doc/graphs.dox
author klao
Wed, 15 Sep 2004 14:25:44 +0000
changeset 858 acc83957ee4a
parent 756 c54cf1e83039
child 873 f3a30fda2e49
permissions -rw-r--r--
Handling strings with std::string
Do not segfault if srcdir env. variable is not set.
ladanyi@666
     1
/*!
ladanyi@666
     2
ladanyi@666
     3
\page graphs How to use graphs
ladanyi@666
     4
alpar@756
     5
The primary data structures of HugoLib are the graph classes. They all
alpar@756
     6
provide a node list - edge list interface, i.e. they have
alpar@756
     7
functionalities to list the nodes and the edges of the graph as well
alpar@756
     8
as in incoming and outgoing edges of a given node. 
alpar@756
     9
alpar@756
    10
alpar@756
    11
Each graph should meet the \ref ConstGraph concept. This concept does
alpar@756
    12
makes it possible to change the graph (i.e. it is not possible to add
alpar@756
    13
or delete edges or nodes). Most of the graph algorithms will run on
alpar@756
    14
these graphs.
alpar@756
    15
alpar@756
    16
The graphs meeting the \ref ExtendableGraph concept allow node and
alpar@756
    17
edge addition. You can also "clear" (i.e. erase all edges and nodes)
alpar@756
    18
such a graph.
alpar@756
    19
alpar@756
    20
In case of graphs meeting the full feature \ref ErasableGraph concept
alpar@756
    21
you can also erase individual edges and node in arbitrary order.
alpar@756
    22
alpar@756
    23
The implemented graph structures are the following.
alpar@756
    24
\li \ref hugo::ListGraph "ListGraph" is the most versatile graph class. It meets
alpar@756
    25
the ErasableGraph concept and it also have some convenience features.
alpar@756
    26
\li \ref hugo::SmartGraph "SmartGraph" is a more memory
alpar@756
    27
efficient version of \ref hugo::ListGraph "ListGraph". The
alpar@756
    28
price of it is that it only meets the \ref ExtendableGraph concept,
alpar@756
    29
so you cannot delete individual edges or nodes.
alpar@756
    30
\li \ref hugo::SymListGraph "SymListGraph" and
alpar@756
    31
\ref hugo::SymSmartGraph "SymSmartGraph" classes are very similar to
alpar@756
    32
\ref hugo::ListGraph "ListGraph" and \ref hugo::SmartGraph "SmartGraph".
alpar@756
    33
The difference is that whenever you add a
alpar@756
    34
new edge to the graph, it actually adds a pair of oppositely directed edges.
alpar@756
    35
They are linked together so it is possible to access the counterpart of an
alpar@756
    36
edge. An even more important feature is that using these classes you can also
alpar@756
    37
attach data to the edges in such a way that the stored data
alpar@756
    38
are shared by the edge pairs. 
alpar@756
    39
\li \ref hugo::FullGraph "FullGraph"
alpar@756
    40
implements a full graph. It is a \ref ConstGraph, so you cannot
alpar@756
    41
change the number of nodes once it is constructed. It is extremely memory
alpar@756
    42
efficient: it uses constant amount of memory independently from the number of
alpar@756
    43
the nodes of the graph. Of course, the size of the \ref maps "NodeMap"'s and
alpar@756
    44
\ref maps "EdgeMap"'s will depend on the number of nodes.
alpar@756
    45
alpar@756
    46
\li \ref hugo::NodeSet "NodeSet" implements a graph with no edges. This class
alpar@756
    47
can be used as a base class of \ref hugo::EdgeSet "EdgeSet".
alpar@756
    48
\li \ref hugo::EdgeSet "EdgeSet" can be used to create a new graph on
alpar@756
    49
the edge set of another graph. The base graph can be an arbitrary graph and it
alpar@756
    50
is possible to attach several \ref hugo::EdgeSet "EdgeSet"'s to a base graph.
alpar@756
    51
alpar@756
    52
\todo Don't we need SmartNodeSet and SmartEdgeSet?
alpar@756
    53
\todo Some cross-refs are wrong.
alpar@756
    54
alpar@808
    55
\bug This file must be updated accordig to the new stile iterators.
alpar@756
    56
alpar@756
    57
The graph structures itself can not store data attached
alpar@756
    58
to the edges and nodes. However they all provide
alpar@756
    59
\ref maps "map classes"
alpar@756
    60
to dynamically attach data the to graph components.
alpar@756
    61
alpar@756
    62
alpar@756
    63
alpar@756
    64
ladanyi@666
    65
The following program demonstrates the basic features of HugoLib's graph
ladanyi@666
    66
structures.
ladanyi@666
    67
ladanyi@666
    68
\code
ladanyi@666
    69
#include <iostream>
ladanyi@666
    70
#include <hugo/list_graph.h>
ladanyi@666
    71
ladanyi@666
    72
using namespace hugo;
ladanyi@666
    73
ladanyi@666
    74
int main()
ladanyi@666
    75
{
ladanyi@666
    76
  typedef ListGraph Graph;
ladanyi@666
    77
\endcode
ladanyi@666
    78
ladanyi@666
    79
ListGraph is one of HugoLib's graph classes. It is based on linked lists,
ladanyi@666
    80
therefore iterating throuh its edges and nodes is fast.
ladanyi@666
    81
ladanyi@666
    82
\code
ladanyi@666
    83
  typedef Graph::Edge Edge;
ladanyi@666
    84
  typedef Graph::InEdgeIt InEdgeIt;
ladanyi@666
    85
  typedef Graph::OutEdgeIt OutEdgeIt;
ladanyi@666
    86
  typedef Graph::EdgeIt EdgeIt;
ladanyi@666
    87
  typedef Graph::Node Node;
ladanyi@666
    88
  typedef Graph::NodeIt NodeIt;
ladanyi@666
    89
ladanyi@666
    90
  Graph g;
ladanyi@666
    91
  
ladanyi@666
    92
  for (int i = 0; i < 3; i++)
ladanyi@666
    93
    g.addNode();
ladanyi@666
    94
  
ladanyi@666
    95
  for (NodeIt i(g); g.valid(i); g.next(i))
ladanyi@666
    96
    for (NodeIt j(g); g.valid(j); g.next(j))
ladanyi@666
    97
      if (i != j) g.addEdge(i, j);
ladanyi@666
    98
\endcode
ladanyi@666
    99
ladanyi@666
   100
After some convenience typedefs we create a graph and add three nodes to it.
ladanyi@666
   101
Then we add edges to it to form a full graph.
ladanyi@666
   102
ladanyi@666
   103
\code
ladanyi@666
   104
  std::cout << "Nodes:";
ladanyi@666
   105
  for (NodeIt i(g); g.valid(i); g.next(i))
ladanyi@666
   106
    std::cout << " " << g.id(i);
ladanyi@666
   107
  std::cout << std::endl;
ladanyi@666
   108
\endcode
ladanyi@666
   109
ladanyi@666
   110
Here we iterate through all nodes of the graph. We use a constructor of the
ladanyi@666
   111
node iterator to initialize it to the first node. The next member function is
ladanyi@666
   112
used to step to the next node, and valid is used to check if we have passed the
ladanyi@666
   113
last one.
ladanyi@666
   114
ladanyi@666
   115
\code
ladanyi@666
   116
  std::cout << "Nodes:";
ladanyi@666
   117
  NodeIt n;
ladanyi@666
   118
  for (g.first(n); n != INVALID; g.next(n))
ladanyi@666
   119
    std::cout << " " << g.id(n);
ladanyi@666
   120
  std::cout << std::endl;
ladanyi@666
   121
\endcode
ladanyi@666
   122
ladanyi@666
   123
Here you can see an alternative way to iterate through all nodes. Here we use a
ladanyi@666
   124
member function of the graph to initialize the node iterator to the first node
ladanyi@666
   125
of the graph. Using next on the iterator pointing to the last node invalidates
ladanyi@666
   126
the iterator i.e. sets its value to INVALID. Checking for this value is
ladanyi@666
   127
equivalent to using the valid member function.
ladanyi@666
   128
ladanyi@666
   129
Both of the previous code fragments print out the same:
ladanyi@666
   130
ladanyi@666
   131
\code
ladanyi@666
   132
Nodes: 2 1 0
ladanyi@666
   133
\endcode
ladanyi@666
   134
ladanyi@666
   135
\code
ladanyi@666
   136
  std::cout << "Edges:";
ladanyi@666
   137
  for (EdgeIt i(g); g.valid(i); g.next(i))
ladanyi@666
   138
    std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")";
ladanyi@666
   139
  std::cout << std::endl;
ladanyi@666
   140
\endcode
ladanyi@666
   141
ladanyi@666
   142
\code
ladanyi@666
   143
Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0)
ladanyi@666
   144
\endcode
ladanyi@666
   145
ladanyi@666
   146
We can also iterate through all edges of the graph very similarly. The head and
ladanyi@666
   147
tail member functions can be used to access the endpoints of an edge.
ladanyi@666
   148
ladanyi@666
   149
\code
ladanyi@666
   150
  NodeIt first_node(g);
ladanyi@666
   151
ladanyi@666
   152
  std::cout << "Out-edges of node " << g.id(first_node) << ":";
ladanyi@666
   153
  for (OutEdgeIt i(g, first_node); g.valid(i); g.next(i))
ladanyi@666
   154
    std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")"; 
ladanyi@666
   155
  std::cout << std::endl;
ladanyi@666
   156
ladanyi@666
   157
  std::cout << "In-edges of node " << g.id(first_node) << ":";
ladanyi@666
   158
  for (InEdgeIt i(g, first_node); g.valid(i); g.next(i))
ladanyi@666
   159
    std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")"; 
ladanyi@666
   160
  std::cout << std::endl;
ladanyi@666
   161
\endcode
ladanyi@666
   162
ladanyi@666
   163
\code
ladanyi@666
   164
Out-edges of node 2: (2,0) (2,1)
ladanyi@666
   165
In-edges of node 2: (0,2) (1,2)
ladanyi@666
   166
\endcode
ladanyi@666
   167
ladanyi@666
   168
We can also iterate through the in and out-edges of a node. In the above
ladanyi@666
   169
example we print out the in and out-edges of the first node of the graph.
ladanyi@666
   170
ladanyi@666
   171
\code
ladanyi@666
   172
  Graph::EdgeMap<int> m(g);
ladanyi@666
   173
ladanyi@666
   174
  for (EdgeIt e(g); g.valid(e); g.next(e))
ladanyi@666
   175
    m.set(e, 10 - g.id(e));
ladanyi@666
   176
  
ladanyi@666
   177
  std::cout << "Id Edge  Value" << std::endl;
ladanyi@666
   178
  for (EdgeIt e(g); g.valid(e); g.next(e))
ladanyi@666
   179
    std::cout << g.id(e) << "  (" << g.id(g.tail(e)) << "," << g.id(g.head(e))
ladanyi@666
   180
      << ") " << m[e] << std::endl;
ladanyi@666
   181
\endcode
ladanyi@666
   182
ladanyi@666
   183
\code
ladanyi@666
   184
Id Edge  Value
ladanyi@666
   185
4  (0,2) 6
ladanyi@666
   186
2  (1,2) 8
ladanyi@666
   187
5  (0,1) 5
ladanyi@666
   188
0  (2,1) 10
ladanyi@666
   189
3  (1,0) 7
ladanyi@666
   190
1  (2,0) 9
ladanyi@666
   191
\endcode
ladanyi@666
   192
ladanyi@666
   193
In generic graph optimization programming graphs are not containers rather
ladanyi@666
   194
incidence structures which are iterable in many ways. HugoLib introduces
ladanyi@666
   195
concepts that allow us to attach containers to graphs. These containers are
ladanyi@666
   196
called maps.
ladanyi@666
   197
ladanyi@666
   198
In the example above we create an EdgeMap which assigns an int value to all
ladanyi@666
   199
edges of the graph. We use the set member function of the map to write values
ladanyi@666
   200
into the map and the operator[] to retrieve them.
ladanyi@666
   201
ladanyi@666
   202
Here we used the maps provided by the ListGraph class, but you can also write
ladanyi@666
   203
your own maps. You can read more about using maps \ref maps "here".
ladanyi@666
   204
ladanyi@666
   205
*/