alpar@906
|
1 |
/* -*- C++ -*-
|
alpar@906
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@2391
|
5 |
* Copyright (C) 2003-2007
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@906
|
8 |
*
|
alpar@906
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
12 |
*
|
alpar@906
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
15 |
* purpose.
|
alpar@906
|
16 |
*
|
alpar@906
|
17 |
*/
|
hegyi@819
|
18 |
|
hegyi@819
|
19 |
///\ingroup paths
|
hegyi@819
|
20 |
///\file
|
hegyi@819
|
21 |
///\brief Classes for representing paths in graphs.
|
alpar@1151
|
22 |
///
|
hegyi@819
|
23 |
|
alpar@921
|
24 |
#ifndef LEMON_PATH_H
|
alpar@921
|
25 |
#define LEMON_PATH_H
|
hegyi@819
|
26 |
|
hegyi@819
|
27 |
#include <vector>
|
hegyi@819
|
28 |
#include <algorithm>
|
hegyi@819
|
29 |
|
deba@2335
|
30 |
#include <lemon/path_utils.h>
|
deba@2247
|
31 |
#include <lemon/error.h>
|
deba@1993
|
32 |
#include <lemon/bits/invalid.h>
|
hegyi@819
|
33 |
|
alpar@921
|
34 |
namespace lemon {
|
hegyi@819
|
35 |
|
hegyi@819
|
36 |
/// \addtogroup paths
|
hegyi@819
|
37 |
/// @{
|
hegyi@819
|
38 |
|
hegyi@819
|
39 |
|
deba@2335
|
40 |
/// \brief A structure for representing directed paths in a graph.
|
deba@2335
|
41 |
///
|
deba@2335
|
42 |
/// A structure for representing directed path in a graph.
|
deba@2335
|
43 |
/// \param Graph The graph type in which the path is.
|
deba@2335
|
44 |
///
|
deba@2335
|
45 |
/// In a sense, the path can be treated as a list of edges. The
|
deba@2335
|
46 |
/// lemon path type stores just this list. As a consequence it
|
deba@2335
|
47 |
/// cannot enumerate the nodes in the path and the zero length paths
|
deba@2335
|
48 |
/// cannot store the source.
|
deba@2335
|
49 |
///
|
deba@2335
|
50 |
/// This implementation is a back and front insertable and erasable
|
deba@2335
|
51 |
/// path type. It can be indexed in O(1) time. The front and back
|
deba@2335
|
52 |
/// insertion and erasure is amortized O(1) time. The
|
deba@2335
|
53 |
/// impelementation is based on two opposite organized vectors.
|
deba@2335
|
54 |
template <typename _Graph>
|
deba@2247
|
55 |
class Path {
|
hegyi@819
|
56 |
public:
|
deba@2335
|
57 |
|
deba@2335
|
58 |
typedef _Graph Graph;
|
deba@2247
|
59 |
typedef typename Graph::Edge Edge;
|
deba@2247
|
60 |
|
deba@2335
|
61 |
/// \brief Default constructor
|
deba@2335
|
62 |
///
|
deba@2335
|
63 |
/// Default constructor
|
deba@2335
|
64 |
Path() {}
|
hegyi@819
|
65 |
|
deba@2335
|
66 |
/// \brief Template copy constructor
|
deba@2247
|
67 |
///
|
deba@2335
|
68 |
/// This path can be initialized with any other path type. It just
|
deba@2335
|
69 |
/// makes a copy of the given path.
|
deba@2335
|
70 |
template <typename CPath>
|
deba@2335
|
71 |
Path(const CPath& cpath) {
|
deba@2335
|
72 |
copyPath(*this, cpath);
|
hegyi@819
|
73 |
}
|
hegyi@819
|
74 |
|
deba@2335
|
75 |
/// \brief Template copy assignment
|
hegyi@819
|
76 |
///
|
deba@2335
|
77 |
/// This path can be initialized with any other path type. It just
|
deba@2335
|
78 |
/// makes a copy of the given path.
|
deba@2335
|
79 |
template <typename CPath>
|
deba@2335
|
80 |
Path& operator=(const CPath& cpath) {
|
deba@2335
|
81 |
copyPath(*this, cpath);
|
deba@2335
|
82 |
return *this;
|
hegyi@819
|
83 |
}
|
hegyi@819
|
84 |
|
deba@2335
|
85 |
/// \brief Lemon style iterator for path edges
|
deba@2247
|
86 |
///
|
deba@2335
|
87 |
/// This class is used to iterate on the edges of the paths.
|
deba@2335
|
88 |
class EdgeIt {
|
deba@2247
|
89 |
friend class Path;
|
deba@2247
|
90 |
public:
|
deba@2335
|
91 |
/// \brief Default constructor
|
deba@2335
|
92 |
EdgeIt() {}
|
deba@2335
|
93 |
/// \brief Invalid constructor
|
deba@2335
|
94 |
EdgeIt(Invalid) : path(0), idx(-1) {}
|
deba@2335
|
95 |
/// \brief Initializate the constructor to the first edge of path
|
deba@2335
|
96 |
EdgeIt(const Path &_path)
|
deba@2335
|
97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
hegyi@819
|
98 |
|
deba@2335
|
99 |
private:
|
hegyi@819
|
100 |
|
deba@2335
|
101 |
EdgeIt(const Path &_path, int _idx)
|
deba@2335
|
102 |
: idx(_idx), path(&_path) {}
|
deba@2247
|
103 |
|
deba@2335
|
104 |
public:
|
deba@2335
|
105 |
|
deba@2335
|
106 |
/// \brief Conversion to Edge
|
deba@2335
|
107 |
operator const Edge&() const {
|
deba@2335
|
108 |
return path->nth(idx);
|
deba@2247
|
109 |
}
|
deba@2247
|
110 |
|
deba@2335
|
111 |
/// \brief Next edge
|
deba@2335
|
112 |
EdgeIt& operator++() {
|
deba@2335
|
113 |
++idx;
|
deba@2335
|
114 |
if (idx >= path->length()) idx = -1;
|
deba@2247
|
115 |
return *this;
|
deba@2247
|
116 |
}
|
deba@2247
|
117 |
|
deba@2247
|
118 |
/// \brief Comparison operator
|
deba@2335
|
119 |
bool operator==(const EdgeIt& e) const { return idx==e.idx; }
|
deba@2247
|
120 |
/// \brief Comparison operator
|
deba@2335
|
121 |
bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
|
deba@2247
|
122 |
/// \brief Comparison operator
|
deba@2335
|
123 |
bool operator<(const EdgeIt& e) const { return idx<e.idx; }
|
deba@2247
|
124 |
|
deba@2247
|
125 |
private:
|
deba@2247
|
126 |
const Path *path;
|
deba@2335
|
127 |
int idx;
|
deba@2247
|
128 |
};
|
deba@2247
|
129 |
|
deba@2335
|
130 |
/// \brief Length of the path.
|
deba@2335
|
131 |
int length() const { return head.size() + tail.size(); }
|
deba@2335
|
132 |
/// \brief Returns whether the path is empty.
|
deba@2335
|
133 |
bool empty() const { return head.empty() && tail.empty(); }
|
deba@2335
|
134 |
|
deba@2335
|
135 |
/// \brief Resets the path to an empty path.
|
deba@2335
|
136 |
void clear() { head.clear(); tail.clear(); }
|
deba@2335
|
137 |
|
deba@2335
|
138 |
/// \brief Gives back the nth edge.
|
deba@2335
|
139 |
///
|
deba@2335
|
140 |
/// \pre n is in the [0..length() - 1] range
|
deba@2335
|
141 |
const Edge& nth(int n) const {
|
deba@2386
|
142 |
return n < int(head.size()) ? *(head.rbegin() + n) :
|
deba@2335
|
143 |
*(tail.begin() + (n - head.size()));
|
deba@2335
|
144 |
}
|
deba@2335
|
145 |
|
deba@2335
|
146 |
/// \brief Initializes edge iterator to point to the nth edge
|
deba@2335
|
147 |
///
|
deba@2335
|
148 |
/// \pre n is in the [0..length() - 1] range
|
deba@2335
|
149 |
EdgeIt nthIt(int n) const {
|
deba@2335
|
150 |
return EdgeIt(*this, n);
|
deba@2335
|
151 |
}
|
deba@2335
|
152 |
|
deba@2335
|
153 |
/// \brief Gives back the first edge of the path
|
deba@2335
|
154 |
const Edge& front() const {
|
deba@2335
|
155 |
return head.empty() ? tail.front() : head.back();
|
deba@2335
|
156 |
}
|
deba@2335
|
157 |
|
deba@2335
|
158 |
/// \brief Add a new edge before the current path
|
deba@2335
|
159 |
void addFront(const Edge& edge) {
|
deba@2335
|
160 |
head.push_back(edge);
|
deba@2335
|
161 |
}
|
deba@2335
|
162 |
|
deba@2335
|
163 |
/// \brief Erase the first edge of the path
|
deba@2335
|
164 |
void eraseFront() {
|
deba@2335
|
165 |
if (!head.empty()) {
|
deba@2335
|
166 |
head.pop_back();
|
deba@2335
|
167 |
} else {
|
deba@2335
|
168 |
head.clear();
|
deba@2335
|
169 |
int halfsize = tail.size() / 2;
|
deba@2335
|
170 |
head.resize(halfsize);
|
deba@2335
|
171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
|
deba@2335
|
172 |
head.rbegin());
|
deba@2335
|
173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
|
deba@2335
|
174 |
tail.resize(tail.size() - halfsize - 1);
|
deba@2335
|
175 |
}
|
deba@2335
|
176 |
}
|
deba@2335
|
177 |
|
deba@2335
|
178 |
/// \brief Gives back the last edge of the path
|
deba@2335
|
179 |
const Edge& back() const {
|
deba@2335
|
180 |
return tail.empty() ? head.front() : tail.back();
|
deba@2335
|
181 |
}
|
deba@2335
|
182 |
|
deba@2335
|
183 |
/// \brief Add a new edge behind the current path
|
deba@2335
|
184 |
void addBack(const Edge& edge) {
|
deba@2335
|
185 |
tail.push_back(edge);
|
deba@2335
|
186 |
}
|
deba@2335
|
187 |
|
deba@2335
|
188 |
/// \brief Erase the last edge of the path
|
deba@2335
|
189 |
void eraseBack() {
|
deba@2335
|
190 |
if (!tail.empty()) {
|
deba@2335
|
191 |
tail.pop_back();
|
deba@2335
|
192 |
} else {
|
deba@2335
|
193 |
int halfsize = head.size() / 2;
|
deba@2335
|
194 |
tail.resize(halfsize);
|
deba@2335
|
195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1,
|
deba@2335
|
196 |
tail.rbegin());
|
deba@2335
|
197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
|
deba@2335
|
198 |
head.resize(head.size() - halfsize - 1);
|
deba@2335
|
199 |
}
|
deba@2335
|
200 |
}
|
deba@2335
|
201 |
|
deba@2335
|
202 |
|
deba@2335
|
203 |
|
deba@2335
|
204 |
typedef True BuildTag;
|
deba@2335
|
205 |
|
deba@2335
|
206 |
template <typename CPath>
|
deba@2335
|
207 |
void build(const CPath& path) {
|
deba@2335
|
208 |
int len = path.length();
|
deba@2335
|
209 |
tail.reserve(len);
|
deba@2335
|
210 |
for (typename CPath::EdgeIt it(path); it != INVALID; ++it) {
|
deba@2335
|
211 |
tail.push_back(it);
|
deba@2335
|
212 |
}
|
deba@2335
|
213 |
}
|
deba@2335
|
214 |
|
deba@2335
|
215 |
template <typename CPath>
|
deba@2335
|
216 |
void buildRev(const CPath& path) {
|
deba@2335
|
217 |
int len = path.length();
|
deba@2335
|
218 |
head.reserve(len);
|
deba@2357
|
219 |
for (typename CPath::RevEdgeIt it(path); it != INVALID; ++it) {
|
deba@2335
|
220 |
head.push_back(it);
|
deba@2335
|
221 |
}
|
deba@2335
|
222 |
}
|
deba@2335
|
223 |
|
deba@2335
|
224 |
protected:
|
deba@2335
|
225 |
typedef std::vector<Edge> Container;
|
deba@2335
|
226 |
Container head, tail;
|
deba@2335
|
227 |
|
deba@2335
|
228 |
};
|
deba@2335
|
229 |
|
deba@2335
|
230 |
/// \brief A structure for representing directed paths in a graph.
|
deba@2335
|
231 |
///
|
deba@2335
|
232 |
/// A structure for representing directed path in a graph.
|
deba@2335
|
233 |
/// \param Graph The graph type in which the path is.
|
deba@2335
|
234 |
///
|
deba@2335
|
235 |
/// In a sense, the path can be treated as a list of edges. The
|
deba@2335
|
236 |
/// lemon path type stores just this list. As a consequence it
|
deba@2335
|
237 |
/// cannot enumerate the nodes in the path and the zero length paths
|
deba@2335
|
238 |
/// cannot store the source.
|
deba@2335
|
239 |
///
|
deba@2335
|
240 |
/// This implementation is a just back insertable and erasable path
|
deba@2335
|
241 |
/// type. It can be indexed in O(1) time. The back insertion and
|
deba@2335
|
242 |
/// erasure is amortized O(1) time. This implementation is faster
|
deba@2335
|
243 |
/// then the \c Path type because it use just one vector for the
|
deba@2335
|
244 |
/// edges.
|
deba@2335
|
245 |
template <typename _Graph>
|
deba@2335
|
246 |
class SimplePath {
|
deba@2335
|
247 |
public:
|
deba@2335
|
248 |
|
deba@2335
|
249 |
typedef _Graph Graph;
|
deba@2335
|
250 |
typedef typename Graph::Edge Edge;
|
deba@2335
|
251 |
|
deba@2335
|
252 |
/// \brief Default constructor
|
deba@2335
|
253 |
///
|
deba@2335
|
254 |
/// Default constructor
|
deba@2335
|
255 |
SimplePath() {}
|
deba@2335
|
256 |
|
deba@2335
|
257 |
/// \brief Template copy constructor
|
deba@2335
|
258 |
///
|
deba@2335
|
259 |
/// This path can be initialized with any other path type. It just
|
deba@2335
|
260 |
/// makes a copy of the given path.
|
deba@2335
|
261 |
template <typename CPath>
|
deba@2335
|
262 |
SimplePath(const CPath& cpath) {
|
deba@2335
|
263 |
copyPath(*this, cpath);
|
deba@2335
|
264 |
}
|
deba@2335
|
265 |
|
deba@2335
|
266 |
/// \brief Template copy assignment
|
deba@2335
|
267 |
///
|
deba@2335
|
268 |
/// This path can be initialized with any other path type. It just
|
deba@2335
|
269 |
/// makes a copy of the given path.
|
deba@2335
|
270 |
template <typename CPath>
|
deba@2335
|
271 |
SimplePath& operator=(const CPath& cpath) {
|
deba@2335
|
272 |
copyPath(*this, cpath);
|
deba@2335
|
273 |
return *this;
|
deba@2335
|
274 |
}
|
deba@2335
|
275 |
|
deba@2247
|
276 |
/// \brief Iterator class to iterate on the edges of the paths
|
deba@2247
|
277 |
///
|
deba@2247
|
278 |
/// This class is used to iterate on the edges of the paths
|
deba@2335
|
279 |
///
|
deba@2247
|
280 |
/// Of course it converts to Graph::Edge
|
hegyi@819
|
281 |
class EdgeIt {
|
deba@2335
|
282 |
friend class SimplePath;
|
deba@2335
|
283 |
public:
|
deba@2335
|
284 |
/// Default constructor
|
deba@2335
|
285 |
EdgeIt() {}
|
deba@2335
|
286 |
/// Invalid constructor
|
deba@2335
|
287 |
EdgeIt(Invalid) : path(0), idx(-1) {}
|
deba@2335
|
288 |
/// \brief Initializate the constructor to the first edge of path
|
deba@2335
|
289 |
EdgeIt(const SimplePath &_path)
|
deba@2335
|
290 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
deba@2335
|
291 |
|
deba@2335
|
292 |
private:
|
deba@2335
|
293 |
|
deba@2335
|
294 |
/// Constructor with starting point
|
deba@2335
|
295 |
EdgeIt(const SimplePath &_path, int _idx)
|
deba@2335
|
296 |
: idx(_idx), path(&_path) {}
|
deba@2335
|
297 |
|
deba@2247
|
298 |
public:
|
hegyi@819
|
299 |
|
deba@2335
|
300 |
///Conversion to Graph::Edge
|
deba@2335
|
301 |
operator const Edge&() const {
|
deba@2335
|
302 |
return path->nth(idx);
|
hegyi@819
|
303 |
}
|
hegyi@819
|
304 |
|
deba@2335
|
305 |
/// Next edge
|
deba@2247
|
306 |
EdgeIt& operator++() {
|
deba@2335
|
307 |
++idx;
|
deba@2335
|
308 |
if (idx >= path->length()) idx = -1;
|
deba@2247
|
309 |
return *this;
|
deba@2247
|
310 |
}
|
deba@2247
|
311 |
|
hegyi@819
|
312 |
/// Comparison operator
|
deba@2335
|
313 |
bool operator==(const EdgeIt& e) const { return idx==e.idx; }
|
deba@2335
|
314 |
/// Comparison operator
|
deba@2335
|
315 |
bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
|
deba@2335
|
316 |
/// Comparison operator
|
deba@2335
|
317 |
bool operator<(const EdgeIt& e) const { return idx<e.idx; }
|
deba@2247
|
318 |
|
deba@2335
|
319 |
private:
|
deba@2335
|
320 |
const SimplePath *path;
|
deba@2335
|
321 |
int idx;
|
deba@2335
|
322 |
};
|
deba@2335
|
323 |
|
deba@2335
|
324 |
/// \brief Length of the path.
|
deba@2335
|
325 |
int length() const { return data.size(); }
|
deba@2335
|
326 |
/// \brief Returns whether the path is empty.
|
deba@2335
|
327 |
bool empty() const { return data.empty(); }
|
deba@2335
|
328 |
|
deba@2335
|
329 |
/// \brief Resets the path to an empty path.
|
deba@2335
|
330 |
void clear() { data.clear(); }
|
deba@2335
|
331 |
|
deba@2335
|
332 |
/// \brief Gives back the nth edge.
|
deba@2335
|
333 |
///
|
deba@2335
|
334 |
/// \pre n is in the [0..length() - 1] range
|
deba@2335
|
335 |
const Edge& nth(int n) const {
|
deba@2335
|
336 |
return data[n];
|
deba@2335
|
337 |
}
|
deba@2335
|
338 |
|
deba@2335
|
339 |
/// \brief Initializes edge iterator to point to the nth edge.
|
deba@2335
|
340 |
EdgeIt nthIt(int n) const {
|
deba@2335
|
341 |
return EdgeIt(*this, n);
|
deba@2335
|
342 |
}
|
deba@2335
|
343 |
|
deba@2335
|
344 |
/// \brief Gives back the last edge of the path.
|
deba@2335
|
345 |
const Edge& back() const {
|
deba@2335
|
346 |
return data.back();
|
deba@2335
|
347 |
}
|
deba@2335
|
348 |
|
deba@2335
|
349 |
/// \brief Add a new edge behind the current path.
|
deba@2335
|
350 |
void addBack(const Edge& edge) {
|
deba@2335
|
351 |
data.push_back(edge);
|
deba@2335
|
352 |
}
|
deba@2335
|
353 |
|
deba@2335
|
354 |
/// \brief Erase the last edge of the path
|
deba@2335
|
355 |
void eraseBack() {
|
deba@2335
|
356 |
data.pop_back();
|
deba@2335
|
357 |
}
|
deba@2335
|
358 |
|
deba@2335
|
359 |
typedef True BuildTag;
|
deba@2335
|
360 |
|
deba@2335
|
361 |
template <typename CPath>
|
deba@2335
|
362 |
void build(const CPath& path) {
|
deba@2335
|
363 |
int len = path.length();
|
deba@2335
|
364 |
data.resize(len);
|
deba@2335
|
365 |
int index = 0;
|
deba@2335
|
366 |
for (typename CPath::EdgeIt it(path); it != INVALID; ++it) {
|
deba@2335
|
367 |
data[index] = it;;
|
deba@2335
|
368 |
++index;
|
deba@2335
|
369 |
}
|
deba@2335
|
370 |
}
|
deba@2335
|
371 |
|
deba@2335
|
372 |
template <typename CPath>
|
deba@2335
|
373 |
void buildRev(const CPath& path) {
|
deba@2335
|
374 |
int len = path.length();
|
deba@2335
|
375 |
data.resize(len);
|
deba@2335
|
376 |
int index = len;
|
deba@2357
|
377 |
for (typename CPath::RevEdgeIt it(path); it != INVALID; ++it) {
|
deba@2335
|
378 |
--index;
|
deba@2335
|
379 |
data[index] = it;;
|
deba@2335
|
380 |
}
|
deba@2335
|
381 |
}
|
deba@2335
|
382 |
|
deba@2335
|
383 |
protected:
|
deba@2335
|
384 |
typedef std::vector<Edge> Container;
|
deba@2335
|
385 |
Container data;
|
deba@2335
|
386 |
|
deba@2335
|
387 |
};
|
deba@2335
|
388 |
|
deba@2335
|
389 |
/// \brief A structure for representing directed paths in a graph.
|
deba@2335
|
390 |
///
|
deba@2335
|
391 |
/// A structure for representing directed path in a graph.
|
deba@2335
|
392 |
/// \param Graph The graph type in which the path is.
|
deba@2335
|
393 |
///
|
deba@2335
|
394 |
/// In a sense, the path can be treated as a list of edges. The
|
deba@2335
|
395 |
/// lemon path type stores just this list. As a consequence it
|
deba@2335
|
396 |
/// cannot enumerate the nodes in the path and the zero length paths
|
deba@2335
|
397 |
/// cannot store the source.
|
deba@2335
|
398 |
///
|
deba@2335
|
399 |
/// This implementation is a back and front insertable and erasable
|
deba@2335
|
400 |
/// path type. It can be indexed in O(k) time, where k is the rank
|
deba@2335
|
401 |
/// of the edge in the path. The length can be computed in O(n)
|
deba@2335
|
402 |
/// time. The front and back insertion and erasure is O(1) time
|
deba@2335
|
403 |
/// and it can be splited and spliced in O(1) time.
|
deba@2335
|
404 |
template <typename _Graph>
|
deba@2335
|
405 |
class ListPath {
|
deba@2335
|
406 |
public:
|
deba@2335
|
407 |
|
deba@2335
|
408 |
typedef _Graph Graph;
|
deba@2335
|
409 |
typedef typename Graph::Edge Edge;
|
deba@2335
|
410 |
|
deba@2335
|
411 |
protected:
|
deba@2335
|
412 |
|
deba@2335
|
413 |
// the std::list<> is incompatible
|
deba@2335
|
414 |
// hard to create invalid iterator
|
deba@2335
|
415 |
struct Node {
|
deba@2335
|
416 |
Edge edge;
|
deba@2335
|
417 |
Node *next, *prev;
|
deba@2335
|
418 |
};
|
deba@2335
|
419 |
|
deba@2335
|
420 |
Node *first, *last;
|
deba@2335
|
421 |
|
deba@2335
|
422 |
std::allocator<Node> alloc;
|
deba@2335
|
423 |
|
deba@2335
|
424 |
public:
|
deba@2335
|
425 |
|
deba@2335
|
426 |
/// \brief Default constructor
|
deba@2335
|
427 |
///
|
deba@2335
|
428 |
/// Default constructor
|
deba@2335
|
429 |
ListPath() : first(0), last(0) {}
|
deba@2335
|
430 |
|
deba@2335
|
431 |
/// \brief Template copy constructor
|
deba@2335
|
432 |
///
|
deba@2335
|
433 |
/// This path can be initialized with any other path type. It just
|
deba@2335
|
434 |
/// makes a copy of the given path.
|
deba@2335
|
435 |
template <typename CPath>
|
deba@2335
|
436 |
ListPath(const CPath& cpath) : first(0), last(0) {
|
deba@2335
|
437 |
copyPath(*this, cpath);
|
deba@2335
|
438 |
}
|
deba@2335
|
439 |
|
deba@2335
|
440 |
/// \brief Destructor of the path
|
deba@2335
|
441 |
///
|
deba@2335
|
442 |
/// Destructor of the path
|
deba@2335
|
443 |
~ListPath() {
|
deba@2335
|
444 |
clear();
|
deba@2335
|
445 |
}
|
deba@2335
|
446 |
|
deba@2335
|
447 |
/// \brief Template copy assignment
|
deba@2335
|
448 |
///
|
deba@2335
|
449 |
/// This path can be initialized with any other path type. It just
|
deba@2335
|
450 |
/// makes a copy of the given path.
|
deba@2335
|
451 |
template <typename CPath>
|
deba@2335
|
452 |
ListPath& operator=(const CPath& cpath) {
|
deba@2335
|
453 |
copyPath(*this, cpath);
|
deba@2335
|
454 |
return *this;
|
deba@2335
|
455 |
}
|
deba@2335
|
456 |
|
deba@2335
|
457 |
/// \brief Iterator class to iterate on the edges of the paths
|
deba@2335
|
458 |
///
|
deba@2335
|
459 |
/// This class is used to iterate on the edges of the paths
|
deba@2335
|
460 |
///
|
deba@2335
|
461 |
/// Of course it converts to Graph::Edge
|
deba@2335
|
462 |
class EdgeIt {
|
deba@2335
|
463 |
friend class ListPath;
|
deba@2335
|
464 |
public:
|
deba@2335
|
465 |
/// Default constructor
|
deba@2335
|
466 |
EdgeIt() {}
|
deba@2335
|
467 |
/// Invalid constructor
|
deba@2335
|
468 |
EdgeIt(Invalid) : path(0), node(0) {}
|
deba@2335
|
469 |
/// \brief Initializate the constructor to the first edge of path
|
deba@2335
|
470 |
EdgeIt(const ListPath &_path)
|
deba@2335
|
471 |
: path(&_path), node(_path.first) {}
|
deba@2335
|
472 |
|
deba@2335
|
473 |
protected:
|
deba@2335
|
474 |
|
deba@2335
|
475 |
EdgeIt(const ListPath &_path, Node *_node)
|
deba@2335
|
476 |
: path(&_path), node(_node) {}
|
deba@2335
|
477 |
|
deba@2335
|
478 |
|
deba@2335
|
479 |
public:
|
deba@2335
|
480 |
|
deba@2335
|
481 |
///Conversion to Graph::Edge
|
deba@2335
|
482 |
operator const Edge&() const {
|
deba@2335
|
483 |
return node->edge;
|
deba@2335
|
484 |
}
|
deba@2335
|
485 |
|
deba@2335
|
486 |
/// Next edge
|
deba@2335
|
487 |
EdgeIt& operator++() {
|
deba@2335
|
488 |
node = node->next;
|
deba@2335
|
489 |
return *this;
|
deba@2335
|
490 |
}
|
deba@2335
|
491 |
|
hegyi@819
|
492 |
/// Comparison operator
|
deba@2335
|
493 |
bool operator==(const EdgeIt& e) const { return node==e.node; }
|
deba@2335
|
494 |
/// Comparison operator
|
deba@2335
|
495 |
bool operator!=(const EdgeIt& e) const { return node!=e.node; }
|
deba@2335
|
496 |
/// Comparison operator
|
deba@2335
|
497 |
bool operator<(const EdgeIt& e) const { return node<e.node; }
|
deba@2247
|
498 |
|
deba@2335
|
499 |
private:
|
deba@2335
|
500 |
const ListPath *path;
|
deba@2335
|
501 |
Node *node;
|
deba@2335
|
502 |
};
|
deba@2335
|
503 |
|
deba@2335
|
504 |
/// \brief Gives back the nth edge.
|
deba@2335
|
505 |
///
|
deba@2335
|
506 |
/// Gives back the nth edge in O(n) time.
|
deba@2335
|
507 |
/// \pre n is in the [0..length() - 1] range
|
deba@2335
|
508 |
const Edge& nth(int n) const {
|
deba@2335
|
509 |
Node *node = first;
|
deba@2335
|
510 |
for (int i = 0; i < n; ++i) {
|
deba@2335
|
511 |
node = node->next;
|
deba@2335
|
512 |
}
|
deba@2335
|
513 |
return node->edge;
|
deba@2335
|
514 |
}
|
deba@2335
|
515 |
|
deba@2335
|
516 |
/// \brief Initializes edge iterator to point to the nth edge.
|
deba@2335
|
517 |
EdgeIt nthIt(int n) const {
|
deba@2335
|
518 |
Node *node = first;
|
deba@2335
|
519 |
for (int i = 0; i < n; ++i) {
|
deba@2335
|
520 |
node = node->next;
|
deba@2335
|
521 |
}
|
deba@2335
|
522 |
return EdgeIt(*this, node);
|
deba@2335
|
523 |
}
|
deba@2335
|
524 |
|
deba@2335
|
525 |
/// \brief Length of the path.
|
deba@2335
|
526 |
int length() const {
|
deba@2335
|
527 |
int len = 0;
|
deba@2335
|
528 |
Node *node = first;
|
deba@2335
|
529 |
while (node != 0) {
|
deba@2335
|
530 |
node = node->next;
|
deba@2335
|
531 |
++len;
|
deba@2335
|
532 |
}
|
deba@2335
|
533 |
return len;
|
deba@2335
|
534 |
}
|
deba@2335
|
535 |
|
deba@2335
|
536 |
/// \brief Returns whether the path is empty.
|
deba@2335
|
537 |
bool empty() const { return first == 0; }
|
deba@2335
|
538 |
|
deba@2335
|
539 |
/// \brief Resets the path to an empty path.
|
deba@2335
|
540 |
void clear() {
|
deba@2335
|
541 |
while (first != 0) {
|
deba@2335
|
542 |
last = first->next;
|
deba@2335
|
543 |
alloc.destroy(first);
|
deba@2335
|
544 |
alloc.deallocate(first, 1);
|
deba@2335
|
545 |
first = last;
|
deba@2335
|
546 |
}
|
deba@2335
|
547 |
}
|
deba@2335
|
548 |
|
deba@2335
|
549 |
/// \brief Gives back the first edge of the path
|
deba@2335
|
550 |
const Edge& front() const {
|
deba@2335
|
551 |
return first->edge;
|
deba@2335
|
552 |
}
|
deba@2335
|
553 |
|
deba@2335
|
554 |
/// \brief Add a new edge before the current path
|
deba@2335
|
555 |
void addFront(const Edge& edge) {
|
deba@2335
|
556 |
Node *node = alloc.allocate(1);
|
deba@2335
|
557 |
alloc.construct(node, Node());
|
deba@2335
|
558 |
node->prev = 0;
|
deba@2335
|
559 |
node->next = first;
|
deba@2335
|
560 |
node->edge = edge;
|
deba@2335
|
561 |
if (first) {
|
deba@2335
|
562 |
first->prev = node;
|
deba@2335
|
563 |
first = node;
|
deba@2335
|
564 |
} else {
|
deba@2335
|
565 |
first = last = node;
|
deba@2335
|
566 |
}
|
deba@2335
|
567 |
}
|
deba@2335
|
568 |
|
deba@2335
|
569 |
/// \brief Erase the first edge of the path
|
deba@2335
|
570 |
void eraseFront() {
|
deba@2335
|
571 |
Node *node = first;
|
deba@2335
|
572 |
first = first->next;
|
deba@2335
|
573 |
if (first) {
|
deba@2335
|
574 |
first->prev = 0;
|
deba@2335
|
575 |
} else {
|
deba@2335
|
576 |
last = 0;
|
deba@2335
|
577 |
}
|
deba@2335
|
578 |
alloc.destroy(node);
|
deba@2335
|
579 |
alloc.deallocate(node, 1);
|
deba@2335
|
580 |
}
|
deba@2335
|
581 |
|
deba@2335
|
582 |
/// \brief Gives back the last edge of the path.
|
deba@2335
|
583 |
const Edge& back() const {
|
deba@2335
|
584 |
return last->edge;
|
deba@2335
|
585 |
}
|
deba@2335
|
586 |
|
deba@2335
|
587 |
/// \brief Add a new edge behind the current path.
|
deba@2335
|
588 |
void addBack(const Edge& edge) {
|
deba@2335
|
589 |
Node *node = alloc.allocate(1);
|
deba@2335
|
590 |
alloc.construct(node, Node());
|
deba@2335
|
591 |
node->next = 0;
|
deba@2335
|
592 |
node->prev = last;
|
deba@2335
|
593 |
node->edge = edge;
|
deba@2335
|
594 |
if (last) {
|
deba@2335
|
595 |
last->next = node;
|
deba@2335
|
596 |
last = node;
|
deba@2335
|
597 |
} else {
|
deba@2335
|
598 |
last = first = node;
|
deba@2335
|
599 |
}
|
deba@2335
|
600 |
}
|
deba@2335
|
601 |
|
deba@2335
|
602 |
/// \brief Erase the last edge of the path
|
deba@2335
|
603 |
void eraseBack() {
|
deba@2335
|
604 |
Node *node = last;
|
deba@2335
|
605 |
last = last->prev;
|
deba@2335
|
606 |
if (last) {
|
deba@2335
|
607 |
last->next = 0;
|
deba@2335
|
608 |
} else {
|
deba@2335
|
609 |
first = 0;
|
deba@2335
|
610 |
}
|
deba@2335
|
611 |
alloc.destroy(node);
|
deba@2335
|
612 |
alloc.deallocate(node, 1);
|
deba@2335
|
613 |
}
|
deba@2335
|
614 |
|
deba@2335
|
615 |
/// \brief Splicing the given path to the current path.
|
deba@2335
|
616 |
///
|
deba@2335
|
617 |
/// It splices the \c tpath to the back of the current path and \c
|
deba@2335
|
618 |
/// tpath becomes empty. The time complexity of this function is
|
deba@2335
|
619 |
/// O(1).
|
deba@2335
|
620 |
void spliceBack(ListPath& tpath) {
|
deba@2335
|
621 |
if (first) {
|
deba@2335
|
622 |
if (tpath.first) {
|
deba@2335
|
623 |
last->next = tpath.first;
|
deba@2335
|
624 |
tpath.first->prev = last;
|
deba@2335
|
625 |
last = tpath.last;
|
deba@2335
|
626 |
}
|
deba@2335
|
627 |
} else {
|
deba@2335
|
628 |
first = tpath.first;
|
deba@2335
|
629 |
last = tpath.last;
|
deba@2335
|
630 |
}
|
deba@2335
|
631 |
tpath.first = tpath.last = 0;
|
deba@2335
|
632 |
}
|
deba@2335
|
633 |
|
deba@2335
|
634 |
/// \brief Splicing the given path to the current path.
|
deba@2335
|
635 |
///
|
deba@2335
|
636 |
/// It splices the \c tpath before the current path and \c tpath
|
deba@2335
|
637 |
/// becomes empty. The time complexity of this function
|
deba@2335
|
638 |
/// is O(1).
|
deba@2335
|
639 |
void spliceFront(ListPath& tpath) {
|
deba@2335
|
640 |
if (first) {
|
deba@2335
|
641 |
if (tpath.first) {
|
deba@2335
|
642 |
first->prev = tpath.last;
|
deba@2335
|
643 |
tpath.last->next = first;
|
deba@2335
|
644 |
first = tpath.first;
|
deba@2335
|
645 |
}
|
deba@2335
|
646 |
} else {
|
deba@2335
|
647 |
first = tpath.first;
|
deba@2335
|
648 |
last = tpath.last;
|
deba@2335
|
649 |
}
|
deba@2335
|
650 |
tpath.first = tpath.last = 0;
|
deba@2335
|
651 |
}
|
deba@2335
|
652 |
|
deba@2335
|
653 |
/// \brief Splicing the given path into the current path.
|
deba@2335
|
654 |
///
|
deba@2335
|
655 |
/// It splices the \c tpath into the current path before the
|
deba@2335
|
656 |
/// position of \c it iterator and \c tpath becomes empty. The
|
deba@2335
|
657 |
/// time complexity of this function is O(1). If the \c it is \c
|
deba@2335
|
658 |
/// INVALID then it will splice behind the current path.
|
deba@2335
|
659 |
void splice(EdgeIt it, ListPath& tpath) {
|
deba@2335
|
660 |
if (it.node) {
|
deba@2335
|
661 |
if (tpath.first) {
|
deba@2335
|
662 |
tpath.first->prev = it.node->prev;
|
deba@2335
|
663 |
if (it.node->prev) {
|
deba@2335
|
664 |
it.node->prev->next = tpath.first;
|
deba@2335
|
665 |
} else {
|
deba@2335
|
666 |
first = tpath.first;
|
deba@2335
|
667 |
}
|
deba@2335
|
668 |
it.node->prev = tpath.last;
|
deba@2335
|
669 |
tpath.last->next = it.node;
|
deba@2335
|
670 |
}
|
deba@2335
|
671 |
} else {
|
deba@2335
|
672 |
if (first) {
|
deba@2335
|
673 |
if (tpath.first) {
|
deba@2335
|
674 |
last->next = tpath.first;
|
deba@2335
|
675 |
tpath.first->prev = last;
|
deba@2335
|
676 |
last = tpath.last;
|
deba@2335
|
677 |
}
|
deba@2335
|
678 |
} else {
|
deba@2335
|
679 |
first = tpath.first;
|
deba@2335
|
680 |
last = tpath.last;
|
deba@2335
|
681 |
}
|
deba@2335
|
682 |
}
|
deba@2335
|
683 |
tpath.first = tpath.last = 0;
|
deba@2335
|
684 |
}
|
deba@2335
|
685 |
|
deba@2335
|
686 |
/// \brief Spliting the current path.
|
deba@2335
|
687 |
///
|
deba@2335
|
688 |
/// It splits the current path into two parts. The part before \c
|
deba@2335
|
689 |
/// it iterator will remain in the current path and the part from
|
deba@2335
|
690 |
/// the it will put into the \c tpath. If the \c tpath had edges
|
deba@2335
|
691 |
/// before the operation they will be removed first. The time
|
deba@2335
|
692 |
/// complexity of this function is O(1) plus the clearing of \c
|
deba@2335
|
693 |
/// tpath. If the \c it is \c INVALID then it just clears \c
|
deba@2335
|
694 |
/// tpath.
|
deba@2335
|
695 |
void split(EdgeIt it, ListPath& tpath) {
|
deba@2335
|
696 |
tpath.clear();
|
deba@2335
|
697 |
if (it.node) {
|
deba@2335
|
698 |
tpath.first = it.node;
|
deba@2335
|
699 |
tpath.last = last;
|
deba@2335
|
700 |
if (it.node->prev) {
|
deba@2335
|
701 |
last = it.node->prev;
|
deba@2335
|
702 |
last->next = 0;
|
deba@2335
|
703 |
} else {
|
deba@2335
|
704 |
first = last = 0;
|
deba@2335
|
705 |
}
|
deba@2335
|
706 |
it.node->prev = 0;
|
deba@2335
|
707 |
}
|
deba@2335
|
708 |
}
|
deba@2335
|
709 |
|
deba@2335
|
710 |
|
deba@2335
|
711 |
typedef True BuildTag;
|
deba@2335
|
712 |
|
deba@2335
|
713 |
template <typename CPath>
|
deba@2335
|
714 |
void build(const CPath& path) {
|
deba@2335
|
715 |
for (typename CPath::EdgeIt it(path); it != INVALID; ++it) {
|
deba@2335
|
716 |
addBack(it);
|
deba@2335
|
717 |
}
|
deba@2335
|
718 |
}
|
deba@2335
|
719 |
|
deba@2335
|
720 |
template <typename CPath>
|
deba@2335
|
721 |
void buildRev(const CPath& path) {
|
deba@2357
|
722 |
for (typename CPath::RevEdgeIt it(path); it != INVALID; ++it) {
|
deba@2335
|
723 |
addFront(it);
|
deba@2335
|
724 |
}
|
deba@2335
|
725 |
}
|
deba@2335
|
726 |
|
deba@2335
|
727 |
};
|
deba@2335
|
728 |
|
deba@2335
|
729 |
/// \brief A structure for representing directed paths in a graph.
|
deba@2335
|
730 |
///
|
deba@2335
|
731 |
/// A structure for representing directed path in a graph.
|
deba@2335
|
732 |
/// \param Graph The graph type in which the path is.
|
deba@2335
|
733 |
///
|
deba@2335
|
734 |
/// In a sense, the path can be treated as a list of edges. The
|
deba@2335
|
735 |
/// lemon path type stores just this list. As a consequence it
|
deba@2335
|
736 |
/// cannot enumerate the nodes in the path and the zero length paths
|
deba@2335
|
737 |
/// cannot store the source.
|
deba@2335
|
738 |
///
|
deba@2335
|
739 |
/// This implementation is completly static, so it cannot be
|
deba@2335
|
740 |
/// modified exclude the assign an other path. It is intented to be
|
athos@2336
|
741 |
/// used when you want to store a large number of paths because it is
|
deba@2335
|
742 |
/// the most memory efficient path type in the lemon.
|
deba@2335
|
743 |
template <typename _Graph>
|
deba@2335
|
744 |
class StaticPath {
|
deba@2335
|
745 |
public:
|
deba@2335
|
746 |
|
deba@2335
|
747 |
typedef _Graph Graph;
|
deba@2335
|
748 |
typedef typename Graph::Edge Edge;
|
deba@2335
|
749 |
|
deba@2335
|
750 |
/// \brief Default constructor
|
deba@2335
|
751 |
///
|
deba@2335
|
752 |
/// Default constructor
|
deba@2335
|
753 |
StaticPath() : len(0), edges(0) {}
|
deba@2335
|
754 |
|
deba@2335
|
755 |
/// \brief Template copy constructor
|
deba@2335
|
756 |
///
|
deba@2335
|
757 |
/// This path can be initialized with any other path type. It just
|
deba@2335
|
758 |
/// makes a copy of the given path.
|
deba@2335
|
759 |
template <typename CPath>
|
deba@2335
|
760 |
StaticPath(const CPath& cpath) : edges(0) {
|
deba@2335
|
761 |
copyPath(*this, cpath);
|
deba@2335
|
762 |
}
|
deba@2335
|
763 |
|
deba@2335
|
764 |
/// \brief Destructor of the path
|
deba@2335
|
765 |
///
|
deba@2335
|
766 |
/// Destructor of the path
|
deba@2335
|
767 |
~StaticPath() {
|
deba@2335
|
768 |
if (edges) delete[] edges;
|
deba@2335
|
769 |
}
|
deba@2335
|
770 |
|
deba@2335
|
771 |
/// \brief Template copy assignment
|
deba@2335
|
772 |
///
|
deba@2335
|
773 |
/// This path can be initialized with any other path type. It just
|
deba@2335
|
774 |
/// makes a copy of the given path.
|
deba@2335
|
775 |
template <typename CPath>
|
deba@2335
|
776 |
StaticPath& operator=(const CPath& cpath) {
|
deba@2335
|
777 |
copyPath(*this, cpath);
|
deba@2335
|
778 |
return *this;
|
deba@2335
|
779 |
}
|
deba@2335
|
780 |
|
deba@2335
|
781 |
/// \brief Iterator class to iterate on the edges of the paths
|
deba@2335
|
782 |
///
|
deba@2335
|
783 |
/// This class is used to iterate on the edges of the paths
|
deba@2335
|
784 |
///
|
deba@2335
|
785 |
/// Of course it converts to Graph::Edge
|
deba@2335
|
786 |
class EdgeIt {
|
deba@2335
|
787 |
friend class StaticPath;
|
deba@2335
|
788 |
public:
|
deba@2335
|
789 |
/// Default constructor
|
deba@2335
|
790 |
EdgeIt() {}
|
deba@2335
|
791 |
/// Invalid constructor
|
deba@2335
|
792 |
EdgeIt(Invalid) : path(0), idx(-1) {}
|
deba@2335
|
793 |
/// Initializate the constructor to the first edge of path
|
deba@2335
|
794 |
EdgeIt(const StaticPath &_path)
|
deba@2335
|
795 |
: path(&_path), idx(_path.empty() ? -1 : 0) {}
|
hegyi@819
|
796 |
|
hegyi@819
|
797 |
private:
|
deba@2247
|
798 |
|
deba@2335
|
799 |
/// Constructor with starting point
|
deba@2335
|
800 |
EdgeIt(const StaticPath &_path, int _idx)
|
deba@2335
|
801 |
: idx(_idx), path(&_path) {}
|
deba@2335
|
802 |
|
deba@2335
|
803 |
public:
|
deba@2335
|
804 |
|
deba@2335
|
805 |
///Conversion to Graph::Edge
|
deba@2335
|
806 |
operator const Edge&() const {
|
deba@2335
|
807 |
return path->nth(idx);
|
deba@2335
|
808 |
}
|
deba@2335
|
809 |
|
deba@2335
|
810 |
/// Next edge
|
deba@2335
|
811 |
EdgeIt& operator++() {
|
deba@2335
|
812 |
++idx;
|
deba@2335
|
813 |
if (idx >= path->length()) idx = -1;
|
deba@2335
|
814 |
return *this;
|
deba@2335
|
815 |
}
|
deba@2335
|
816 |
|
deba@2335
|
817 |
/// Comparison operator
|
deba@2335
|
818 |
bool operator==(const EdgeIt& e) const { return idx==e.idx; }
|
deba@2335
|
819 |
/// Comparison operator
|
deba@2335
|
820 |
bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
|
deba@2335
|
821 |
/// Comparison operator
|
deba@2335
|
822 |
bool operator<(const EdgeIt& e) const { return idx<e.idx; }
|
deba@2335
|
823 |
|
deba@2335
|
824 |
private:
|
deba@2335
|
825 |
const StaticPath *path;
|
deba@2335
|
826 |
int idx;
|
hegyi@819
|
827 |
};
|
hegyi@819
|
828 |
|
deba@2335
|
829 |
/// \brief Gives back the nth edge.
|
deba@2335
|
830 |
///
|
deba@2335
|
831 |
/// \pre n is in the [0..length() - 1] range
|
deba@2335
|
832 |
const Edge& nth(int n) const {
|
deba@2335
|
833 |
return edges[n];
|
deba@2335
|
834 |
}
|
hegyi@819
|
835 |
|
deba@2335
|
836 |
/// \brief Initializes edge iterator to point to the nth edge.
|
deba@2335
|
837 |
EdgeIt nthIt(int n) const {
|
deba@2335
|
838 |
return EdgeIt(*this, n);
|
deba@2335
|
839 |
}
|
hegyi@819
|
840 |
|
deba@2335
|
841 |
/// \brief Gives back the length of the path.
|
deba@2335
|
842 |
int length() const { return len; }
|
hegyi@819
|
843 |
|
deba@2335
|
844 |
/// \brief Returns true when the path is empty.
|
deba@2335
|
845 |
int empty() const { return len == 0; }
|
hegyi@819
|
846 |
|
deba@2335
|
847 |
/// \break Erase all edge in the graph.
|
deba@2335
|
848 |
void clear() {
|
deba@2335
|
849 |
len = 0;
|
deba@2335
|
850 |
if (edges) delete[] edges;
|
deba@2335
|
851 |
edges = 0;
|
deba@2335
|
852 |
}
|
hegyi@819
|
853 |
|
deba@2335
|
854 |
/// \brief Gives back the first edge of the path.
|
deba@2335
|
855 |
const Edge& front() const {
|
deba@2335
|
856 |
return edges[0];
|
deba@2335
|
857 |
}
|
hegyi@819
|
858 |
|
deba@2335
|
859 |
/// \brief Gives back the last edge of the path.
|
deba@2335
|
860 |
const Edge& back() const {
|
deba@2335
|
861 |
return edges[len - 1];
|
deba@2335
|
862 |
}
|
deba@2335
|
863 |
|
deba@2335
|
864 |
|
deba@2335
|
865 |
typedef True BuildTag;
|
deba@2335
|
866 |
|
deba@2335
|
867 |
template <typename CPath>
|
deba@2335
|
868 |
void build(const CPath& path) {
|
deba@2335
|
869 |
len = path.length();
|
deba@2335
|
870 |
edges = new Edge[len];
|
deba@2335
|
871 |
int index = 0;
|
deba@2335
|
872 |
for (typename CPath::EdgeIt it(path); it != INVALID; ++it) {
|
deba@2335
|
873 |
edges[index] = it;
|
deba@2335
|
874 |
++index;
|
deba@2247
|
875 |
}
|
deba@2335
|
876 |
}
|
hegyi@819
|
877 |
|
deba@2335
|
878 |
template <typename CPath>
|
deba@2335
|
879 |
void buildRev(const CPath& path) {
|
deba@2335
|
880 |
len = path.length();
|
deba@2335
|
881 |
edges = new Edge[len];
|
deba@2335
|
882 |
int index = len;
|
deba@2357
|
883 |
for (typename CPath::RevEdgeIt it(path); it != INVALID; ++it) {
|
deba@2335
|
884 |
--index;
|
deba@2335
|
885 |
edges[index] = it;
|
deba@2247
|
886 |
}
|
deba@2335
|
887 |
}
|
hegyi@837
|
888 |
|
deba@2335
|
889 |
private:
|
deba@2335
|
890 |
int len;
|
deba@2335
|
891 |
Edge* edges;
|
hegyi@819
|
892 |
};
|
hegyi@819
|
893 |
|
hegyi@819
|
894 |
///@}
|
hegyi@819
|
895 |
|
alpar@921
|
896 |
} // namespace lemon
|
hegyi@819
|
897 |
|
alpar@921
|
898 |
#endif // LEMON_PATH_H
|