alpar@202
|
1 |
/*!
|
alpar@202
|
2 |
|
alpar@202
|
3 |
|
alpar@692
|
4 |
|
alpar@692
|
5 |
\page maps Maps
|
alpar@692
|
6 |
|
alpar@692
|
7 |
Maps play central role in HUGOlib. As their name suggests, they map a
|
alpar@692
|
8 |
certain range of \e keys to certain \e values. Each map has two
|
alpar@692
|
9 |
<tt>typedef</tt>'s to determine the types of keys and values, like this:
|
alpar@692
|
10 |
|
alpar@692
|
11 |
\code
|
alpar@692
|
12 |
typedef Edge KeyType;
|
alpar@692
|
13 |
typedef double ValueType;
|
alpar@692
|
14 |
\endcode
|
alpar@692
|
15 |
|
alpar@692
|
16 |
A map can \e readable (ReadMap, for short), \e writable (WriteMap) or both
|
alpar@692
|
17 |
(ReadWrite Map). There also exists a special type of
|
alpar@692
|
18 |
ReadWrite map called <em>reference map</em>. In addition that you can
|
alpar@692
|
19 |
read and write the values of a key, a reference map
|
alpar@692
|
20 |
can also give you a reference to the
|
alpar@692
|
21 |
value belonging to a key, so you have a direct access to the memory address
|
alpar@692
|
22 |
where it is stored.
|
alpar@692
|
23 |
|
alpar@692
|
24 |
Each graph structure in HUGOlib provides two standard map templates called
|
alpar@692
|
25 |
\c EdgeMap and \c NodeMap. Both are reference maps and you can easily
|
alpar@692
|
26 |
assign data to the nodes and to the edges of the graph. For example if you
|
alpar@692
|
27 |
have a graph \c G defined as
|
alpar@692
|
28 |
\code
|
alpar@692
|
29 |
ListGraph G;
|
alpar@692
|
30 |
\endcode
|
alpar@692
|
31 |
and you want to assign floating point value to each edge, you can do
|
alpar@692
|
32 |
it like this.
|
alpar@692
|
33 |
\code
|
alpar@692
|
34 |
ListGraph::EdgeMap<double> length(G);
|
alpar@692
|
35 |
\endcode
|
alpar@692
|
36 |
|
alpar@692
|
37 |
The value of a readable map can be obtained by <tt>operator[]</tt>.
|
alpar@692
|
38 |
\code
|
alpar@692
|
39 |
d=length[e];
|
alpar@692
|
40 |
\endcode
|
alpar@692
|
41 |
where \c e is an instance of \c ListGraph::Edge.
|
alpar@692
|
42 |
(Or anything else
|
alpar@692
|
43 |
that converts to \c ListGraph::Edge, like \c ListGraph::EdgeIt or
|
alpar@692
|
44 |
\c ListGraph::OutEdgeIt)
|
alpar@692
|
45 |
|
alpar@692
|
46 |
There are two ways the assign a new value to a key
|
alpar@692
|
47 |
|
alpar@692
|
48 |
- In case of a <em>reference map</em> <tt>operator[]</tt>
|
alpar@692
|
49 |
gives you a reference to the
|
alpar@692
|
50 |
value, thus you can use this.
|
alpar@692
|
51 |
\code
|
alpar@692
|
52 |
length[e]=3.5;
|
alpar@692
|
53 |
\endcode
|
alpar@692
|
54 |
- <em>Writable maps</em> have
|
alpar@692
|
55 |
a member function \c set(KeyType,const ValueType &)
|
alpar@692
|
56 |
for this purpose.
|
alpar@692
|
57 |
\code
|
alpar@692
|
58 |
length.set(e,3.5);
|
alpar@692
|
59 |
\endcode
|
alpar@692
|
60 |
|
alpar@692
|
61 |
The first case is more comfortable and if you store complex structures in your
|
alpar@692
|
62 |
map, it might be more efficient. However, there are writable but
|
alpar@692
|
63 |
not reference maps, so if you want to write an generic algorithm, you should
|
alpar@692
|
64 |
insist on the second method.
|
alpar@692
|
65 |
|
alpar@697
|
66 |
\section how-to-write-your-own-map How to Write Your Own Maps
|
alpar@692
|
67 |
|
alpar@692
|
68 |
\subsection read-maps Readable Maps
|
alpar@202
|
69 |
|
alpar@289
|
70 |
The readable maps are very frequently used as the input of the
|
alpar@692
|
71 |
algorithms. For this purpose the most straightforward way is the use of the
|
alpar@692
|
72 |
default maps provided by Hugo's graph structures.
|
alpar@692
|
73 |
Very often however, it is more
|
alpar@289
|
74 |
convenient and/or more efficient to write your own readable map.
|
alpar@202
|
75 |
|
alpar@692
|
76 |
You can find some examples below. In these examples \c Graph is the
|
alpar@692
|
77 |
type of the particular graph structure you use.
|
alpar@692
|
78 |
|
alpar@202
|
79 |
|
alpar@204
|
80 |
This simple map assigns \f$\pi\f$ to each edge.
|
alpar@204
|
81 |
|
alpar@202
|
82 |
\code
|
alpar@273
|
83 |
struct MyMap
|
alpar@202
|
84 |
{
|
alpar@273
|
85 |
typedef double ValueType;
|
alpar@692
|
86 |
typedef Graph::Edge KeyType;
|
alpar@692
|
87 |
double operator[](KeyType e) const { return M_PI;}
|
alpar@204
|
88 |
};
|
alpar@204
|
89 |
\endcode
|
alpar@204
|
90 |
|
alpar@692
|
91 |
An alternative way to define maps is to use \c MapBase
|
alpar@692
|
92 |
|
alpar@692
|
93 |
\todo For this, \c MapBase seems to be a better name then \c NullMap.
|
alpar@289
|
94 |
|
alpar@289
|
95 |
\code
|
alpar@692
|
96 |
struct MyMap : public MapBase<Graph::Edge,double>
|
alpar@289
|
97 |
{
|
alpar@289
|
98 |
ValueType operator[](KeyType e) const { return M_PI;}
|
alpar@289
|
99 |
};
|
alpar@289
|
100 |
\endcode
|
alpar@289
|
101 |
|
alpar@692
|
102 |
Here is a bit more complex example.
|
alpar@692
|
103 |
It provides a length function which is obtained
|
alpar@692
|
104 |
from a base length function shifted by a potential difference.
|
alpar@202
|
105 |
|
alpar@202
|
106 |
\code
|
alpar@692
|
107 |
class MyLengthMap : public MapBase<Graph::Edge,double>
|
alpar@202
|
108 |
{
|
alpar@692
|
109 |
const Graph &G;
|
alpar@692
|
110 |
const Graph::EdgeMap<double> &orig_len;
|
alpar@692
|
111 |
const Graph::NodeMap<double> &pot;
|
alpar@202
|
112 |
|
alpar@273
|
113 |
public:
|
alpar@692
|
114 |
KeyType operator[](ValueType e) const {
|
alpar@692
|
115 |
return orig_len.get(e)-pot.get(G.head(e))-pot.get(G.tail(e));
|
alpar@210
|
116 |
}
|
alpar@202
|
117 |
|
alpar@692
|
118 |
MyLengthMap(const Graph &g, const Graph::EdgeMap &o,const Graph::NodeMap &p)
|
alpar@692
|
119 |
: G(g), orig_len(o), pot(p) {};
|
alpar@202
|
120 |
};
|
alpar@202
|
121 |
\endcode
|
alpar@202
|
122 |
|
alpar@692
|
123 |
|
alpar@692
|
124 |
\subsection write-maps Writable Maps
|
alpar@692
|
125 |
|
alpar@692
|
126 |
To be written...
|
alpar@692
|
127 |
|
alpar@692
|
128 |
\subsection side-effect-maps Maps with Side Effect
|
alpar@692
|
129 |
|
alpar@692
|
130 |
To be written...
|
alpar@692
|
131 |
|
alpar@202
|
132 |
*/
|