alpar@906
|
1 |
/* -*- C++ -*-
|
ladanyi@1435
|
2 |
* lemon/bin_heap.h - Part of LEMON, a generic C++ optimization library
|
klao@39
|
3 |
*
|
alpar@1164
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
5 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
klao@39
|
6 |
*
|
alpar@906
|
7 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
8 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
9 |
* precise terms see the accompanying LICENSE file.
|
klao@39
|
10 |
*
|
alpar@906
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
12 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
13 |
* purpose.
|
klao@39
|
14 |
*
|
klao@39
|
15 |
*/
|
klao@39
|
16 |
|
alpar@921
|
17 |
#ifndef LEMON_BIN_HEAP_H
|
alpar@921
|
18 |
#define LEMON_BIN_HEAP_H
|
klao@37
|
19 |
|
klao@491
|
20 |
///\ingroup auxdat
|
klao@274
|
21 |
///\file
|
klao@274
|
22 |
///\brief Binary Heap implementation.
|
klao@274
|
23 |
|
klao@37
|
24 |
#include <vector>
|
klao@37
|
25 |
#include <utility>
|
klao@37
|
26 |
#include <functional>
|
klao@37
|
27 |
|
alpar@921
|
28 |
namespace lemon {
|
klao@37
|
29 |
|
deba@1834
|
30 |
/// \ingroup auxdat
|
alpar@430
|
31 |
|
jacint@1270
|
32 |
/// A Binary Heap implementation.
|
alpar@967
|
33 |
|
jacint@1270
|
34 |
///This class implements the \e binary \e heap data structure. A \e heap
|
jacint@1270
|
35 |
///is a data structure for storing items with specified values called \e
|
jacint@1270
|
36 |
///priorities in such a way that finding the item with minimum priority is
|
jacint@1270
|
37 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap
|
jacint@1270
|
38 |
///one can change the priority of an item, add or erase an item, etc.
|
jacint@1270
|
39 |
///
|
jacint@1270
|
40 |
///\param Item Type of the items to be stored.
|
jacint@1270
|
41 |
///\param Prio Type of the priority of the items.
|
jacint@1270
|
42 |
///\param ItemIntMap A read and writable Item int map, used internally
|
jacint@1270
|
43 |
///to handle the cross references.
|
jacint@1270
|
44 |
///\param Compare A class for the ordering of the priorities. The
|
jacint@1270
|
45 |
///default is \c std::less<Prio>.
|
alpar@967
|
46 |
///
|
alpar@967
|
47 |
///\sa FibHeap
|
alpar@967
|
48 |
///\sa Dijkstra
|
klao@172
|
49 |
template <typename Item, typename Prio, typename ItemIntMap,
|
klao@172
|
50 |
typename Compare = std::less<Prio> >
|
klao@37
|
51 |
class BinHeap {
|
klao@37
|
52 |
|
klao@37
|
53 |
public:
|
klao@172
|
54 |
typedef Item ItemType;
|
klao@37
|
55 |
// FIXME: stl-ben nem ezt hivjak value_type -nak, hanem a kovetkezot...
|
klao@172
|
56 |
typedef Prio PrioType;
|
klao@172
|
57 |
typedef std::pair<ItemType,PrioType> PairType;
|
klao@172
|
58 |
typedef ItemIntMap ItemIntMapType;
|
klao@172
|
59 |
typedef Compare PrioCompare;
|
klao@37
|
60 |
|
deba@1331
|
61 |
/// \brief Type to represent the items states.
|
klao@274
|
62 |
///
|
deba@1331
|
63 |
/// Each Item element have a state associated to it. It may be "in heap",
|
alpar@1336
|
64 |
/// "pre heap" or "post heap". The latter two are indifferent from the
|
deba@1331
|
65 |
/// heap's point of view, but may be useful to the user.
|
deba@1331
|
66 |
///
|
alpar@1336
|
67 |
/// The ItemIntMap \e should be initialized in such way that it maps
|
deba@1331
|
68 |
/// PRE_HEAP (-1) to any element to be put in the heap...
|
klao@39
|
69 |
enum state_enum {
|
klao@37
|
70 |
IN_HEAP = 0,
|
klao@37
|
71 |
PRE_HEAP = -1,
|
klao@37
|
72 |
POST_HEAP = -2
|
klao@37
|
73 |
};
|
klao@37
|
74 |
|
klao@37
|
75 |
private:
|
klao@37
|
76 |
std::vector<PairType> data;
|
klao@37
|
77 |
Compare comp;
|
klao@172
|
78 |
ItemIntMap &iim;
|
klao@37
|
79 |
|
klao@37
|
80 |
public:
|
deba@1331
|
81 |
/// \brief The constructor.
|
deba@1331
|
82 |
///
|
deba@1331
|
83 |
/// The constructor.
|
deba@1331
|
84 |
/// \param _iim should be given to the constructor, since it is used
|
deba@1331
|
85 |
/// internally to handle the cross references. The value of the map
|
deba@1331
|
86 |
/// should be PRE_HEAP (-1) for each element.
|
deba@1185
|
87 |
explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
|
jacint@1270
|
88 |
|
deba@1331
|
89 |
/// \brief The constructor.
|
deba@1331
|
90 |
///
|
deba@1331
|
91 |
/// The constructor.
|
deba@1331
|
92 |
/// \param _iim should be given to the constructor, since it is used
|
deba@1331
|
93 |
/// internally to handle the cross references. The value of the map
|
deba@1331
|
94 |
/// should be PRE_HEAP (-1) for each element.
|
deba@1331
|
95 |
///
|
deba@1331
|
96 |
/// \param _comp The comparator function object.
|
deba@1191
|
97 |
BinHeap(ItemIntMap &_iim, const Compare &_comp)
|
deba@1185
|
98 |
: iim(_iim), comp(_comp) {}
|
klao@37
|
99 |
|
klao@37
|
100 |
|
deba@1331
|
101 |
/// The number of items stored in the heap.
|
deba@1331
|
102 |
///
|
deba@1331
|
103 |
/// \brief Returns the number of items stored in the heap.
|
klao@37
|
104 |
int size() const { return data.size(); }
|
jacint@1270
|
105 |
|
deba@1331
|
106 |
/// \brief Checks if the heap stores no items.
|
deba@1331
|
107 |
///
|
deba@1331
|
108 |
/// Returns \c true if and only if the heap stores no items.
|
klao@41
|
109 |
bool empty() const { return data.empty(); }
|
klao@37
|
110 |
|
deba@1717
|
111 |
/// \brief Make empty this heap.
|
deba@1717
|
112 |
///
|
deba@1717
|
113 |
/// Make empty this heap.
|
deba@1717
|
114 |
void clear() {
|
deba@1717
|
115 |
for (int i = 0; i < (int)data.size(); ++i) {
|
deba@1717
|
116 |
iim.set(data[i].first, POST_HEAP);
|
deba@1717
|
117 |
}
|
deba@1717
|
118 |
data.clear();
|
deba@1717
|
119 |
}
|
deba@1717
|
120 |
|
klao@37
|
121 |
private:
|
klao@37
|
122 |
static int parent(int i) { return (i-1)/2; }
|
klao@37
|
123 |
static int second_child(int i) { return 2*i+2; }
|
klao@214
|
124 |
bool less(const PairType &p1, const PairType &p2) const {
|
klao@37
|
125 |
return comp(p1.second, p2.second);
|
klao@37
|
126 |
}
|
klao@37
|
127 |
|
klao@37
|
128 |
int bubble_up(int hole, PairType p);
|
klao@37
|
129 |
int bubble_down(int hole, PairType p, int length);
|
klao@37
|
130 |
|
klao@37
|
131 |
void move(const PairType &p, int i) {
|
klao@37
|
132 |
data[i] = p;
|
klao@172
|
133 |
iim.set(p.first, i);
|
klao@37
|
134 |
}
|
klao@37
|
135 |
|
klao@41
|
136 |
void rmidx(int h) {
|
klao@41
|
137 |
int n = data.size()-1;
|
klao@41
|
138 |
if( h>=0 && h<=n ) {
|
klao@172
|
139 |
iim.set(data[h].first, POST_HEAP);
|
klao@41
|
140 |
if ( h<n ) {
|
klao@41
|
141 |
bubble_down(h, data[n], n);
|
klao@41
|
142 |
}
|
klao@41
|
143 |
data.pop_back();
|
klao@41
|
144 |
}
|
klao@41
|
145 |
}
|
klao@41
|
146 |
|
klao@37
|
147 |
public:
|
deba@1331
|
148 |
/// \brief Insert a pair of item and priority into the heap.
|
deba@1331
|
149 |
///
|
deba@1331
|
150 |
/// Adds \c p.first to the heap with priority \c p.second.
|
deba@1331
|
151 |
/// \param p The pair to insert.
|
klao@37
|
152 |
void push(const PairType &p) {
|
klao@37
|
153 |
int n = data.size();
|
klao@37
|
154 |
data.resize(n+1);
|
klao@37
|
155 |
bubble_up(n, p);
|
klao@37
|
156 |
}
|
jacint@1270
|
157 |
|
deba@1331
|
158 |
/// \brief Insert an item into the heap with the given heap.
|
deba@1331
|
159 |
///
|
deba@1331
|
160 |
/// Adds \c i to the heap with priority \c p.
|
deba@1331
|
161 |
/// \param i The item to insert.
|
deba@1331
|
162 |
/// \param p The priority of the item.
|
klao@172
|
163 |
void push(const Item &i, const Prio &p) { push(PairType(i,p)); }
|
klao@37
|
164 |
|
deba@1331
|
165 |
/// \brief Returns the item with minimum priority relative to \c Compare.
|
deba@1331
|
166 |
///
|
deba@1331
|
167 |
/// This method returns the item with minimum priority relative to \c
|
deba@1331
|
168 |
/// Compare.
|
deba@1331
|
169 |
/// \pre The heap must be nonempty.
|
klao@172
|
170 |
Item top() const {
|
klao@37
|
171 |
return data[0].first;
|
klao@37
|
172 |
}
|
jacint@1270
|
173 |
|
deba@1331
|
174 |
/// \brief Returns the minimum priority relative to \c Compare.
|
deba@1331
|
175 |
///
|
deba@1331
|
176 |
/// It returns the minimum priority relative to \c Compare.
|
deba@1331
|
177 |
/// \pre The heap must be nonempty.
|
klao@274
|
178 |
Prio prio() const {
|
klao@37
|
179 |
return data[0].second;
|
klao@37
|
180 |
}
|
klao@37
|
181 |
|
deba@1331
|
182 |
/// \brief Deletes the item with minimum priority relative to \c Compare.
|
deba@1331
|
183 |
///
|
deba@1331
|
184 |
/// This method deletes the item with minimum priority relative to \c
|
deba@1331
|
185 |
/// Compare from the heap.
|
deba@1331
|
186 |
/// \pre The heap must be non-empty.
|
klao@37
|
187 |
void pop() {
|
klao@41
|
188 |
rmidx(0);
|
klao@41
|
189 |
}
|
klao@41
|
190 |
|
deba@1331
|
191 |
/// \brief Deletes \c i from the heap.
|
deba@1331
|
192 |
///
|
deba@1331
|
193 |
/// This method deletes item \c i from the heap, if \c i was
|
deba@1331
|
194 |
/// already stored in the heap.
|
deba@1331
|
195 |
/// \param i The item to erase.
|
klao@172
|
196 |
void erase(const Item &i) {
|
jacint@221
|
197 |
rmidx(iim[i]);
|
klao@37
|
198 |
}
|
klao@37
|
199 |
|
jacint@1270
|
200 |
|
deba@1331
|
201 |
/// \brief Returns the priority of \c i.
|
deba@1331
|
202 |
///
|
deba@1331
|
203 |
/// This function returns the priority of item \c i.
|
deba@1331
|
204 |
/// \pre \c i must be in the heap.
|
deba@1331
|
205 |
/// \param i The item.
|
klao@274
|
206 |
Prio operator[](const Item &i) const {
|
jacint@221
|
207 |
int idx = iim[i];
|
klao@37
|
208 |
return data[idx].second;
|
klao@37
|
209 |
}
|
klao@274
|
210 |
|
deba@1331
|
211 |
/// \brief \c i gets to the heap with priority \c p independently
|
deba@1331
|
212 |
/// if \c i was already there.
|
deba@1331
|
213 |
///
|
deba@1331
|
214 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored
|
deba@1331
|
215 |
/// in the heap and sets the priority of \c i to \c p otherwise.
|
deba@1331
|
216 |
/// \param i The item.
|
deba@1331
|
217 |
/// \param p The priority.
|
klao@172
|
218 |
void set(const Item &i, const Prio &p) {
|
jacint@221
|
219 |
int idx = iim[i];
|
klao@37
|
220 |
if( idx < 0 ) {
|
klao@172
|
221 |
push(i,p);
|
klao@37
|
222 |
}
|
klao@172
|
223 |
else if( comp(p, data[idx].second) ) {
|
klao@172
|
224 |
bubble_up(idx, PairType(i,p));
|
klao@37
|
225 |
}
|
klao@37
|
226 |
else {
|
klao@172
|
227 |
bubble_down(idx, PairType(i,p), data.size());
|
klao@37
|
228 |
}
|
klao@37
|
229 |
}
|
klao@37
|
230 |
|
deba@1331
|
231 |
/// \brief Decreases the priority of \c i to \c p.
|
jacint@1270
|
232 |
|
deba@1331
|
233 |
/// This method decreases the priority of item \c i to \c p.
|
deba@1331
|
234 |
/// \pre \c i must be stored in the heap with priority at least \c
|
deba@1331
|
235 |
/// p relative to \c Compare.
|
deba@1331
|
236 |
/// \param i The item.
|
deba@1331
|
237 |
/// \param p The priority.
|
klao@172
|
238 |
void decrease(const Item &i, const Prio &p) {
|
jacint@221
|
239 |
int idx = iim[i];
|
klao@172
|
240 |
bubble_up(idx, PairType(i,p));
|
klao@37
|
241 |
}
|
jacint@1270
|
242 |
|
deba@1331
|
243 |
/// \brief Increases the priority of \c i to \c p.
|
deba@1331
|
244 |
///
|
deba@1331
|
245 |
/// This method sets the priority of item \c i to \c p.
|
deba@1331
|
246 |
/// \pre \c i must be stored in the heap with priority at most \c
|
deba@1331
|
247 |
/// p relative to \c Compare.
|
deba@1331
|
248 |
/// \param i The item.
|
deba@1331
|
249 |
/// \param p The priority.
|
klao@172
|
250 |
void increase(const Item &i, const Prio &p) {
|
jacint@221
|
251 |
int idx = iim[i];
|
klao@172
|
252 |
bubble_down(idx, PairType(i,p), data.size());
|
klao@37
|
253 |
}
|
klao@37
|
254 |
|
deba@1331
|
255 |
/// \brief Returns if \c item is in, has already been in, or has
|
deba@1331
|
256 |
/// never been in the heap.
|
deba@1331
|
257 |
///
|
deba@1331
|
258 |
/// This method returns PRE_HEAP if \c item has never been in the
|
deba@1331
|
259 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
|
deba@1331
|
260 |
/// otherwise. In the latter case it is possible that \c item will
|
deba@1331
|
261 |
/// get back to the heap again.
|
deba@1331
|
262 |
/// \param i The item.
|
klao@172
|
263 |
state_enum state(const Item &i) const {
|
jacint@221
|
264 |
int s = iim[i];
|
klao@39
|
265 |
if( s>=0 )
|
klao@39
|
266 |
s=0;
|
klao@39
|
267 |
return state_enum(s);
|
klao@39
|
268 |
}
|
klao@39
|
269 |
|
klao@37
|
270 |
}; // class BinHeap
|
klao@37
|
271 |
|
klao@37
|
272 |
|
klao@37
|
273 |
template <typename K, typename V, typename M, typename C>
|
klao@37
|
274 |
int BinHeap<K,V,M,C>::bubble_up(int hole, PairType p) {
|
klao@37
|
275 |
int par = parent(hole);
|
klao@37
|
276 |
while( hole>0 && less(p,data[par]) ) {
|
klao@37
|
277 |
move(data[par],hole);
|
klao@37
|
278 |
hole = par;
|
klao@37
|
279 |
par = parent(hole);
|
klao@37
|
280 |
}
|
klao@37
|
281 |
move(p, hole);
|
klao@37
|
282 |
return hole;
|
klao@37
|
283 |
}
|
klao@37
|
284 |
|
klao@37
|
285 |
template <typename K, typename V, typename M, typename C>
|
klao@37
|
286 |
int BinHeap<K,V,M,C>::bubble_down(int hole, PairType p, int length) {
|
klao@37
|
287 |
int child = second_child(hole);
|
klao@37
|
288 |
while(child < length) {
|
klao@37
|
289 |
if( less(data[child-1], data[child]) ) {
|
klao@37
|
290 |
--child;
|
klao@37
|
291 |
}
|
klao@37
|
292 |
if( !less(data[child], p) )
|
klao@37
|
293 |
goto ok;
|
klao@37
|
294 |
move(data[child], hole);
|
klao@37
|
295 |
hole = child;
|
klao@37
|
296 |
child = second_child(hole);
|
klao@37
|
297 |
}
|
klao@37
|
298 |
child--;
|
klao@37
|
299 |
if( child<length && less(data[child], p) ) {
|
klao@37
|
300 |
move(data[child], hole);
|
klao@37
|
301 |
hole=child;
|
klao@37
|
302 |
}
|
klao@37
|
303 |
ok:
|
klao@37
|
304 |
move(p, hole);
|
klao@37
|
305 |
return hole;
|
klao@37
|
306 |
}
|
klao@37
|
307 |
|
alpar@430
|
308 |
|
alpar@921
|
309 |
} // namespace lemon
|
klao@37
|
310 |
|
alpar@921
|
311 |
#endif // LEMON_BIN_HEAP_H
|