lemon/unionfind.h
author deba
Wed, 14 Dec 2005 18:07:28 +0000
changeset 1858 a5b6d941ed52
parent 1435 8e85e6bbefdf
child 1875 98698b69a902
permissions -rw-r--r--
Bug fix in def pred map
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/unionfind.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_UNION_FIND_H
alpar@921
    18
#define LEMON_UNION_FIND_H
beckerjc@483
    19
klao@491
    20
//!\ingroup auxdat
beckerjc@483
    21
//!\file
beckerjc@483
    22
//!\brief Union-Find data structures.
alpar@774
    23
//!
beckerjc@483
    24
beckerjc@483
    25
#include <vector>
beckerjc@483
    26
#include <list>
beckerjc@483
    27
#include <utility>
beckerjc@483
    28
#include <algorithm>
beckerjc@483
    29
alpar@921
    30
#include <lemon/invalid.h>
beckerjc@483
    31
alpar@921
    32
namespace lemon {
beckerjc@483
    33
beckerjc@483
    34
  //! \addtogroup auxdat
beckerjc@483
    35
  //! @{
beckerjc@483
    36
beckerjc@483
    37
  /**
beckerjc@483
    38
   * \brief A \e Union-Find data structure implementation
beckerjc@483
    39
   *
beckerjc@483
    40
   * The class implements the \e Union-Find data structure. 
beckerjc@483
    41
   * The union operation uses rank heuristic, while
athos@649
    42
   * the find operation uses path compression.
beckerjc@483
    43
   * This is a very simple but efficient implementation, providing 
beckerjc@483
    44
   * only four methods: join (union), find, insert and size.
beckerjc@483
    45
   * For more features see the \ref UnionFindEnum class.
beckerjc@483
    46
   *
alpar@810
    47
   * It is primarily used in Kruskal algorithm for finding minimal
alpar@810
    48
   * cost spanning tree in a graph.
alpar@810
    49
   * \sa kruskal()
alpar@810
    50
   *
beckerjc@483
    51
   * \pre The elements are automatically added only if the map 
beckerjc@483
    52
   * given to the constructor was filled with -1's. Otherwise you
beckerjc@483
    53
   * need to add all the elements by the \ref insert() method.
alpar@810
    54
   * \bug It is not clear what the constructor parameter is used for.
beckerjc@483
    55
   */
beckerjc@483
    56
beckerjc@483
    57
  template <typename T, typename TIntMap>
beckerjc@483
    58
  class UnionFind {
beckerjc@483
    59
    
beckerjc@483
    60
  public:
beckerjc@483
    61
    typedef T ElementType;
beckerjc@483
    62
    typedef std::pair<int,int> PairType;
beckerjc@483
    63
beckerjc@483
    64
  private:
beckerjc@483
    65
    std::vector<PairType> data;
beckerjc@483
    66
    TIntMap& map;
beckerjc@483
    67
beckerjc@483
    68
  public:
beckerjc@483
    69
    UnionFind(TIntMap& m) : map(m) {}
beckerjc@483
    70
beckerjc@483
    71
    /**
beckerjc@483
    72
     * \brief Returns the index of the element's component.
beckerjc@483
    73
     *
beckerjc@483
    74
     * The method returns the index of the element's component.
beckerjc@483
    75
     * This is an integer between zero and the number of inserted elements.
beckerjc@483
    76
     */
beckerjc@483
    77
beckerjc@483
    78
    int find(T a)
beckerjc@483
    79
    {
beckerjc@483
    80
      int comp0 = map[a];
beckerjc@483
    81
      if (comp0 < 0) {
beckerjc@483
    82
	return insert(a);
beckerjc@483
    83
      }
beckerjc@483
    84
      int comp = comp0;
beckerjc@483
    85
      int next;
beckerjc@483
    86
      while ( (next = data[comp].first) != comp) {
beckerjc@483
    87
	comp = next;
beckerjc@483
    88
      }
beckerjc@483
    89
      while ( (next = data[comp0].first) != comp) {
beckerjc@483
    90
	data[comp0].first = comp;
beckerjc@483
    91
	comp0 = next;
beckerjc@483
    92
      }
beckerjc@483
    93
beckerjc@483
    94
      return comp;
beckerjc@483
    95
    }
beckerjc@483
    96
beckerjc@483
    97
    /**
zsuzska@1266
    98
     * \brief Inserts a new element into the structure.
beckerjc@483
    99
     *
beckerjc@483
   100
     * This method inserts a new element into the data structure. 
beckerjc@483
   101
     *
beckerjc@483
   102
     * It is not required to use this method:
beckerjc@483
   103
     * if the map given to the constructor was filled 
beckerjc@483
   104
     * with -1's then it is called automatically
beckerjc@483
   105
     * on the first \ref find or \ref join.
beckerjc@483
   106
     *
beckerjc@483
   107
     * The method returns the index of the new component.
beckerjc@483
   108
     */
beckerjc@483
   109
beckerjc@483
   110
    int insert(T a)
beckerjc@483
   111
    {
beckerjc@483
   112
      int n = data.size();
beckerjc@483
   113
      data.push_back(std::make_pair(n, 1));
beckerjc@483
   114
      map.set(a,n);
beckerjc@483
   115
      return n;
beckerjc@483
   116
    }
beckerjc@483
   117
beckerjc@483
   118
    /**
beckerjc@483
   119
     * \brief Joining the components of element \e a and element \e b.
beckerjc@483
   120
     *
beckerjc@483
   121
     * This is the \e union operation of the Union-Find structure. 
zsuzska@1266
   122
     * Joins the component of element \e a and component of
beckerjc@483
   123
     * element \e b. If \e a and \e b are in the same component then
beckerjc@483
   124
     * it returns false otherwise it returns true.
beckerjc@483
   125
     */
beckerjc@483
   126
beckerjc@483
   127
    bool join(T a, T b)
beckerjc@483
   128
    {
beckerjc@483
   129
      int ca = find(a);
beckerjc@483
   130
      int cb = find(b);
beckerjc@483
   131
beckerjc@483
   132
      if ( ca == cb ) 
beckerjc@483
   133
	return false;
beckerjc@483
   134
beckerjc@483
   135
      if ( data[ca].second > data[cb].second ) {
beckerjc@483
   136
	data[cb].first = ca;
beckerjc@483
   137
	data[ca].second += data[cb].second;
beckerjc@483
   138
      }
beckerjc@483
   139
      else {
beckerjc@483
   140
	data[ca].first = cb;
beckerjc@483
   141
	data[cb].second += data[ca].second;
beckerjc@483
   142
      }
beckerjc@483
   143
      return true;
beckerjc@483
   144
    }
beckerjc@483
   145
beckerjc@483
   146
    /**
beckerjc@483
   147
     * \brief Returns the size of the component of element \e a.
beckerjc@483
   148
     *
beckerjc@483
   149
     * Returns the size of the component of element \e a.
beckerjc@483
   150
     */
beckerjc@483
   151
beckerjc@483
   152
    int size(T a)
beckerjc@483
   153
    {
beckerjc@483
   154
      int ca = find(a);
beckerjc@483
   155
      return data[ca].second;
beckerjc@483
   156
    }
beckerjc@483
   157
beckerjc@483
   158
  };
beckerjc@483
   159
beckerjc@483
   160
beckerjc@483
   161
beckerjc@483
   162
beckerjc@483
   163
  /*******************************************************/
beckerjc@483
   164
beckerjc@483
   165
beckerjc@483
   166
#ifdef DEVELOPMENT_DOCS
beckerjc@483
   167
beckerjc@483
   168
  /**
beckerjc@483
   169
   * \brief The auxiliary class for the \ref UnionFindEnum class.
beckerjc@483
   170
   *
beckerjc@483
   171
   * In the \ref UnionFindEnum class all components are represented as
beckerjc@483
   172
   * a std::list. 
beckerjc@483
   173
   * Items of these lists are UnionFindEnumItem structures.
beckerjc@483
   174
   *
beckerjc@483
   175
   * The class has four fields:
beckerjc@483
   176
   *  - T me - the actual element 
beckerjc@483
   177
   *  - IIter parent - the parent of the element in the union-find structure
beckerjc@483
   178
   *  - int size - the size of the component of the element. 
beckerjc@483
   179
   *            Only valid if the element
beckerjc@483
   180
   *            is the leader of the component.
beckerjc@483
   181
   *  - CIter my_class - pointer into the list of components 
beckerjc@483
   182
   *            pointing to the component of the element.
beckerjc@483
   183
   *            Only valid if the element is the leader of the component.
beckerjc@483
   184
   */
beckerjc@483
   185
beckerjc@483
   186
#endif
beckerjc@483
   187
beckerjc@483
   188
  template <typename T>
beckerjc@483
   189
  struct UnionFindEnumItem {
beckerjc@483
   190
beckerjc@483
   191
    typedef std::list<UnionFindEnumItem> ItemList;
beckerjc@483
   192
    typedef std::list<ItemList> ClassList;
beckerjc@483
   193
    typedef typename ItemList::iterator IIter;
beckerjc@483
   194
    typedef typename ClassList::iterator CIter;
beckerjc@483
   195
beckerjc@483
   196
    T me;
beckerjc@483
   197
    IIter parent;
beckerjc@483
   198
    int size;
beckerjc@483
   199
    CIter my_class;
beckerjc@483
   200
beckerjc@483
   201
    UnionFindEnumItem() {}
beckerjc@483
   202
    UnionFindEnumItem(const T &_me, CIter _my_class): 
beckerjc@483
   203
      me(_me), size(1), my_class(_my_class) {}
beckerjc@483
   204
  };
beckerjc@483
   205
beckerjc@483
   206
beckerjc@483
   207
  /**
beckerjc@483
   208
   * \brief A \e Union-Find data structure implementation which
beckerjc@483
   209
   * is able to enumerate the components.
beckerjc@483
   210
   *
athos@649
   211
   * The class implements a \e Union-Find data structure
beckerjc@483
   212
   * which is able to enumerate the components and the items in
beckerjc@483
   213
   * a component. If you don't need this feature then perhaps it's
beckerjc@483
   214
   * better to use the \ref UnionFind class which is more efficient.
beckerjc@483
   215
   *
beckerjc@483
   216
   * The union operation uses rank heuristic, while
athos@649
   217
   * the find operation uses path compression.
beckerjc@483
   218
   *
beckerjc@483
   219
   * \pre You
beckerjc@483
   220
   * need to add all the elements by the \ref insert() method.
beckerjc@483
   221
   */
beckerjc@483
   222
beckerjc@483
   223
beckerjc@483
   224
  template <typename T, template <typename Item> class Map>
beckerjc@483
   225
  class UnionFindEnum {
beckerjc@483
   226
beckerjc@483
   227
    typedef std::list<UnionFindEnumItem<T> > ItemList;
beckerjc@483
   228
    typedef std::list<ItemList> ClassList;
beckerjc@483
   229
    typedef typename ItemList::iterator IIter;
beckerjc@483
   230
    typedef typename ItemList::const_iterator IcIter;
beckerjc@483
   231
    typedef typename ClassList::iterator CIter;
beckerjc@483
   232
    typedef typename ClassList::const_iterator CcIter;
beckerjc@483
   233
beckerjc@483
   234
  public:
beckerjc@483
   235
    typedef T ElementType;
beckerjc@483
   236
    typedef UnionFindEnumItem<T> ItemType;
beckerjc@483
   237
    typedef Map< IIter > MapType;
beckerjc@483
   238
beckerjc@483
   239
  private:
beckerjc@483
   240
    MapType& m;
beckerjc@483
   241
    ClassList classes;
beckerjc@483
   242
beckerjc@483
   243
    IIter _find(IIter a) const {
beckerjc@483
   244
      IIter comp = a;
beckerjc@483
   245
      IIter next;
beckerjc@483
   246
      while( (next = comp->parent) != comp ) {
beckerjc@483
   247
	comp = next;
beckerjc@483
   248
      }
beckerjc@483
   249
beckerjc@483
   250
      IIter comp1 = a;
beckerjc@483
   251
      while( (next = comp1->parent) != comp ) {
beckerjc@483
   252
	comp1->parent = comp->parent;
beckerjc@483
   253
	comp1 = next;
beckerjc@483
   254
      }
beckerjc@483
   255
      return comp;
beckerjc@483
   256
    }
beckerjc@483
   257
beckerjc@483
   258
  public:
beckerjc@483
   259
    UnionFindEnum(MapType& _m) : m(_m) {}
beckerjc@483
   260
beckerjc@483
   261
beckerjc@483
   262
    /**
zsuzska@1266
   263
     * \brief Inserts the given element into a new component.
beckerjc@483
   264
     *
beckerjc@483
   265
     * This method creates a new component consisting only of the
beckerjc@483
   266
     * given element.
beckerjc@483
   267
     */
beckerjc@483
   268
beckerjc@483
   269
    void insert(const T &a)
beckerjc@483
   270
    {
beckerjc@483
   271
beckerjc@483
   272
beckerjc@483
   273
      classes.push_back(ItemList());
beckerjc@483
   274
      CIter aclass = classes.end();
beckerjc@483
   275
      --aclass;
beckerjc@483
   276
beckerjc@483
   277
      ItemList &alist = *aclass;
beckerjc@483
   278
      alist.push_back(ItemType(a, aclass));
beckerjc@483
   279
      IIter ai = alist.begin();
beckerjc@483
   280
beckerjc@483
   281
      ai->parent = ai;
beckerjc@483
   282
      m.set(a, ai);
beckerjc@483
   283
beckerjc@483
   284
    }
beckerjc@483
   285
beckerjc@483
   286
    /**
zsuzska@1266
   287
     * \brief Inserts the given element into the component of the others.
beckerjc@483
   288
     *
zsuzska@1266
   289
     * This methods inserts the element \e a into the component of the
beckerjc@483
   290
     * element \e comp. 
beckerjc@483
   291
     */
beckerjc@483
   292
beckerjc@483
   293
    void insert(const T &a, const T &comp) {
beckerjc@483
   294
      
beckerjc@483
   295
      IIter clit = _find(m[comp]);
beckerjc@483
   296
      ItemList &c = *clit->my_class;
beckerjc@483
   297
      c.push_back(ItemType(a,0));
beckerjc@483
   298
      IIter ai = c.end();
beckerjc@483
   299
      --ai;
beckerjc@483
   300
      ai->parent = clit;
beckerjc@483
   301
      m.set(a, ai);
beckerjc@483
   302
      ++clit->size;
beckerjc@483
   303
    }
beckerjc@483
   304
beckerjc@483
   305
beckerjc@483
   306
    /**
zsuzska@1266
   307
     * \brief Finds the leader of the component of the given element.
beckerjc@483
   308
     *
beckerjc@483
   309
     * The method returns the leader of the component of the given element.
beckerjc@483
   310
     */
beckerjc@483
   311
beckerjc@483
   312
    T find(const T &a) const {
beckerjc@483
   313
      return _find(m[a])->me;
beckerjc@483
   314
    }
beckerjc@483
   315
beckerjc@483
   316
beckerjc@483
   317
    /**
beckerjc@483
   318
     * \brief Joining the component of element \e a and element \e b.
beckerjc@483
   319
     *
beckerjc@483
   320
     * This is the \e union operation of the Union-Find structure. 
zsuzska@1266
   321
     * Joins the component of element \e a and component of
beckerjc@483
   322
     * element \e b. If \e a and \e b are in the same component then
beckerjc@483
   323
     * returns false else returns true.
beckerjc@483
   324
     */
beckerjc@483
   325
beckerjc@483
   326
    bool join(T a, T b) {
beckerjc@483
   327
beckerjc@483
   328
      IIter ca = _find(m[a]);
beckerjc@483
   329
      IIter cb = _find(m[b]);
beckerjc@483
   330
beckerjc@483
   331
      if ( ca == cb ) {
beckerjc@483
   332
	return false;
beckerjc@483
   333
      }
beckerjc@483
   334
beckerjc@483
   335
      if ( ca->size > cb->size ) {
beckerjc@483
   336
beckerjc@483
   337
	cb->parent = ca->parent;
beckerjc@483
   338
	ca->size += cb->size;
beckerjc@483
   339
	
beckerjc@483
   340
	ItemList &alist = *ca->my_class;
beckerjc@483
   341
	alist.splice(alist.end(),*cb->my_class);
beckerjc@483
   342
beckerjc@483
   343
	classes.erase(cb->my_class);
beckerjc@483
   344
	cb->my_class = 0;
beckerjc@483
   345
      }
beckerjc@483
   346
      else {
beckerjc@483
   347
beckerjc@483
   348
	ca->parent = cb->parent;
beckerjc@483
   349
	cb->size += ca->size;
beckerjc@483
   350
	
beckerjc@483
   351
	ItemList &blist = *cb->my_class;
beckerjc@483
   352
	blist.splice(blist.end(),*ca->my_class);
beckerjc@483
   353
beckerjc@483
   354
	classes.erase(ca->my_class);
beckerjc@483
   355
	ca->my_class = 0;
beckerjc@483
   356
      }
beckerjc@483
   357
beckerjc@483
   358
      return true;
beckerjc@483
   359
    }
beckerjc@483
   360
beckerjc@483
   361
beckerjc@483
   362
    /**
beckerjc@483
   363
     * \brief Returns the size of the component of element \e a.
beckerjc@483
   364
     *
beckerjc@483
   365
     * Returns the size of the component of element \e a.
beckerjc@483
   366
     */
beckerjc@483
   367
beckerjc@483
   368
    int size(const T &a) const {
beckerjc@483
   369
      return _find(m[a])->size;
beckerjc@483
   370
    }
beckerjc@483
   371
beckerjc@483
   372
beckerjc@483
   373
    /**
zsuzska@1266
   374
     * \brief Splits up the component of the element. 
beckerjc@483
   375
     *
beckerjc@483
   376
     * Splitting the component of the element into sigleton
beckerjc@483
   377
     * components (component of size one).
beckerjc@483
   378
     */
beckerjc@483
   379
beckerjc@483
   380
    void split(const T &a) {
beckerjc@483
   381
beckerjc@483
   382
      IIter ca = _find(m[a]);
beckerjc@483
   383
 
beckerjc@483
   384
      if ( ca->size == 1 )
beckerjc@483
   385
	return;
beckerjc@483
   386
      
beckerjc@483
   387
      CIter aclass = ca->my_class;
beckerjc@483
   388
beckerjc@483
   389
      for(IIter curr = ca; ++curr != aclass->end(); curr=ca) {
beckerjc@483
   390
	classes.push_back(ItemList());
beckerjc@483
   391
	CIter nl = --classes.end();
beckerjc@483
   392
	nl->splice(nl->end(), *aclass, curr);
beckerjc@483
   393
beckerjc@483
   394
	curr->size=1;
beckerjc@483
   395
	curr->parent=curr;
beckerjc@483
   396
	curr->my_class = nl;
beckerjc@483
   397
      }
beckerjc@483
   398
beckerjc@483
   399
      ca->size=1;
beckerjc@483
   400
      return;
beckerjc@483
   401
    }
beckerjc@483
   402
beckerjc@483
   403
beckerjc@483
   404
    /**
zsuzska@1266
   405
     * \brief Sets the given element to the leader element of its component.
beckerjc@483
   406
     *
zsuzska@1266
   407
     * Sets the given element to the leader element of its component.
beckerjc@483
   408
     */
beckerjc@483
   409
beckerjc@483
   410
    void makeRep(const T &a) {
beckerjc@483
   411
beckerjc@483
   412
      IIter ia = m[a];
beckerjc@483
   413
      IIter la = _find(ia);
beckerjc@483
   414
      if (la == ia) return;
beckerjc@483
   415
beckerjc@483
   416
      ia->my_class = la->my_class;
beckerjc@483
   417
      la->my_class = 0;
beckerjc@483
   418
beckerjc@483
   419
      ia->size = la->size;
beckerjc@483
   420
beckerjc@483
   421
      CIter l = ia->my_class;
beckerjc@483
   422
      l->splice(l->begin(),*l,ia);
beckerjc@483
   423
beckerjc@483
   424
      ia->parent = ia;
beckerjc@483
   425
      la->parent = ia;
beckerjc@483
   426
    }
beckerjc@483
   427
beckerjc@483
   428
    /**
zsuzska@1266
   429
     * \brief Moves the given element to an other component.
beckerjc@483
   430
     *
beckerjc@483
   431
     * This method moves the element \e a from its component
beckerjc@483
   432
     * to the component of \e comp.
beckerjc@483
   433
     * If \e a and \e comp are in the same component then
beckerjc@483
   434
     * it returns false otherwise it returns true.
beckerjc@483
   435
     */
beckerjc@483
   436
beckerjc@483
   437
    bool move(const T &a, const T &comp) {
beckerjc@483
   438
beckerjc@483
   439
      IIter ai = m[a];
beckerjc@483
   440
      IIter lai = _find(ai);
beckerjc@483
   441
      IIter clit = _find(m[comp]);
beckerjc@483
   442
beckerjc@483
   443
      if (lai == clit)
beckerjc@483
   444
	return false;
beckerjc@483
   445
klao@914
   446
      ItemList &cl = *clit->my_class,
klao@914
   447
	&al = *lai->my_class;
beckerjc@483
   448
beckerjc@483
   449
      bool is_leader = (lai == ai);
beckerjc@483
   450
      bool singleton = false;
beckerjc@483
   451
beckerjc@483
   452
      if (is_leader) {
beckerjc@483
   453
	++lai;
beckerjc@483
   454
      }
beckerjc@483
   455
klao@914
   456
      cl.splice(cl.end(), al, ai);
beckerjc@483
   457
beckerjc@483
   458
      if (is_leader) {
beckerjc@483
   459
	if (ai->size == 1) {
beckerjc@483
   460
	  classes.erase(ai->my_class);
beckerjc@483
   461
	  singleton = true;
beckerjc@483
   462
	}
beckerjc@483
   463
	else {
beckerjc@483
   464
	  lai->size = ai->size; 
beckerjc@483
   465
	  lai->my_class = ai->my_class;	
beckerjc@483
   466
	}
beckerjc@483
   467
      }
beckerjc@483
   468
      if (!singleton) {
klao@914
   469
	for (IIter i = lai; i != al.end(); ++i)
beckerjc@483
   470
	  i->parent = lai;
beckerjc@483
   471
	--lai->size;
beckerjc@483
   472
      }
beckerjc@483
   473
beckerjc@483
   474
      ai->parent = clit;
beckerjc@483
   475
      ai->my_class = 0;
beckerjc@483
   476
      ++clit->size;
beckerjc@483
   477
beckerjc@483
   478
      return true;
beckerjc@483
   479
    }
beckerjc@483
   480
beckerjc@483
   481
beckerjc@483
   482
    /**
zsuzska@1266
   483
     * \brief Removes the given element from the structure.
beckerjc@483
   484
     *
zsuzska@1266
   485
     * Removes the given element from the structure.
beckerjc@483
   486
     *
beckerjc@483
   487
     * Removes the element from its component and if the component becomes
beckerjc@483
   488
     * empty then removes that component from the component list.
beckerjc@483
   489
     */
beckerjc@483
   490
    void erase(const T &a) {
beckerjc@483
   491
beckerjc@483
   492
      IIter ma = m[a];
beckerjc@483
   493
      if (ma == 0) return;
beckerjc@483
   494
beckerjc@483
   495
      IIter la = _find(ma);
beckerjc@483
   496
      if (la == ma) {
beckerjc@483
   497
	if (ma -> size == 1){
beckerjc@483
   498
	  classes.erase(ma->my_class);
beckerjc@483
   499
	  m.set(a,0);
beckerjc@483
   500
	  return;
beckerjc@483
   501
	}
beckerjc@483
   502
	++la;
beckerjc@483
   503
	la->size = ma->size; 
beckerjc@483
   504
	la->my_class = ma->my_class;	
beckerjc@483
   505
      }
beckerjc@483
   506
beckerjc@483
   507
      for (IIter i = la; i != la->my_class->end(); ++i) {
beckerjc@483
   508
	i->parent = la;
beckerjc@483
   509
      }
beckerjc@483
   510
beckerjc@483
   511
      la->size--;
beckerjc@483
   512
      la->my_class->erase(ma);
beckerjc@483
   513
      m.set(a,0);
beckerjc@483
   514
    }
beckerjc@483
   515
beckerjc@483
   516
    /**
beckerjc@483
   517
     * \brief Removes the component of the given element from the structure.
beckerjc@483
   518
     *
beckerjc@483
   519
     * Removes the component of the given element from the structure.
beckerjc@483
   520
     */
beckerjc@483
   521
beckerjc@483
   522
    void eraseClass(const T &a) {
beckerjc@483
   523
      IIter ma = m[a];
beckerjc@483
   524
      if (ma == 0) return;
beckerjc@483
   525
#     ifdef DEBUG
beckerjc@483
   526
      CIter c = _find(ma)->my_class;
beckerjc@483
   527
      for (IIter i=c->begin(); i!=c->end(); ++i)
beckerjc@483
   528
	m.set(i->me, 0);
beckerjc@483
   529
#     endif
beckerjc@483
   530
      classes.erase(_find(ma)->my_class);
beckerjc@483
   531
    }
beckerjc@483
   532
beckerjc@483
   533
beckerjc@483
   534
    class ClassIt {
beckerjc@483
   535
      friend class UnionFindEnum;
beckerjc@483
   536
beckerjc@483
   537
      CcIter i;
beckerjc@483
   538
    public:
beckerjc@483
   539
      ClassIt(Invalid): i(0) {}
beckerjc@483
   540
      ClassIt() {}
beckerjc@483
   541
      
beckerjc@483
   542
      operator const T& () const { 
beckerjc@483
   543
	ItemList const &ll = *i;
beckerjc@483
   544
	return (ll.begin())->me; }
beckerjc@483
   545
      bool operator == (ClassIt it) const {
beckerjc@483
   546
	return (i == it.i);
beckerjc@483
   547
      }
beckerjc@483
   548
      bool operator != (ClassIt it) const {
beckerjc@483
   549
	return (i != it.i);
beckerjc@483
   550
      }
beckerjc@483
   551
      bool operator < (ClassIt it) const {
beckerjc@483
   552
	return (i < it.i);
beckerjc@483
   553
      }
beckerjc@483
   554
beckerjc@483
   555
      bool valid() const { return i != 0; }
beckerjc@483
   556
    private:
beckerjc@483
   557
      void first(const ClassList &l) { i = l.begin(); validate(l); }
beckerjc@483
   558
      void next(const ClassList &l) {
beckerjc@483
   559
	++i; 
beckerjc@483
   560
	validate(l);
beckerjc@483
   561
      }
beckerjc@483
   562
      void validate(const ClassList &l) {
beckerjc@483
   563
	if ( i == l.end() ) 
beckerjc@483
   564
	  i = 0;
beckerjc@483
   565
      }
beckerjc@483
   566
    };
beckerjc@483
   567
beckerjc@483
   568
    /**
beckerjc@483
   569
     * \brief Sets the iterator to point to the first component.
beckerjc@483
   570
     * 
beckerjc@483
   571
     * Sets the iterator to point to the first component.
beckerjc@483
   572
     *
beckerjc@483
   573
     * With the \ref first, \ref valid and \ref next methods you can
beckerjc@483
   574
     * iterate through the components. For example:
beckerjc@483
   575
     * \code
beckerjc@483
   576
     * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
beckerjc@483
   577
     * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
beckerjc@483
   578
     * UnionFindEnum<Graph::Node, Graph::NodeMap>::ClassIt iter;
beckerjc@483
   579
     *  for (U.first(iter); U.valid(iter); U.next(iter)) {
beckerjc@483
   580
     *    // iter is convertible to Graph::Node
beckerjc@483
   581
     *    cout << iter << endl;
beckerjc@483
   582
     *  }
beckerjc@483
   583
     * \endcode
beckerjc@483
   584
     */
beckerjc@483
   585
beckerjc@483
   586
    ClassIt& first(ClassIt& it) const {
beckerjc@483
   587
      it.first(classes);
beckerjc@483
   588
      return it;
beckerjc@483
   589
    }
beckerjc@483
   590
beckerjc@483
   591
    /**
beckerjc@483
   592
     * \brief Returns whether the iterator is valid.
beckerjc@483
   593
     *
beckerjc@483
   594
     * Returns whether the iterator is valid.
beckerjc@483
   595
     *
beckerjc@483
   596
     * With the \ref first, \ref valid and \ref next methods you can
beckerjc@483
   597
     * iterate through the components. See the example here: \ref first.
beckerjc@483
   598
     */
beckerjc@483
   599
beckerjc@483
   600
    bool valid(ClassIt const &it) const {
beckerjc@483
   601
      return it.valid(); 
beckerjc@483
   602
    }
beckerjc@483
   603
beckerjc@483
   604
    /**
beckerjc@483
   605
     * \brief Steps the iterator to the next component. 
beckerjc@483
   606
     *
beckerjc@483
   607
     * Steps the iterator to the next component.
beckerjc@483
   608
     *
beckerjc@483
   609
     * With the \ref first, \ref valid and \ref next methods you can
beckerjc@483
   610
     * iterate through the components. See the example here: \ref first.
beckerjc@483
   611
     */
beckerjc@483
   612
beckerjc@483
   613
    ClassIt& next(ClassIt& it) const {
beckerjc@483
   614
      it.next(classes);
beckerjc@483
   615
      return it;
beckerjc@483
   616
    }
beckerjc@483
   617
beckerjc@483
   618
beckerjc@483
   619
    class ItemIt {
beckerjc@483
   620
      friend class UnionFindEnum;
beckerjc@483
   621
beckerjc@483
   622
      IcIter i;
beckerjc@483
   623
      const ItemList *l;
beckerjc@483
   624
    public:
beckerjc@483
   625
      ItemIt(Invalid): i(0) {}
beckerjc@483
   626
      ItemIt() {}
beckerjc@483
   627
      
beckerjc@483
   628
      operator const T& () const { return i->me; }
beckerjc@483
   629
      bool operator == (ItemIt it) const {
beckerjc@483
   630
	return (i == it.i);
beckerjc@483
   631
      }
beckerjc@483
   632
      bool operator != (ItemIt it) const {
beckerjc@483
   633
	return (i != it.i);
beckerjc@483
   634
      }
beckerjc@483
   635
      bool operator < (ItemIt it) const {
beckerjc@483
   636
	return (i < it.i);
beckerjc@483
   637
      }
beckerjc@483
   638
beckerjc@483
   639
      bool valid() const { return i != 0; }
beckerjc@483
   640
    private:
beckerjc@483
   641
      void first(const ItemList &il) { l=&il; i = l->begin(); validate(); }
beckerjc@483
   642
      void next() {
beckerjc@483
   643
	++i; 
beckerjc@483
   644
	validate();
beckerjc@483
   645
      }
beckerjc@483
   646
      void validate() {
beckerjc@483
   647
	if ( i == l->end() ) 
beckerjc@483
   648
	  i = 0;
beckerjc@483
   649
      }
beckerjc@483
   650
    };
beckerjc@483
   651
beckerjc@483
   652
beckerjc@483
   653
beckerjc@483
   654
    /**
beckerjc@483
   655
     * \brief Sets the iterator to point to the first element of the component.
beckerjc@483
   656
     * 
beckerjc@483
   657
     * \anchor first2 
beckerjc@483
   658
     * Sets the iterator to point to the first element of the component.
beckerjc@483
   659
     *
beckerjc@483
   660
     * With the \ref first2 "first", \ref valid2 "valid" 
beckerjc@483
   661
     * and \ref next2 "next" methods you can
beckerjc@483
   662
     * iterate through the elements of a component. For example
beckerjc@483
   663
     * (iterating through the component of the node \e node):
beckerjc@483
   664
     * \code
beckerjc@483
   665
     * Graph::Node node = ...;
beckerjc@483
   666
     * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
beckerjc@483
   667
     * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
beckerjc@483
   668
     * UnionFindEnum<Graph::Node, Graph::NodeMap>::ItemIt iiter;
beckerjc@483
   669
     *   for (U.first(iiter, node); U.valid(iiter); U.next(iiter)) {
beckerjc@483
   670
     *     // iiter is convertible to Graph::Node
beckerjc@483
   671
     *     cout << iiter << endl;
beckerjc@483
   672
     *   }
beckerjc@483
   673
     * \endcode
beckerjc@483
   674
     */
beckerjc@483
   675
    
beckerjc@483
   676
    ItemIt& first(ItemIt& it, const T& a) const {
beckerjc@483
   677
      it.first( * _find(m[a])->my_class );
beckerjc@483
   678
      return it;
beckerjc@483
   679
    }
beckerjc@483
   680
beckerjc@483
   681
    /**
beckerjc@483
   682
     * \brief Returns whether the iterator is valid.
beckerjc@483
   683
     *
beckerjc@483
   684
     * \anchor valid2
beckerjc@483
   685
     * Returns whether the iterator is valid.
beckerjc@483
   686
     *
beckerjc@483
   687
     * With the \ref first2 "first", \ref valid2 "valid" 
beckerjc@483
   688
     * and \ref next2 "next" methods you can
beckerjc@483
   689
     * iterate through the elements of a component.
beckerjc@483
   690
     * See the example here: \ref first2 "first".
beckerjc@483
   691
     */
beckerjc@483
   692
beckerjc@483
   693
    bool valid(ItemIt const &it) const {
beckerjc@483
   694
      return it.valid(); 
beckerjc@483
   695
    }
beckerjc@483
   696
beckerjc@483
   697
    /**
beckerjc@483
   698
     * \brief Steps the iterator to the next component. 
beckerjc@483
   699
     *
beckerjc@483
   700
     * \anchor next2
beckerjc@483
   701
     * Steps the iterator to the next component.
beckerjc@483
   702
     *
beckerjc@483
   703
     * With the \ref first2 "first", \ref valid2 "valid" 
beckerjc@483
   704
     * and \ref next2 "next" methods you can
beckerjc@483
   705
     * iterate through the elements of a component.
beckerjc@483
   706
     * See the example here: \ref first2 "first".
beckerjc@483
   707
     */
beckerjc@483
   708
beckerjc@483
   709
    ItemIt& next(ItemIt& it) const {
beckerjc@483
   710
      it.next();
beckerjc@483
   711
      return it;
beckerjc@483
   712
    }
beckerjc@483
   713
    
beckerjc@483
   714
  };
beckerjc@483
   715
beckerjc@483
   716
beckerjc@483
   717
  //! @}
beckerjc@483
   718
alpar@921
   719
} //namespace lemon
beckerjc@483
   720
alpar@921
   721
#endif //LEMON_UNION_FIND_H