if (!upper(data[index].box, data[index].prio)) return;
|
deba@1186
|
216 |
remove(index);
|
deba@1186
|
217 |
int box = findDown(data[index].box, data[index].prio);
|
deba@1186
|
218 |
insert(box, index);
|
deba@1186
|
219 |
}
|
deba@1186
|
220 |
|
deba@1186
|
221 |
/// \brief Find up the proper box for the item with the given prio.
|
deba@1186
|
222 |
int findDown(int start, int prio) {
|
deba@1186
|
223 |
while (upper(start, prio)) {
|
deba@1331
|
224 |
if (--start < 0) throw UnderFlowPriorityError();
|
deba@1186
|
225 |
}
|
deba@1186
|
226 |
return start;
|
deba@1186
|
227 |
}
|
deba@1186
|
228 |
|
deba@1186
|
229 |
/// \brief Find the first not empty box.
|
deba@1186
|
230 |
int findFirst() {
|
deba@1186
|
231 |
int first = 0;
|
deba@1186
|
232 |
while (boxes[first].first == -1) ++first;
|
deba@1186
|
233 |
return first;
|
deba@1186
|
234 |
}
|
deba@1186
|
235 |
|
deba@1186
|
236 |
/// \brief Gives back the minimal prio of the box.
|
deba@1186
|
237 |
int minValue(int box) {
|
deba@1186
|
238 |
int min = data[boxes[box].first].prio;
|
deba@1186
|
239 |
for (int k = boxes[box].first; k != -1; k = data[k].next) {
|
deba@1186
|
240 |
if (data[k].prio < min) min = data[k].prio;
|
deba@1186
|
241 |
}
|
deba@1186
|
242 |
return min;
|
deba@1186
|
243 |
}
|
deba@1186
|
244 |
|
deba@1186
|
245 |
/// \brief Rearrange the items of the heap and makes the
|
deba@1186
|
246 |
/// first box not empty.
|
deba@1186
|
247 |
void moveDown() {
|
deba@1186
|
248 |
int box = findFirst();
|
deba@1186
|
249 |
if (box == 0) return;
|
deba@1186
|
250 |
int min = minValue(box);
|
deba@1186
|
251 |
for (int i = 0; i <= box; ++i) {
|
deba@1186
|
252 |
boxes[i].min = min;
|
deba@1186
|
253 |
min += boxes[i].size;
|
deba@1186
|
254 |
}
|
deba@1186
|
255 |
int curr = boxes[box].first, next;
|
deba@1186
|
256 |
while (curr != -1) {
|
deba@1186
|
257 |
next = data[curr].next;
|
deba@1186
|
258 |
bubble_down(curr);
|
deba@1186
|
259 |
curr = next;
|
deba@1186
|
260 |
}
|
deba@1186
|
261 |
}
|
deba@1186
|
262 |
|
deba@1186
|
263 |
void relocate_last(int index) {
|
deba@1186
|
264 |
if (index != (int)data.size() - 1) {
|
deba@1186
|
265 |
data[index] = data.back();
|
deba@1186
|
266 |
if (data[index].prev != -1) {
|
deba@1186
|
267 |
data[data[index].prev].next = index;
|
deba@1186
|
268 |
} else {
|
deba@1186
|
269 |
boxes[data[index].box].first = index;
|
deba@1186
|
270 |
}
|
deba@1186
|
271 |
if (data[index].next != -1) {
|
deba@1186
|
272 |
data[data[index].next].prev = index;
|
deba@1186
|
273 |
}
|
deba@1186
|
274 |
iim[data[index].item] = index;
|
deba@1186
|
275 |
}
|
deba@1186
|
276 |
data.pop_back();
|
deba@1186
|
277 |
}
|
deba@1186
|
278 |
|
deba@1186
|
279 |
public:
|
deba@1186
|
280 |
|
deba@1717
|
281 |
/// \brief Insert an item into the heap with the given priority.
|
deba@1331
|
282 |
///
|
deba@1331
|
283 |
/// Adds \c i to the heap with priority \c p.
|
deba@1331
|
284 |
/// \param i The item to insert.
|
deba@1331
|
285 |
/// \param p The priority of the item.
|
deba@1186
|
286 |
void push(const Item &i, const Prio &p) {
|
deba@1186
|
287 |
int n = data.size();
|
deba@1186
|
288 |
iim.set(i, n);
|
deba@1186
|
289 |
data.push_back(RadixItem(i, p));
|
deba@1186
|
290 |
while (lower(boxes.size() - 1, p)) {
|
deba@1186
|
291 |
extend();
|
deba@1186
|
292 |
}
|
deba@1186
|
293 |
int box = findDown(boxes.size() - 1, p);
|
deba@1186
|
294 |
insert(box, n);
|
deba@1186
|
295 |
}
|
deba@1186
|
296 |
|
deba@1331
|
297 |
/// \brief Returns the item with minimum priority.
|
deba@1331
|
298 |
///
|
deba@1331
|
299 |
/// This method returns the item with minimum priority.
|
deba@1331
|
300 |
/// \pre The heap must be nonempty.
|
deba@1186
|
301 |
Item top() const {
|
deba@1717
|
302 |
const_cast<RadixHeap<Item, ItemIntMap>&>(*this).moveDown();
|
deba@1186
|
303 |
return data[boxes[0].first].item;
|
deba@1186
|
304 |
}
|
deba@1186
|
305 |
|
deba@1331
|
306 |
/// \brief Returns the minimum priority.
|
deba@1331
|
307 |
///
|
deba@1331
|
308 |
/// It returns the minimum priority.
|
deba@1331
|
309 |
/// \pre The heap must be nonempty.
|
deba@1186
|
310 |
Prio prio() const {
|
deba@1717
|
311 |
const_cast<RadixHeap<Item, ItemIntMap>&>(*this).moveDown();
|
deba@1186
|
312 |
return data[boxes[0].first].prio;
|
deba@1186
|
313 |
}
|
deba@1186
|
314 |
|
deba@1331
|
315 |
/// \brief Deletes the item with minimum priority.
|
deba@1331
|
316 |
///
|
deba@1331
|
317 |
/// This method deletes the item with minimum priority.
|
deba@1331
|
318 |
/// \pre The heap must be non-empty.
|
deba@1186
|
319 |
void pop() {
|
deba@1186
|
320 |
moveDown();
|
deba@1186
|
321 |
int index = boxes[0].first;
|
deba@1186
|
322 |
iim[data[index].item] = POST_HEAP;
|
deba@1186
|
323 |
remove(index);
|
deba@1186
|
324 |
relocate_last(index);
|
deba@1186
|
325 |
}
|
deba@1186
|
326 |
|
deba@1331
|
327 |
/// \brief Deletes \c i from the heap.
|
deba@1331
|
328 |
///
|
deba@1331
|
329 |
/// This method deletes item \c i from the heap, if \c i was
|
deba@1331
|
330 |
/// already stored in the heap.
|
deba@1331
|
331 |
/// \param i The item to erase.
|
deba@1186
|
332 |
void erase(const Item &i) {
|
deba@1186
|
333 |
int index = iim[i];
|
deba@1186
|
334 |
iim[i] = POST_HEAP;
|
deba@1186
|
335 |
remove(index);
|
deba@1186
|
336 |
relocate_last(index);
|
deba@1186
|
337 |
}
|
deba@1186
|
338 |
|
deba@1331
|
339 |
/// \brief Returns the priority of \c i.
|
deba@1331
|
340 |
///
|
deba@1331
|
341 |
/// This function returns the priority of item \c i.
|
deba@1331
|
342 |
/// \pre \c i must be in the heap.
|
deba@1331
|
343 |
/// \param i The item.
|
deba@1186
|
344 |
Prio operator[](const Item &i) const {
|
deba@1186
|
345 |
int idx = iim[i];
|
deba@1186
|
346 |
return data[idx].prio;
|
deba@1186
|
347 |
}
|
deba@1186
|
348 |
|
deba@1331
|
349 |
/// \brief \c i gets to the heap with priority \c p independently
|
deba@1331
|
350 |
/// if \c i was already there.
|
deba@1331
|
351 |
///
|
deba@1331
|
352 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored
|
deba@1331
|
353 |
/// in the heap and sets the priority of \c i to \c p otherwise.
|
deba@1331
|
354 |
/// It may throw an \e UnderFlowPriorityException.
|
deba@1331
|
355 |
/// \param i The item.
|
deba@1331
|
356 |
/// \param p The priority.
|
deba@1186
|
357 |
void set(const Item &i, const Prio &p) {
|
deba@1186
|
358 |
int idx = iim[i];
|
deba@1186
|
359 |
if( idx < 0 ) {
|
deba@1186
|
360 |
push(i, p);
|
deba@1186
|
361 |
}
|
deba@1186
|
362 |
else if( p >= data[idx].prio ) {
|
deba@1186
|
363 |
data[idx].prio = p;
|
deba@1186
|
364 |
bubble_up(idx);
|
deba@1186
|
365 |
} else {
|
deba@1186
|
366 |
data[idx].prio = p;
|
deba@1186
|
367 |
bubble_down(idx);
|
deba@1186
|
368 |
}
|
deba@1186
|
369 |
}
|
deba@1186
|
370 |
|
deba@1331
|
371 |
|
deba@1331
|
372 |
/// \brief Decreases the priority of \c i to \c p.
|
deba@1331
|
373 |
///
|
deba@1331
|
374 |
/// This method decreases the priority of item \c i to \c p.
|
deba@1331
|
375 |
/// \pre \c i must be stored in the heap with priority at least \c p, and
|
deba@1758
|
376 |
/// \c should be greater or equal to the last removed item's priority.
|
deba@1331
|
377 |
/// \param i The item.
|
deba@1331
|
378 |
/// \param p The priority.
|
deba@1186
|
379 |
void decrease(const Item &i, const Prio &p) {
|
deba@1186
|
380 |
int idx = iim[i];
|
deba@1186
|
381 |
data[idx].prio = p;
|
deba@1186
|
382 |
bubble_down(idx);
|
deba@1186
|
383 |
}
|
deba@1186
|
384 |
|
deba@1331
|
385 |
/// \brief Increases the priority of \c i to \c p.
|
deba@1331
|
386 |
///
|
deba@1331
|
387 |
/// This method sets the priority of item \c i to \c p.
|
deba@1758
|
388 |
/// \pre \c i must be stored in the heap with priority at most \c p
|
deba@1331
|
389 |
/// \param i The item.
|
deba@1331
|
390 |
/// \param p The priority.
|
deba@1186
|
391 |
void increase(const Item &i, const Prio &p) {
|
deba@1186
|
392 |
int idx = iim[i];
|
deba@1186
|
393 |
data[idx].prio = p;
|
deba@1186
|
394 |
bubble_up(idx);
|
deba@1186
|
395 |
}
|
deba@1186
|
396 |
|
deba@1331
|
397 |
/// \brief Returns if \c item is in, has already been in, or has
|
deba@1331
|
398 |
/// never been in the heap.
|
deba@1331
|
399 |
///
|
deba@1331
|
400 |
/// This method returns PRE_HEAP if \c item has never been in the
|
deba@1331
|
401 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
|
deba@1331
|
402 |
/// otherwise. In the latter case it is possible that \c item will
|
deba@1331
|
403 |
/// get back to the heap again.
|
deba@1331
|
404 |
/// \param i The item.
|
deba@1186
|
405 |
state_enum state(const Item &i) const {
|
deba@1186
|
406 |
int s = iim[i];
|
deba@1186
|
407 |
if( s >= 0 ) s = 0;
|
deba@1186
|
408 |
return state_enum(s);
|
deba@1186
|
409 |
}
|
deba@1186
|
410 |
|
deba@1902
|
411 |
/// \brief Sets the state of the \c item in the heap.
|
deba@1902
|
412 |
///
|
deba@1902
|
413 |
/// Sets the state of the \c item in the heap. It can be used to
|
deba@1902
|
414 |
/// manually clear the heap when it is important to achive the
|
deba@1902
|
415 |
/// better time complexity.
|
deba@1902
|
416 |
/// \param i The item.
|
deba@1902
|
417 |
/// \param st The state. It should not be \c IN_HEAP.
|
deba@1902
|
418 |
void state(const Item& i, state_enum st) {
|
deba@1902
|
419 |
switch (st) {
|
deba@1902
|
420 |
case POST_HEAP:
|
deba@1902
|
421 |
case PRE_HEAP:
|
deba@1902
|
422 |
if (state(i) == IN_HEAP) {
|
deba@1902
|
423 |
erase(i);
|
deba@1902
|
424 |
}
|
deba@1903
|
425 |
iim[i] = st;
|
deba@1902
|
426 |
break;
|
deba@1906
|
427 |
case IN_HEAP:
|
deba@1906
|
428 |
break;
|
deba@1902
|
429 |
}
|
deba@1902
|
430 |
}
|
deba@1902
|
431 |
|
deba@1186
|
432 |
}; // class RadixHeap
|
deba@1186
|
433 |
|
deba@1186
|
434 |
} // namespace lemon
|
deba@1186
|
435 |
|
deba@1186
|
436 |
#endif // LEMON_RADIX_HEAP_H
|