alpar@906
|
1 |
/* -*- C++ -*-
|
alpar@906
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@1956
|
5 |
* Copyright (C) 2003-2006
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@906
|
8 |
*
|
alpar@906
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
12 |
*
|
alpar@906
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
15 |
* purpose.
|
alpar@906
|
16 |
*
|
alpar@906
|
17 |
*/
|
alpar@906
|
18 |
|
alpar@921
|
19 |
#ifndef LEMON_MAPS_H
|
alpar@921
|
20 |
#define LEMON_MAPS_H
|
klao@286
|
21 |
|
deba@1778
|
22 |
#include <iterator>
|
deba@2091
|
23 |
#include <functional>
|
deba@1778
|
24 |
|
deba@1993
|
25 |
#include <lemon/bits/utility.h>
|
deba@1993
|
26 |
#include <lemon/bits/traits.h>
|
alpar@1041
|
27 |
|
klao@286
|
28 |
///\file
|
alpar@1041
|
29 |
///\ingroup maps
|
klao@286
|
30 |
///\brief Miscellaneous property maps
|
klao@286
|
31 |
///
|
klao@959
|
32 |
///\todo This file has the same name as the concept file in concept/,
|
klao@286
|
33 |
/// and this is not easily detectable in docs...
|
klao@286
|
34 |
|
klao@286
|
35 |
#include <map>
|
klao@286
|
36 |
|
alpar@921
|
37 |
namespace lemon {
|
klao@286
|
38 |
|
alpar@1041
|
39 |
/// \addtogroup maps
|
alpar@1041
|
40 |
/// @{
|
alpar@1041
|
41 |
|
alpar@720
|
42 |
/// Base class of maps.
|
alpar@720
|
43 |
|
alpar@805
|
44 |
/// Base class of maps.
|
alpar@805
|
45 |
/// It provides the necessary <tt>typedef</tt>s required by the map concept.
|
deba@1705
|
46 |
template<typename K, typename T>
|
deba@1675
|
47 |
class MapBase {
|
alpar@720
|
48 |
public:
|
alpar@911
|
49 |
///\e
|
alpar@987
|
50 |
typedef K Key;
|
alpar@911
|
51 |
///\e
|
alpar@987
|
52 |
typedef T Value;
|
alpar@720
|
53 |
};
|
alpar@720
|
54 |
|
alpar@805
|
55 |
/// Null map. (a.k.a. DoNothingMap)
|
klao@286
|
56 |
|
klao@286
|
57 |
/// If you have to provide a map only for its type definitions,
|
alpar@805
|
58 |
/// or if you have to provide a writable map, but
|
alpar@805
|
59 |
/// data written to it will sent to <tt>/dev/null</tt>...
|
deba@1705
|
60 |
template<typename K, typename T>
|
deba@1705
|
61 |
class NullMap : public MapBase<K, T> {
|
klao@286
|
62 |
public:
|
deba@1705
|
63 |
typedef MapBase<K, T> Parent;
|
deba@1675
|
64 |
typedef typename Parent::Key Key;
|
deba@1675
|
65 |
typedef typename Parent::Value Value;
|
deba@1420
|
66 |
|
alpar@805
|
67 |
/// Gives back a default constructed element.
|
klao@286
|
68 |
T operator[](const K&) const { return T(); }
|
alpar@805
|
69 |
/// Absorbs the value.
|
klao@286
|
70 |
void set(const K&, const T&) {}
|
klao@286
|
71 |
};
|
klao@286
|
72 |
|
deba@1420
|
73 |
template <typename K, typename V>
|
deba@1705
|
74 |
NullMap<K, V> nullMap() {
|
deba@1705
|
75 |
return NullMap<K, V>();
|
deba@1420
|
76 |
}
|
deba@1420
|
77 |
|
klao@286
|
78 |
|
klao@286
|
79 |
/// Constant map.
|
klao@286
|
80 |
|
alpar@805
|
81 |
/// This is a readable map which assigns a specified value to each key.
|
alpar@805
|
82 |
/// In other aspects it is equivalent to the \ref NullMap.
|
alpar@805
|
83 |
/// \todo set could be used to set the value.
|
deba@1705
|
84 |
template<typename K, typename T>
|
deba@1705
|
85 |
class ConstMap : public MapBase<K, T> {
|
deba@1675
|
86 |
private:
|
klao@286
|
87 |
T v;
|
klao@286
|
88 |
public:
|
klao@286
|
89 |
|
deba@1705
|
90 |
typedef MapBase<K, T> Parent;
|
deba@1675
|
91 |
typedef typename Parent::Key Key;
|
deba@1675
|
92 |
typedef typename Parent::Value Value;
|
deba@1420
|
93 |
|
alpar@805
|
94 |
/// Default constructor
|
alpar@805
|
95 |
|
alpar@805
|
96 |
/// The value of the map will be uninitialized.
|
alpar@805
|
97 |
/// (More exactly it will be default constructed.)
|
klao@286
|
98 |
ConstMap() {}
|
alpar@911
|
99 |
///\e
|
alpar@805
|
100 |
|
alpar@805
|
101 |
/// \param _v The initial value of the map.
|
alpar@911
|
102 |
///
|
klao@286
|
103 |
ConstMap(const T &_v) : v(_v) {}
|
klao@286
|
104 |
|
klao@286
|
105 |
T operator[](const K&) const { return v; }
|
klao@286
|
106 |
void set(const K&, const T&) {}
|
klao@286
|
107 |
|
klao@286
|
108 |
template<typename T1>
|
klao@286
|
109 |
struct rebind {
|
deba@1675
|
110 |
typedef ConstMap<K, T1> other;
|
klao@286
|
111 |
};
|
klao@286
|
112 |
|
klao@286
|
113 |
template<typename T1>
|
deba@1675
|
114 |
ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
|
klao@286
|
115 |
};
|
klao@286
|
116 |
|
alpar@1076
|
117 |
///Returns a \ref ConstMap class
|
alpar@1076
|
118 |
|
alpar@1076
|
119 |
///This function just returns a \ref ConstMap class.
|
alpar@1076
|
120 |
///\relates ConstMap
|
deba@1675
|
121 |
template<typename K, typename V>
|
deba@1705
|
122 |
inline ConstMap<K, V> constMap(const V &v) {
|
deba@1705
|
123 |
return ConstMap<K, V>(v);
|
alpar@1076
|
124 |
}
|
alpar@1076
|
125 |
|
alpar@1076
|
126 |
|
alpar@1660
|
127 |
//\todo to document later
|
marci@890
|
128 |
template<typename T, T v>
|
marci@890
|
129 |
struct Const { };
|
deba@1675
|
130 |
|
alpar@1660
|
131 |
//\todo to document later
|
deba@1705
|
132 |
template<typename K, typename V, V v>
|
deba@1705
|
133 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
marci@890
|
134 |
public:
|
deba@1705
|
135 |
typedef MapBase<K, V> Parent;
|
deba@1675
|
136 |
typedef typename Parent::Key Key;
|
deba@1675
|
137 |
typedef typename Parent::Value Value;
|
deba@1675
|
138 |
|
marci@890
|
139 |
ConstMap() { }
|
marci@890
|
140 |
V operator[](const K&) const { return v; }
|
marci@890
|
141 |
void set(const K&, const V&) { }
|
marci@890
|
142 |
};
|
klao@286
|
143 |
|
deba@1675
|
144 |
///Returns a \ref ConstMap class
|
deba@1675
|
145 |
|
deba@1675
|
146 |
///This function just returns a \ref ConstMap class.
|
deba@1675
|
147 |
///\relates ConstMap
|
deba@1675
|
148 |
template<typename K, typename V, V v>
|
deba@1705
|
149 |
inline ConstMap<K, Const<V, v> > constMap() {
|
deba@1705
|
150 |
return ConstMap<K, Const<V, v> >();
|
deba@1675
|
151 |
}
|
deba@1675
|
152 |
|
klao@286
|
153 |
/// \c std::map wrapper
|
klao@286
|
154 |
|
klao@286
|
155 |
/// This is essentially a wrapper for \c std::map. With addition that
|
alpar@987
|
156 |
/// you can specify a default value different from \c Value() .
|
klao@286
|
157 |
///
|
klao@286
|
158 |
/// \todo Provide allocator parameter...
|
alpar@987
|
159 |
template <typename K, typename T, typename Compare = std::less<K> >
|
deba@1675
|
160 |
class StdMap : public std::map<K, T, Compare> {
|
deba@1675
|
161 |
typedef std::map<K, T, Compare> parent;
|
klao@286
|
162 |
T v;
|
klao@286
|
163 |
typedef typename parent::value_type PairType;
|
klao@286
|
164 |
|
klao@286
|
165 |
public:
|
alpar@1456
|
166 |
///\e
|
alpar@987
|
167 |
typedef K Key;
|
alpar@1456
|
168 |
///\e
|
alpar@987
|
169 |
typedef T Value;
|
alpar@1456
|
170 |
///\e
|
alpar@987
|
171 |
typedef T& Reference;
|
alpar@1456
|
172 |
///\e
|
alpar@987
|
173 |
typedef const T& ConstReference;
|
klao@286
|
174 |
|
klao@286
|
175 |
|
klao@345
|
176 |
StdMap() : v() {}
|
klao@286
|
177 |
/// Constructor with specified default value
|
klao@286
|
178 |
StdMap(const T& _v) : v(_v) {}
|
klao@286
|
179 |
|
klao@286
|
180 |
/// \brief Constructs the map from an appropriate std::map.
|
klao@286
|
181 |
///
|
klao@286
|
182 |
/// \warning Inefficient: copies the content of \c m !
|
klao@286
|
183 |
StdMap(const parent &m) : parent(m) {}
|
klao@286
|
184 |
/// \brief Constructs the map from an appropriate std::map, and explicitly
|
klao@286
|
185 |
/// specifies a default value.
|
klao@286
|
186 |
///
|
klao@286
|
187 |
/// \warning Inefficient: copies the content of \c m !
|
klao@286
|
188 |
StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
|
klao@286
|
189 |
|
klao@286
|
190 |
template<typename T1, typename Comp1>
|
deba@1675
|
191 |
StdMap(const StdMap<Key, T1,Comp1> &m, const T &_v) {
|
marci@389
|
192 |
//FIXME;
|
marci@389
|
193 |
}
|
klao@286
|
194 |
|
alpar@987
|
195 |
Reference operator[](const Key &k) {
|
klao@346
|
196 |
return insert(PairType(k,v)).first -> second;
|
klao@286
|
197 |
}
|
deba@1675
|
198 |
|
alpar@987
|
199 |
ConstReference operator[](const Key &k) const {
|
marci@389
|
200 |
typename parent::iterator i = lower_bound(k);
|
beckerjc@391
|
201 |
if (i == parent::end() || parent::key_comp()(k, (*i).first))
|
klao@286
|
202 |
return v;
|
klao@286
|
203 |
return (*i).second;
|
klao@286
|
204 |
}
|
klao@345
|
205 |
void set(const Key &k, const T &t) {
|
klao@346
|
206 |
parent::operator[](k) = t;
|
klao@345
|
207 |
}
|
klao@286
|
208 |
|
klao@286
|
209 |
/// Changes the default value of the map.
|
klao@286
|
210 |
/// \return Returns the previous default value.
|
klao@286
|
211 |
///
|
alpar@805
|
212 |
/// \warning The value of some keys (which has already been queried, but
|
klao@286
|
213 |
/// the value has been unchanged from the default) may change!
|
klao@286
|
214 |
T setDefault(const T &_v) { T old=v; v=_v; return old; }
|
klao@286
|
215 |
|
klao@286
|
216 |
template<typename T1>
|
klao@286
|
217 |
struct rebind {
|
deba@1675
|
218 |
typedef StdMap<Key, T1,Compare> other;
|
klao@286
|
219 |
};
|
klao@286
|
220 |
};
|
alpar@1041
|
221 |
|
alpar@1402
|
222 |
/// @}
|
alpar@1402
|
223 |
|
alpar@1402
|
224 |
/// \addtogroup map_adaptors
|
alpar@1402
|
225 |
/// @{
|
alpar@1402
|
226 |
|
deba@1531
|
227 |
/// \brief Identity mapping.
|
deba@1531
|
228 |
///
|
deba@1531
|
229 |
/// This mapping gives back the given key as value without any
|
deba@1531
|
230 |
/// modification.
|
deba@1705
|
231 |
template <typename T>
|
deba@1705
|
232 |
class IdentityMap : public MapBase<T, T> {
|
deba@1531
|
233 |
public:
|
deba@1705
|
234 |
typedef MapBase<T, T> Parent;
|
deba@1675
|
235 |
typedef typename Parent::Key Key;
|
deba@1675
|
236 |
typedef typename Parent::Value Value;
|
deba@1531
|
237 |
|
deba@1675
|
238 |
const T& operator[](const T& t) const {
|
deba@1531
|
239 |
return t;
|
deba@1531
|
240 |
}
|
deba@1531
|
241 |
};
|
alpar@1402
|
242 |
|
deba@1675
|
243 |
///Returns an \ref IdentityMap class
|
deba@1675
|
244 |
|
deba@1675
|
245 |
///This function just returns an \ref IdentityMap class.
|
deba@1675
|
246 |
///\relates IdentityMap
|
deba@1675
|
247 |
template<typename T>
|
deba@1705
|
248 |
inline IdentityMap<T> identityMap() {
|
deba@1705
|
249 |
return IdentityMap<T>();
|
deba@1675
|
250 |
}
|
deba@1675
|
251 |
|
deba@1675
|
252 |
|
alpar@1547
|
253 |
///Convert the \c Value of a map to another type.
|
alpar@1178
|
254 |
|
alpar@1178
|
255 |
///This \ref concept::ReadMap "read only map"
|
alpar@1178
|
256 |
///converts the \c Value of a maps to type \c T.
|
alpar@1547
|
257 |
///Its \c Key is inherited from \c M.
|
deba@1705
|
258 |
template <typename M, typename T>
|
deba@1705
|
259 |
class ConvertMap : public MapBase<typename M::Key, T> {
|
deba@1705
|
260 |
const M& m;
|
alpar@1178
|
261 |
public:
|
deba@1705
|
262 |
typedef MapBase<typename M::Key, T> Parent;
|
deba@1675
|
263 |
typedef typename Parent::Key Key;
|
deba@1675
|
264 |
typedef typename Parent::Value Value;
|
alpar@1178
|
265 |
|
alpar@1178
|
266 |
///Constructor
|
alpar@1178
|
267 |
|
alpar@1178
|
268 |
///Constructor
|
alpar@1536
|
269 |
///\param _m is the underlying map
|
alpar@1178
|
270 |
ConvertMap(const M &_m) : m(_m) {};
|
deba@1346
|
271 |
|
deba@1346
|
272 |
/// \brief The subscript operator.
|
deba@1346
|
273 |
///
|
deba@1346
|
274 |
/// The subscript operator.
|
alpar@1536
|
275 |
/// \param k The key
|
deba@1346
|
276 |
/// \return The target of the edge
|
deba@1675
|
277 |
Value operator[](const Key& k) const {return m[k];}
|
alpar@1178
|
278 |
};
|
alpar@1178
|
279 |
|
alpar@1178
|
280 |
///Returns an \ref ConvertMap class
|
alpar@1178
|
281 |
|
alpar@1178
|
282 |
///This function just returns an \ref ConvertMap class.
|
alpar@1178
|
283 |
///\relates ConvertMap
|
alpar@1178
|
284 |
///\todo The order of the template parameters are changed.
|
deba@1675
|
285 |
template<typename T, typename M>
|
deba@1705
|
286 |
inline ConvertMap<M, T> convertMap(const M &m) {
|
deba@1705
|
287 |
return ConvertMap<M, T>(m);
|
alpar@1178
|
288 |
}
|
alpar@1041
|
289 |
|
deba@2248
|
290 |
///Simple wrapping of the map
|
deba@2248
|
291 |
|
deba@2248
|
292 |
///This \ref concept::ReadMap "read only map" returns the simple
|
deba@2248
|
293 |
///wrapping of the given map. Sometimes the reference maps cannot be
|
deba@2248
|
294 |
///combined with simple read maps. This map adaptor wraps the given
|
deba@2248
|
295 |
///map to simple read map.
|
deba@2248
|
296 |
template<typename M>
|
deba@2248
|
297 |
class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@2248
|
298 |
const M& m;
|
deba@2248
|
299 |
|
deba@2248
|
300 |
public:
|
deba@2248
|
301 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@2248
|
302 |
typedef typename Parent::Key Key;
|
deba@2248
|
303 |
typedef typename Parent::Value Value;
|
deba@2248
|
304 |
|
deba@2248
|
305 |
///Constructor
|
deba@2248
|
306 |
SimpleMap(const M &_m) : m(_m) {};
|
deba@2248
|
307 |
Value operator[](Key k) const {return m[k];}
|
deba@2248
|
308 |
};
|
deba@2248
|
309 |
|
deba@2248
|
310 |
///Simple writeable wrapping of the map
|
deba@2248
|
311 |
|
deba@2248
|
312 |
///This \ref concept::ReadMap "read only map" returns the simple
|
deba@2248
|
313 |
///wrapping of the given map. Sometimes the reference maps cannot be
|
deba@2248
|
314 |
///combined with simple read-write maps. This map adaptor wraps the
|
deba@2248
|
315 |
///given map to simple read-write map.
|
deba@2248
|
316 |
template<typename M>
|
deba@2248
|
317 |
class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@2248
|
318 |
M& m;
|
deba@2248
|
319 |
|
deba@2248
|
320 |
public:
|
deba@2248
|
321 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@2248
|
322 |
typedef typename Parent::Key Key;
|
deba@2248
|
323 |
typedef typename Parent::Value Value;
|
deba@2248
|
324 |
|
deba@2248
|
325 |
///Constructor
|
deba@2248
|
326 |
SimpleWriteMap(M &_m) : m(_m) {};
|
deba@2248
|
327 |
Value operator[](Key k) const {return m[k];}
|
deba@2248
|
328 |
void set(Key k, const Value& c) { m.set(k, c); }
|
deba@2248
|
329 |
};
|
deba@2248
|
330 |
|
alpar@1041
|
331 |
///Sum of two maps
|
alpar@1041
|
332 |
|
alpar@1041
|
333 |
///This \ref concept::ReadMap "read only map" returns the sum of the two
|
alpar@1041
|
334 |
///given maps. Its \c Key and \c Value will be inherited from \c M1.
|
alpar@1041
|
335 |
///The \c Key and \c Value of M2 must be convertible to those of \c M1.
|
alpar@1041
|
336 |
|
deba@1705
|
337 |
template<typename M1, typename M2>
|
deba@1705
|
338 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
deba@1705
|
339 |
const M1& m1;
|
deba@1705
|
340 |
const M2& m2;
|
deba@1420
|
341 |
|
alpar@1041
|
342 |
public:
|
deba@1705
|
343 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
deba@1675
|
344 |
typedef typename Parent::Key Key;
|
deba@1675
|
345 |
typedef typename Parent::Value Value;
|
alpar@1041
|
346 |
|
alpar@1041
|
347 |
///Constructor
|
alpar@1041
|
348 |
AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
349 |
Value operator[](Key k) const {return m1[k]+m2[k];}
|
alpar@1041
|
350 |
};
|
alpar@1041
|
351 |
|
alpar@1041
|
352 |
///Returns an \ref AddMap class
|
alpar@1041
|
353 |
|
alpar@1041
|
354 |
///This function just returns an \ref AddMap class.
|
alpar@1041
|
355 |
///\todo How to call these type of functions?
|
alpar@1041
|
356 |
///
|
alpar@1041
|
357 |
///\relates AddMap
|
alpar@1041
|
358 |
///\todo Wrong scope in Doxygen when \c \\relates is used
|
deba@1675
|
359 |
template<typename M1, typename M2>
|
deba@1705
|
360 |
inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
|
deba@1705
|
361 |
return AddMap<M1, M2>(m1,m2);
|
alpar@1041
|
362 |
}
|
alpar@1041
|
363 |
|
alpar@1547
|
364 |
///Shift a map with a constant.
|
alpar@1070
|
365 |
|
alpar@1070
|
366 |
///This \ref concept::ReadMap "read only map" returns the sum of the
|
alpar@1070
|
367 |
///given map and a constant value.
|
alpar@1070
|
368 |
///Its \c Key and \c Value is inherited from \c M.
|
alpar@1070
|
369 |
///
|
alpar@1070
|
370 |
///Actually,
|
alpar@1070
|
371 |
///\code
|
alpar@1070
|
372 |
/// ShiftMap<X> sh(x,v);
|
alpar@1070
|
373 |
///\endcode
|
alpar@1547
|
374 |
///is equivalent with
|
alpar@1070
|
375 |
///\code
|
alpar@1070
|
376 |
/// ConstMap<X::Key, X::Value> c_tmp(v);
|
alpar@1070
|
377 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
|
alpar@1070
|
378 |
///\endcode
|
deba@1705
|
379 |
template<typename M, typename C = typename M::Value>
|
deba@1705
|
380 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@1705
|
381 |
const M& m;
|
deba@1691
|
382 |
C v;
|
alpar@1070
|
383 |
public:
|
deba@1705
|
384 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@1675
|
385 |
typedef typename Parent::Key Key;
|
deba@1675
|
386 |
typedef typename Parent::Value Value;
|
alpar@1070
|
387 |
|
alpar@1070
|
388 |
///Constructor
|
alpar@1070
|
389 |
|
alpar@1070
|
390 |
///Constructor
|
alpar@1070
|
391 |
///\param _m is the undelying map
|
alpar@1070
|
392 |
///\param _v is the shift value
|
deba@1691
|
393 |
ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
|
deba@1691
|
394 |
Value operator[](Key k) const {return m[k] + v;}
|
alpar@1070
|
395 |
};
|
deba@2032
|
396 |
|
deba@2032
|
397 |
///Shift a map with a constant.
|
deba@2032
|
398 |
|
deba@2032
|
399 |
///This \ref concept::ReadWriteMap "read-write map" returns the sum of the
|
deba@2032
|
400 |
///given map and a constant value. It makes also possible to write the map.
|
deba@2032
|
401 |
///Its \c Key and \c Value is inherited from \c M.
|
deba@2032
|
402 |
///
|
deba@2032
|
403 |
///Actually,
|
deba@2032
|
404 |
///\code
|
deba@2032
|
405 |
/// ShiftMap<X> sh(x,v);
|
deba@2032
|
406 |
///\endcode
|
deba@2032
|
407 |
///is equivalent with
|
deba@2032
|
408 |
///\code
|
deba@2032
|
409 |
/// ConstMap<X::Key, X::Value> c_tmp(v);
|
deba@2032
|
410 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
|
deba@2032
|
411 |
///\endcode
|
deba@2032
|
412 |
template<typename M, typename C = typename M::Value>
|
deba@2032
|
413 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@2032
|
414 |
M& m;
|
deba@2032
|
415 |
C v;
|
deba@2032
|
416 |
public:
|
deba@2032
|
417 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@2032
|
418 |
typedef typename Parent::Key Key;
|
deba@2032
|
419 |
typedef typename Parent::Value Value;
|
deba@2032
|
420 |
|
deba@2032
|
421 |
///Constructor
|
deba@2032
|
422 |
|
deba@2032
|
423 |
///Constructor
|
deba@2032
|
424 |
///\param _m is the undelying map
|
deba@2032
|
425 |
///\param _v is the shift value
|
deba@2080
|
426 |
ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
|
deba@2032
|
427 |
Value operator[](Key k) const {return m[k] + v;}
|
deba@2032
|
428 |
void set(Key k, const Value& c) { m.set(k, c - v); }
|
deba@2032
|
429 |
};
|
alpar@1070
|
430 |
|
alpar@1070
|
431 |
///Returns an \ref ShiftMap class
|
alpar@1070
|
432 |
|
alpar@1070
|
433 |
///This function just returns an \ref ShiftMap class.
|
alpar@1070
|
434 |
///\relates ShiftMap
|
alpar@1070
|
435 |
///\todo A better name is required.
|
deba@1691
|
436 |
template<typename M, typename C>
|
deba@1705
|
437 |
inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
|
deba@1705
|
438 |
return ShiftMap<M, C>(m,v);
|
alpar@1070
|
439 |
}
|
alpar@1070
|
440 |
|
deba@2032
|
441 |
template<typename M, typename C>
|
deba@2032
|
442 |
inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
|
deba@2032
|
443 |
return ShiftWriteMap<M, C>(m,v);
|
deba@2032
|
444 |
}
|
deba@2032
|
445 |
|
alpar@1041
|
446 |
///Difference of two maps
|
alpar@1041
|
447 |
|
alpar@1041
|
448 |
///This \ref concept::ReadMap "read only map" returns the difference
|
alpar@1547
|
449 |
///of the values of the two
|
alpar@1041
|
450 |
///given maps. Its \c Key and \c Value will be inherited from \c M1.
|
alpar@1041
|
451 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@1041
|
452 |
|
deba@1705
|
453 |
template<typename M1, typename M2>
|
deba@1705
|
454 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
deba@1705
|
455 |
const M1& m1;
|
deba@1705
|
456 |
const M2& m2;
|
alpar@1041
|
457 |
public:
|
deba@1705
|
458 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
deba@1675
|
459 |
typedef typename Parent::Key Key;
|
deba@1675
|
460 |
typedef typename Parent::Value Value;
|
alpar@1041
|
461 |
|
alpar@1041
|
462 |
///Constructor
|
alpar@1041
|
463 |
SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
464 |
Value operator[](Key k) const {return m1[k]-m2[k];}
|
alpar@1041
|
465 |
};
|
alpar@1041
|
466 |
|
alpar@1041
|
467 |
///Returns a \ref SubMap class
|
alpar@1041
|
468 |
|
alpar@1041
|
469 |
///This function just returns a \ref SubMap class.
|
alpar@1041
|
470 |
///
|
alpar@1041
|
471 |
///\relates SubMap
|
deba@1675
|
472 |
template<typename M1, typename M2>
|
deba@1705
|
473 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
deba@1705
|
474 |
return SubMap<M1, M2>(m1, m2);
|
alpar@1041
|
475 |
}
|
alpar@1041
|
476 |
|
alpar@1041
|
477 |
///Product of two maps
|
alpar@1041
|
478 |
|
alpar@1041
|
479 |
///This \ref concept::ReadMap "read only map" returns the product of the
|
alpar@1547
|
480 |
///values of the two
|
alpar@1041
|
481 |
///given
|
alpar@1041
|
482 |
///maps. Its \c Key and \c Value will be inherited from \c M1.
|
alpar@1041
|
483 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@1041
|
484 |
|
deba@1705
|
485 |
template<typename M1, typename M2>
|
deba@1705
|
486 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
deba@1705
|
487 |
const M1& m1;
|
deba@1705
|
488 |
const M2& m2;
|
alpar@1041
|
489 |
public:
|
deba@1705
|
490 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
deba@1675
|
491 |
typedef typename Parent::Key Key;
|
deba@1675
|
492 |
typedef typename Parent::Value Value;
|
alpar@1041
|
493 |
|
alpar@1041
|
494 |
///Constructor
|
alpar@1041
|
495 |
MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
496 |
Value operator[](Key k) const {return m1[k]*m2[k];}
|
alpar@1041
|
497 |
};
|
alpar@1041
|
498 |
|
alpar@1041
|
499 |
///Returns a \ref MulMap class
|
alpar@1041
|
500 |
|
alpar@1041
|
501 |
///This function just returns a \ref MulMap class.
|
alpar@1041
|
502 |
///\relates MulMap
|
deba@1675
|
503 |
template<typename M1, typename M2>
|
deba@1705
|
504 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
deba@1705
|
505 |
return MulMap<M1, M2>(m1,m2);
|
alpar@1041
|
506 |
}
|
alpar@1041
|
507 |
|
alpar@1547
|
508 |
///Scales a maps with a constant.
|
alpar@1070
|
509 |
|
alpar@1070
|
510 |
///This \ref concept::ReadMap "read only map" returns the value of the
|
deba@1691
|
511 |
///given map multiplied from the left side with a constant value.
|
alpar@1070
|
512 |
///Its \c Key and \c Value is inherited from \c M.
|
alpar@1070
|
513 |
///
|
alpar@1070
|
514 |
///Actually,
|
alpar@1070
|
515 |
///\code
|
alpar@1070
|
516 |
/// ScaleMap<X> sc(x,v);
|
alpar@1070
|
517 |
///\endcode
|
alpar@1547
|
518 |
///is equivalent with
|
alpar@1070
|
519 |
///\code
|
alpar@1070
|
520 |
/// ConstMap<X::Key, X::Value> c_tmp(v);
|
alpar@1070
|
521 |
/// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
|
alpar@1070
|
522 |
///\endcode
|
deba@1705
|
523 |
template<typename M, typename C = typename M::Value>
|
deba@1705
|
524 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@1705
|
525 |
const M& m;
|
deba@1691
|
526 |
C v;
|
alpar@1070
|
527 |
public:
|
deba@1705
|
528 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@1675
|
529 |
typedef typename Parent::Key Key;
|
deba@1675
|
530 |
typedef typename Parent::Value Value;
|
alpar@1070
|
531 |
|
alpar@1070
|
532 |
///Constructor
|
alpar@1070
|
533 |
|
alpar@1070
|
534 |
///Constructor
|
alpar@1070
|
535 |
///\param _m is the undelying map
|
alpar@1070
|
536 |
///\param _v is the scaling value
|
deba@1691
|
537 |
ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
|
deba@1691
|
538 |
Value operator[](Key k) const {return v * m[k];}
|
alpar@1070
|
539 |
};
|
deba@2032
|
540 |
|
deba@2032
|
541 |
///Scales a maps with a constant.
|
deba@2032
|
542 |
|
deba@2032
|
543 |
///This \ref concept::ReadWriteMap "read-write map" returns the value of the
|
deba@2032
|
544 |
///given map multiplied from the left side with a constant value. It can
|
deba@2032
|
545 |
///be used as write map also if the given multiplier is not zero.
|
deba@2032
|
546 |
///Its \c Key and \c Value is inherited from \c M.
|
deba@2032
|
547 |
template<typename M, typename C = typename M::Value>
|
deba@2032
|
548 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@2032
|
549 |
M& m;
|
deba@2032
|
550 |
C v;
|
deba@2032
|
551 |
public:
|
deba@2032
|
552 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@2032
|
553 |
typedef typename Parent::Key Key;
|
deba@2032
|
554 |
typedef typename Parent::Value Value;
|
deba@2032
|
555 |
|
deba@2032
|
556 |
///Constructor
|
deba@2032
|
557 |
|
deba@2032
|
558 |
///Constructor
|
deba@2032
|
559 |
///\param _m is the undelying map
|
deba@2032
|
560 |
///\param _v is the scaling value
|
deba@2032
|
561 |
ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
|
deba@2032
|
562 |
Value operator[](Key k) const {return v * m[k];}
|
deba@2032
|
563 |
void set(Key k, const Value& c) { m.set(k, c / v);}
|
deba@2032
|
564 |
};
|
alpar@1070
|
565 |
|
alpar@1070
|
566 |
///Returns an \ref ScaleMap class
|
alpar@1070
|
567 |
|
alpar@1070
|
568 |
///This function just returns an \ref ScaleMap class.
|
alpar@1070
|
569 |
///\relates ScaleMap
|
alpar@1070
|
570 |
///\todo A better name is required.
|
deba@1691
|
571 |
template<typename M, typename C>
|
deba@1705
|
572 |
inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
|
deba@1705
|
573 |
return ScaleMap<M, C>(m,v);
|
alpar@1070
|
574 |
}
|
alpar@1070
|
575 |
|
deba@2032
|
576 |
template<typename M, typename C>
|
deba@2032
|
577 |
inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
|
deba@2032
|
578 |
return ScaleWriteMap<M, C>(m,v);
|
deba@2032
|
579 |
}
|
deba@2032
|
580 |
|
alpar@1041
|
581 |
///Quotient of two maps
|
alpar@1041
|
582 |
|
alpar@1041
|
583 |
///This \ref concept::ReadMap "read only map" returns the quotient of the
|
alpar@1547
|
584 |
///values of the two
|
alpar@1041
|
585 |
///given maps. Its \c Key and \c Value will be inherited from \c M1.
|
alpar@1041
|
586 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@1041
|
587 |
|
deba@1705
|
588 |
template<typename M1, typename M2>
|
deba@1705
|
589 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
deba@1705
|
590 |
const M1& m1;
|
deba@1705
|
591 |
const M2& m2;
|
alpar@1041
|
592 |
public:
|
deba@1705
|
593 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
deba@1675
|
594 |
typedef typename Parent::Key Key;
|
deba@1675
|
595 |
typedef typename Parent::Value Value;
|
alpar@1041
|
596 |
|
alpar@1041
|
597 |
///Constructor
|
alpar@1041
|
598 |
DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1044
|
599 |
Value operator[](Key k) const {return m1[k]/m2[k];}
|
alpar@1041
|
600 |
};
|
alpar@1041
|
601 |
|
alpar@1041
|
602 |
///Returns a \ref DivMap class
|
alpar@1041
|
603 |
|
alpar@1041
|
604 |
///This function just returns a \ref DivMap class.
|
alpar@1041
|
605 |
///\relates DivMap
|
deba@1675
|
606 |
template<typename M1, typename M2>
|
deba@1705
|
607 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
deba@1705
|
608 |
return DivMap<M1, M2>(m1,m2);
|
alpar@1041
|
609 |
}
|
alpar@1041
|
610 |
|
alpar@1041
|
611 |
///Composition of two maps
|
alpar@1041
|
612 |
|
alpar@1041
|
613 |
///This \ref concept::ReadMap "read only map" returns the composition of
|
alpar@1041
|
614 |
///two
|
alpar@1041
|
615 |
///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
|
alpar@1041
|
616 |
///of \c M2,
|
alpar@1041
|
617 |
///then for
|
alpar@1041
|
618 |
///\code
|
deba@1675
|
619 |
/// ComposeMap<M1, M2> cm(m1,m2);
|
alpar@1041
|
620 |
///\endcode
|
alpar@1044
|
621 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
|
alpar@1041
|
622 |
///
|
alpar@1041
|
623 |
///Its \c Key is inherited from \c M2 and its \c Value is from
|
alpar@1041
|
624 |
///\c M1.
|
alpar@1041
|
625 |
///The \c M2::Value must be convertible to \c M1::Key.
|
alpar@1041
|
626 |
///\todo Check the requirements.
|
alpar@1041
|
627 |
|
deba@1705
|
628 |
template <typename M1, typename M2>
|
deba@1705
|
629 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
deba@1705
|
630 |
const M1& m1;
|
deba@1705
|
631 |
const M2& m2;
|
alpar@1041
|
632 |
public:
|
deba@1705
|
633 |
typedef MapBase<typename M2::Key, typename M1::Value> Parent;
|
deba@1675
|
634 |
typedef typename Parent::Key Key;
|
deba@1675
|
635 |
typedef typename Parent::Value Value;
|
alpar@1041
|
636 |
|
alpar@1041
|
637 |
///Constructor
|
alpar@1041
|
638 |
ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
deba@1725
|
639 |
|
deba@1725
|
640 |
typename MapTraits<M1>::ConstReturnValue
|
deba@1725
|
641 |
operator[](Key k) const {return m1[m2[k]];}
|
alpar@1041
|
642 |
};
|
alpar@1041
|
643 |
///Returns a \ref ComposeMap class
|
alpar@1041
|
644 |
|
alpar@1041
|
645 |
///This function just returns a \ref ComposeMap class.
|
alpar@1219
|
646 |
///
|
alpar@1041
|
647 |
///\relates ComposeMap
|
deba@1675
|
648 |
template <typename M1, typename M2>
|
deba@1705
|
649 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
|
deba@1705
|
650 |
return ComposeMap<M1, M2>(m1,m2);
|
alpar@1041
|
651 |
}
|
alpar@1219
|
652 |
|
alpar@1547
|
653 |
///Combines of two maps using an STL (binary) functor.
|
alpar@1219
|
654 |
|
alpar@1547
|
655 |
///Combines of two maps using an STL (binary) functor.
|
alpar@1219
|
656 |
///
|
alpar@1219
|
657 |
///
|
alpar@1547
|
658 |
///This \ref concept::ReadMap "read only map" takes two maps and a
|
alpar@1219
|
659 |
///binary functor and returns the composition of
|
alpar@1547
|
660 |
///the two
|
alpar@1219
|
661 |
///given maps unsing the functor.
|
alpar@1219
|
662 |
///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
|
alpar@1219
|
663 |
///and \c f is of \c F,
|
alpar@1219
|
664 |
///then for
|
alpar@1219
|
665 |
///\code
|
deba@1675
|
666 |
/// CombineMap<M1, M2,F,V> cm(m1,m2,f);
|
alpar@1219
|
667 |
///\endcode
|
alpar@1219
|
668 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
|
alpar@1219
|
669 |
///
|
alpar@1219
|
670 |
///Its \c Key is inherited from \c M1 and its \c Value is \c V.
|
alpar@1219
|
671 |
///The \c M2::Value and \c M1::Value must be convertible to the corresponding
|
alpar@1219
|
672 |
///input parameter of \c F and the return type of \c F must be convertible
|
alpar@1219
|
673 |
///to \c V.
|
alpar@1219
|
674 |
///\todo Check the requirements.
|
alpar@1219
|
675 |
|
deba@1675
|
676 |
template<typename M1, typename M2, typename F,
|
deba@1675
|
677 |
typename V = typename F::result_type,
|
deba@1675
|
678 |
typename NC = False>
|
deba@1705
|
679 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
deba@1705
|
680 |
const M1& m1;
|
deba@1705
|
681 |
const M2& m2;
|
deba@1420
|
682 |
F f;
|
alpar@1219
|
683 |
public:
|
deba@1705
|
684 |
typedef MapBase<typename M1::Key, V> Parent;
|
deba@1675
|
685 |
typedef typename Parent::Key Key;
|
deba@1675
|
686 |
typedef typename Parent::Value Value;
|
alpar@1219
|
687 |
|
alpar@1219
|
688 |
///Constructor
|
alpar@1219
|
689 |
CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
|
alpar@1219
|
690 |
: m1(_m1), m2(_m2), f(_f) {};
|
alpar@1219
|
691 |
Value operator[](Key k) const {return f(m1[k],m2[k]);}
|
alpar@1219
|
692 |
};
|
alpar@1219
|
693 |
|
alpar@1219
|
694 |
///Returns a \ref CombineMap class
|
alpar@1219
|
695 |
|
alpar@1219
|
696 |
///This function just returns a \ref CombineMap class.
|
alpar@1219
|
697 |
///
|
alpar@1219
|
698 |
///Only the first template parameter (the value type) must be given.
|
alpar@1219
|
699 |
///
|
alpar@1219
|
700 |
///For example if \c m1 and \c m2 are both \c double valued maps, then
|
alpar@1219
|
701 |
///\code
|
alpar@1219
|
702 |
///combineMap<double>(m1,m2,std::plus<double>)
|
alpar@1219
|
703 |
///\endcode
|
alpar@1219
|
704 |
///is equivalent with
|
alpar@1219
|
705 |
///\code
|
alpar@1219
|
706 |
///addMap(m1,m2)
|
alpar@1219
|
707 |
///\endcode
|
alpar@1219
|
708 |
///
|
alpar@1219
|
709 |
///\relates CombineMap
|
deba@1675
|
710 |
template<typename M1, typename M2, typename F, typename V>
|
deba@1705
|
711 |
inline CombineMap<M1, M2, F, V>
|
deba@1675
|
712 |
combineMap(const M1& m1,const M2& m2, const F& f) {
|
deba@1705
|
713 |
return CombineMap<M1, M2, F, V>(m1,m2,f);
|
deba@1675
|
714 |
}
|
deba@1675
|
715 |
|
deba@1675
|
716 |
template<typename M1, typename M2, typename F>
|
deba@1705
|
717 |
inline CombineMap<M1, M2, F, typename F::result_type>
|
deba@1675
|
718 |
combineMap(const M1& m1, const M2& m2, const F& f) {
|
deba@1675
|
719 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
|
deba@1675
|
720 |
}
|
deba@1675
|
721 |
|
deba@1675
|
722 |
template<typename M1, typename M2, typename K1, typename K2, typename V>
|
deba@1705
|
723 |
inline CombineMap<M1, M2, V (*)(K1, K2), V>
|
deba@1675
|
724 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
deba@1675
|
725 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
|
alpar@1219
|
726 |
}
|
alpar@1041
|
727 |
|
alpar@1041
|
728 |
///Negative value of a map
|
alpar@1041
|
729 |
|
alpar@1041
|
730 |
///This \ref concept::ReadMap "read only map" returns the negative
|
alpar@1041
|
731 |
///value of the
|
alpar@1041
|
732 |
///value returned by the
|
alpar@1041
|
733 |
///given map. Its \c Key and \c Value will be inherited from \c M.
|
alpar@1041
|
734 |
///The unary \c - operator must be defined for \c Value, of course.
|
alpar@1041
|
735 |
|
deba@1705
|
736 |
template<typename M>
|
deba@1705
|
737 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@1705
|
738 |
const M& m;
|
alpar@1041
|
739 |
public:
|
deba@1705
|
740 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@1675
|
741 |
typedef typename Parent::Key Key;
|
deba@1675
|
742 |
typedef typename Parent::Value Value;
|
alpar@1041
|
743 |
|
alpar@1041
|
744 |
///Constructor
|
alpar@1041
|
745 |
NegMap(const M &_m) : m(_m) {};
|
alpar@1044
|
746 |
Value operator[](Key k) const {return -m[k];}
|
alpar@1041
|
747 |
};
|
alpar@1041
|
748 |
|
deba@2032
|
749 |
///Negative value of a map
|
deba@2032
|
750 |
|
deba@2032
|
751 |
///This \ref concept::ReadWriteMap "read-write map" returns the negative
|
deba@2032
|
752 |
///value of the value returned by the
|
deba@2032
|
753 |
///given map. Its \c Key and \c Value will be inherited from \c M.
|
deba@2032
|
754 |
///The unary \c - operator must be defined for \c Value, of course.
|
deba@2032
|
755 |
|
deba@2032
|
756 |
template<typename M>
|
deba@2032
|
757 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@2032
|
758 |
M& m;
|
deba@2032
|
759 |
public:
|
deba@2032
|
760 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@2032
|
761 |
typedef typename Parent::Key Key;
|
deba@2032
|
762 |
typedef typename Parent::Value Value;
|
deba@2032
|
763 |
|
deba@2032
|
764 |
///Constructor
|
deba@2032
|
765 |
NegWriteMap(M &_m) : m(_m) {};
|
deba@2032
|
766 |
Value operator[](Key k) const {return -m[k];}
|
deba@2032
|
767 |
void set(Key k, const Value& v) { m.set(k, -v); }
|
deba@2032
|
768 |
};
|
deba@2032
|
769 |
|
alpar@1041
|
770 |
///Returns a \ref NegMap class
|
alpar@1041
|
771 |
|
alpar@1041
|
772 |
///This function just returns a \ref NegMap class.
|
alpar@1041
|
773 |
///\relates NegMap
|
deba@1675
|
774 |
template <typename M>
|
deba@1705
|
775 |
inline NegMap<M> negMap(const M &m) {
|
deba@1705
|
776 |
return NegMap<M>(m);
|
alpar@1041
|
777 |
}
|
alpar@1041
|
778 |
|
deba@2032
|
779 |
template <typename M>
|
deba@2032
|
780 |
inline NegWriteMap<M> negMap(M &m) {
|
deba@2032
|
781 |
return NegWriteMap<M>(m);
|
deba@2032
|
782 |
}
|
alpar@1041
|
783 |
|
alpar@1041
|
784 |
///Absolute value of a map
|
alpar@1041
|
785 |
|
alpar@1041
|
786 |
///This \ref concept::ReadMap "read only map" returns the absolute value
|
alpar@1041
|
787 |
///of the
|
alpar@1041
|
788 |
///value returned by the
|
alpar@1044
|
789 |
///given map. Its \c Key and \c Value will be inherited
|
alpar@1044
|
790 |
///from <tt>M</tt>. <tt>Value</tt>
|
alpar@1044
|
791 |
///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
|
alpar@1044
|
792 |
///operator must be defined for it, of course.
|
alpar@1044
|
793 |
///
|
alpar@1044
|
794 |
///\bug We need a unified way to handle the situation below:
|
alpar@1044
|
795 |
///\code
|
alpar@1044
|
796 |
/// struct _UnConvertible {};
|
alpar@1044
|
797 |
/// template<class A> inline A t_abs(A a) {return _UnConvertible();}
|
alpar@1044
|
798 |
/// template<> inline int t_abs<>(int n) {return abs(n);}
|
alpar@1044
|
799 |
/// template<> inline long int t_abs<>(long int n) {return labs(n);}
|
alpar@1044
|
800 |
/// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
|
alpar@1044
|
801 |
/// template<> inline float t_abs<>(float n) {return fabsf(n);}
|
alpar@1044
|
802 |
/// template<> inline double t_abs<>(double n) {return fabs(n);}
|
alpar@1044
|
803 |
/// template<> inline long double t_abs<>(long double n) {return fabsl(n);}
|
alpar@1044
|
804 |
///\endcode
|
alpar@1044
|
805 |
|
alpar@1041
|
806 |
|
deba@1705
|
807 |
template<typename M>
|
deba@1705
|
808 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
deba@1705
|
809 |
const M& m;
|
alpar@1041
|
810 |
public:
|
deba@1705
|
811 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@1675
|
812 |
typedef typename Parent::Key Key;
|
deba@1675
|
813 |
typedef typename Parent::Value Value;
|
alpar@1041
|
814 |
|
alpar@1041
|
815 |
///Constructor
|
alpar@1041
|
816 |
AbsMap(const M &_m) : m(_m) {};
|
deba@1675
|
817 |
Value operator[](Key k) const {
|
deba@1675
|
818 |
Value tmp = m[k];
|
deba@1675
|
819 |
return tmp >= 0 ? tmp : -tmp;
|
deba@1675
|
820 |
}
|
deba@1675
|
821 |
|
alpar@1041
|
822 |
};
|
alpar@1041
|
823 |
|
alpar@1041
|
824 |
///Returns a \ref AbsMap class
|
alpar@1041
|
825 |
|
alpar@1041
|
826 |
///This function just returns a \ref AbsMap class.
|
alpar@1041
|
827 |
///\relates AbsMap
|
deba@1675
|
828 |
template<typename M>
|
deba@1705
|
829 |
inline AbsMap<M> absMap(const M &m) {
|
deba@1705
|
830 |
return AbsMap<M>(m);
|
alpar@1041
|
831 |
}
|
alpar@1041
|
832 |
|
alpar@1402
|
833 |
///Converts an STL style functor to a map
|
alpar@1076
|
834 |
|
alpar@1076
|
835 |
///This \ref concept::ReadMap "read only map" returns the value
|
alpar@1076
|
836 |
///of a
|
alpar@1076
|
837 |
///given map.
|
alpar@1076
|
838 |
///
|
alpar@1076
|
839 |
///Template parameters \c K and \c V will become its
|
alpar@1076
|
840 |
///\c Key and \c Value. They must be given explicitely
|
alpar@1076
|
841 |
///because a functor does not provide such typedefs.
|
alpar@1076
|
842 |
///
|
alpar@1076
|
843 |
///Parameter \c F is the type of the used functor.
|
alpar@1076
|
844 |
|
alpar@1076
|
845 |
|
deba@1675
|
846 |
template<typename F,
|
deba@1675
|
847 |
typename K = typename F::argument_type,
|
deba@1675
|
848 |
typename V = typename F::result_type,
|
deba@1675
|
849 |
typename NC = False>
|
deba@1705
|
850 |
class FunctorMap : public MapBase<K, V> {
|
deba@1679
|
851 |
F f;
|
alpar@1076
|
852 |
public:
|
deba@1705
|
853 |
typedef MapBase<K, V> Parent;
|
deba@1675
|
854 |
typedef typename Parent::Key Key;
|
deba@1675
|
855 |
typedef typename Parent::Value Value;
|
alpar@1076
|
856 |
|
alpar@1076
|
857 |
///Constructor
|
deba@1679
|
858 |
FunctorMap(const F &_f) : f(_f) {}
|
deba@1679
|
859 |
|
deba@1679
|
860 |
Value operator[](Key k) const { return f(k);}
|
alpar@1076
|
861 |
};
|
alpar@1076
|
862 |
|
alpar@1076
|
863 |
///Returns a \ref FunctorMap class
|
alpar@1076
|
864 |
|
alpar@1076
|
865 |
///This function just returns a \ref FunctorMap class.
|
alpar@1076
|
866 |
///
|
alpar@1076
|
867 |
///The third template parameter isn't necessary to be given.
|
alpar@1076
|
868 |
///\relates FunctorMap
|
deba@1675
|
869 |
template<typename K, typename V, typename F> inline
|
deba@1705
|
870 |
FunctorMap<F, K, V> functorMap(const F &f) {
|
deba@1705
|
871 |
return FunctorMap<F, K, V>(f);
|
alpar@1076
|
872 |
}
|
alpar@1076
|
873 |
|
deba@1675
|
874 |
template <typename F> inline
|
deba@1705
|
875 |
FunctorMap<F, typename F::argument_type, typename F::result_type>
|
deba@1675
|
876 |
functorMap(const F &f) {
|
deba@1679
|
877 |
return FunctorMap<F, typename F::argument_type,
|
deba@1705
|
878 |
typename F::result_type>(f);
|
deba@1675
|
879 |
}
|
deba@1675
|
880 |
|
deba@1675
|
881 |
template <typename K, typename V> inline
|
deba@1705
|
882 |
FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
|
deba@1705
|
883 |
return FunctorMap<V (*)(K), K, V>(f);
|
deba@1675
|
884 |
}
|
deba@1675
|
885 |
|
deba@1675
|
886 |
|
alpar@1219
|
887 |
///Converts a map to an STL style (unary) functor
|
alpar@1076
|
888 |
|
alpar@1219
|
889 |
///This class Converts a map to an STL style (unary) functor.
|
alpar@1076
|
890 |
///that is it provides an <tt>operator()</tt> to read its values.
|
alpar@1076
|
891 |
///
|
alpar@1223
|
892 |
///For the sake of convenience it also works as
|
alpar@1537
|
893 |
///a ususal \ref concept::ReadMap "readable map",
|
alpar@1537
|
894 |
///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
|
alpar@1076
|
895 |
|
deba@1705
|
896 |
template <typename M>
|
deba@1705
|
897 |
class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
|
deba@1705
|
898 |
const M& m;
|
alpar@1076
|
899 |
public:
|
deba@1705
|
900 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
deba@1675
|
901 |
typedef typename Parent::Key Key;
|
deba@1675
|
902 |
typedef typename Parent::Value Value;
|
deba@1420
|
903 |
|
alpar@1456
|
904 |
///\e
|
alpar@1223
|
905 |
typedef typename M::Key argument_type;
|
alpar@1456
|
906 |
///\e
|
alpar@1223
|
907 |
typedef typename M::Value result_type;
|
alpar@1076
|
908 |
|
alpar@1076
|
909 |
///Constructor
|
alpar@1076
|
910 |
MapFunctor(const M &_m) : m(_m) {};
|
alpar@1076
|
911 |
///Returns a value of the map
|
alpar@1076
|
912 |
Value operator()(Key k) const {return m[k];}
|
alpar@1076
|
913 |
///\e
|
alpar@1076
|
914 |
Value operator[](Key k) const {return m[k];}
|
alpar@1076
|
915 |
};
|
alpar@1076
|
916 |
|
alpar@1076
|
917 |
///Returns a \ref MapFunctor class
|
alpar@1076
|
918 |
|
alpar@1076
|
919 |
///This function just returns a \ref MapFunctor class.
|
alpar@1076
|
920 |
///\relates MapFunctor
|
deba@1675
|
921 |
template<typename M>
|
deba@1705
|
922 |
inline MapFunctor<M> mapFunctor(const M &m) {
|
deba@1705
|
923 |
return MapFunctor<M>(m);
|
alpar@1076
|
924 |
}
|
alpar@1076
|
925 |
|
alpar@1547
|
926 |
///Applies all map setting operations to two maps
|
alpar@1219
|
927 |
|
deba@2032
|
928 |
///This map has two \ref concept::ReadMap "readable map"
|
deba@2032
|
929 |
///parameters and each read request will be passed just to the
|
deba@2032
|
930 |
///first map. This class is the just readable map type of the ForkWriteMap.
|
alpar@1219
|
931 |
///
|
alpar@1219
|
932 |
///The \c Key and \c Value will be inherited from \c M1.
|
alpar@1219
|
933 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1.
|
alpar@1219
|
934 |
|
deba@1705
|
935 |
template<typename M1, typename M2>
|
deba@1705
|
936 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
deba@1705
|
937 |
const M1& m1;
|
deba@1705
|
938 |
const M2& m2;
|
alpar@1219
|
939 |
public:
|
deba@1705
|
940 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
deba@1675
|
941 |
typedef typename Parent::Key Key;
|
deba@1675
|
942 |
typedef typename Parent::Value Value;
|
alpar@1219
|
943 |
|
alpar@1219
|
944 |
///Constructor
|
deba@2032
|
945 |
ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@1219
|
946 |
Value operator[](Key k) const {return m1[k];}
|
deba@2032
|
947 |
};
|
deba@2032
|
948 |
|
deba@2032
|
949 |
|
deba@2032
|
950 |
///Applies all map setting operations to two maps
|
deba@2032
|
951 |
|
deba@2032
|
952 |
///This map has two \ref concept::WriteMap "writable map"
|
deba@2032
|
953 |
///parameters and each write request will be passed to both of them.
|
deba@2032
|
954 |
///If \c M1 is also \ref concept::ReadMap "readable",
|
deba@2032
|
955 |
///then the read operations will return the
|
deba@2032
|
956 |
///corresponding values of \c M1.
|
deba@2032
|
957 |
///
|
deba@2032
|
958 |
///The \c Key and \c Value will be inherited from \c M1.
|
deba@2032
|
959 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1.
|
deba@2032
|
960 |
|
deba@2032
|
961 |
template<typename M1, typename M2>
|
deba@2032
|
962 |
class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
|
deba@2032
|
963 |
M1& m1;
|
deba@2032
|
964 |
M2& m2;
|
deba@2032
|
965 |
public:
|
deba@2032
|
966 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
deba@2032
|
967 |
typedef typename Parent::Key Key;
|
deba@2032
|
968 |
typedef typename Parent::Value Value;
|
deba@2032
|
969 |
|
deba@2032
|
970 |
///Constructor
|
deba@2032
|
971 |
ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
|
deba@2032
|
972 |
Value operator[](Key k) const {return m1[k];}
|
deba@2032
|
973 |
void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
|
alpar@1219
|
974 |
};
|
alpar@1219
|
975 |
|
alpar@1219
|
976 |
///Returns an \ref ForkMap class
|
alpar@1219
|
977 |
|
alpar@1219
|
978 |
///This function just returns an \ref ForkMap class.
|
alpar@1219
|
979 |
///\todo How to call these type of functions?
|
alpar@1219
|
980 |
///
|
alpar@1219
|
981 |
///\relates ForkMap
|
alpar@1219
|
982 |
///\todo Wrong scope in Doxygen when \c \\relates is used
|
deba@1675
|
983 |
template <typename M1, typename M2>
|
deba@2032
|
984 |
inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
|
deba@1705
|
985 |
return ForkMap<M1, M2>(m1,m2);
|
alpar@1219
|
986 |
}
|
alpar@1219
|
987 |
|
deba@2032
|
988 |
template <typename M1, typename M2>
|
deba@2032
|
989 |
inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
|
deba@2032
|
990 |
return ForkWriteMap<M1, M2>(m1,m2);
|
deba@2032
|
991 |
}
|
deba@2032
|
992 |
|
alpar@1456
|
993 |
|
alpar@1456
|
994 |
|
alpar@1456
|
995 |
/* ************* BOOL MAPS ******************* */
|
alpar@1456
|
996 |
|
alpar@1456
|
997 |
///Logical 'not' of a map
|
alpar@1456
|
998 |
|
alpar@1456
|
999 |
///This bool \ref concept::ReadMap "read only map" returns the
|
alpar@1456
|
1000 |
///logical negation of
|
alpar@1456
|
1001 |
///value returned by the
|
alpar@1456
|
1002 |
///given map. Its \c Key and will be inherited from \c M,
|
alpar@1456
|
1003 |
///its Value is <tt>bool</tt>.
|
alpar@1456
|
1004 |
|
deba@1705
|
1005 |
template <typename M>
|
deba@1705
|
1006 |
class NotMap : public MapBase<typename M::Key, bool> {
|
deba@1705
|
1007 |
const M& m;
|
alpar@1456
|
1008 |
public:
|
deba@1705
|
1009 |
typedef MapBase<typename M::Key, bool> Parent;
|
deba@1675
|
1010 |
typedef typename Parent::Key Key;
|
deba@1675
|
1011 |
typedef typename Parent::Value Value;
|
alpar@1456
|
1012 |
|
deba@1778
|
1013 |
/// Constructor
|
alpar@1456
|
1014 |
NotMap(const M &_m) : m(_m) {};
|
alpar@1456
|
1015 |
Value operator[](Key k) const {return !m[k];}
|
alpar@1456
|
1016 |
};
|
deba@2032
|
1017 |
|
deba@2032
|
1018 |
///Logical 'not' of a map with writing possibility
|
deba@2032
|
1019 |
|
deba@2032
|
1020 |
///This bool \ref concept::ReadWriteMap "read-write map" returns the
|
deba@2032
|
1021 |
///logical negation of value returned by the given map. It is setted
|
deba@2032
|
1022 |
///then the negation of the value be setted to the original map.
|
deba@2032
|
1023 |
///Its \c Key and will be inherited from \c M,
|
deba@2032
|
1024 |
///its Value is <tt>bool</tt>.
|
deba@2032
|
1025 |
template <typename M>
|
deba@2032
|
1026 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
deba@2032
|
1027 |
M& m;
|
deba@2032
|
1028 |
public:
|
deba@2032
|
1029 |
typedef MapBase<typename M::Key, bool> Parent;
|
deba@2032
|
1030 |
typedef typename Parent::Key Key;
|
deba@2032
|
1031 |
typedef typename Parent::Value Value;
|
deba@2032
|
1032 |
|
deba@2032
|
1033 |
/// Constructor
|
deba@2032
|
1034 |
NotWriteMap(M &_m) : m(_m) {};
|
deba@2032
|
1035 |
Value operator[](Key k) const {return !m[k];}
|
deba@2032
|
1036 |
void set(Key k, bool v) { m.set(k, !v); }
|
deba@2032
|
1037 |
};
|
alpar@1456
|
1038 |
|
alpar@1456
|
1039 |
///Returns a \ref NotMap class
|
alpar@1456
|
1040 |
|
alpar@1456
|
1041 |
///This function just returns a \ref NotMap class.
|
alpar@1456
|
1042 |
///\relates NotMap
|
deba@1675
|
1043 |
template <typename M>
|
deba@1705
|
1044 |
inline NotMap<M> notMap(const M &m) {
|
deba@1705
|
1045 |
return NotMap<M>(m);
|
alpar@1456
|
1046 |
}
|
alpar@1456
|
1047 |
|
deba@2032
|
1048 |
template <typename M>
|
deba@2032
|
1049 |
inline NotWriteMap<M> notMap(M &m) {
|
deba@2032
|
1050 |
return NotWriteMap<M>(m);
|
deba@2032
|
1051 |
}
|
deba@2032
|
1052 |
|
deba@2091
|
1053 |
namespace _maps_bits {
|
deba@2091
|
1054 |
template <typename Value>
|
deba@2091
|
1055 |
struct Identity {
|
deba@2091
|
1056 |
typedef Value argument_type;
|
deba@2091
|
1057 |
typedef Value result_type;
|
deba@2091
|
1058 |
Value operator()(const Value& val) {
|
deba@2091
|
1059 |
return val;
|
deba@2091
|
1060 |
}
|
deba@2091
|
1061 |
};
|
deba@2091
|
1062 |
}
|
deba@2091
|
1063 |
|
deba@2091
|
1064 |
|
alpar@1808
|
1065 |
/// \brief Writable bool map for store each true assigned elements.
|
deba@1778
|
1066 |
///
|
alpar@1808
|
1067 |
/// Writable bool map for store each true assigned elements. It will
|
deba@1778
|
1068 |
/// copies all the true setted keys to the given iterator.
|
deba@1778
|
1069 |
///
|
deba@2091
|
1070 |
/// \note The container of the iterator should contain space
|
deba@2091
|
1071 |
/// for each element.
|
deba@2091
|
1072 |
///
|
deba@2091
|
1073 |
/// The next example shows how can you write the nodes directly
|
deba@2091
|
1074 |
/// to the standard output.
|
deba@2091
|
1075 |
///\code
|
deba@2091
|
1076 |
/// typedef IdMap<UGraph, UEdge> UEdgeIdMap;
|
deba@2091
|
1077 |
/// UEdgeIdMap uedgeId(ugraph);
|
deba@2091
|
1078 |
///
|
deba@2091
|
1079 |
/// typedef MapFunctor<UEdgeIdMap> UEdgeIdFunctor;
|
deba@2091
|
1080 |
/// UEdgeIdFunctor uedgeIdFunctor(uedgeId);
|
deba@2091
|
1081 |
///
|
deba@2091
|
1082 |
/// StoreBoolMap<ostream_iterator<int>, UEdgeIdFunctor>
|
deba@2091
|
1083 |
/// writerMap(ostream_iterator<int>(cout, " "), uedgeIdFunctor);
|
deba@2091
|
1084 |
///
|
deba@2091
|
1085 |
/// prim(ugraph, cost, writerMap);
|
deba@2091
|
1086 |
///\endcode
|
deba@2091
|
1087 |
template <typename _Iterator,
|
deba@2091
|
1088 |
typename _Functor =
|
deba@2091
|
1089 |
_maps_bits::Identity<typename std::iterator_traits<_Iterator>::value_type> >
|
deba@1778
|
1090 |
class StoreBoolMap {
|
deba@1778
|
1091 |
public:
|
deba@1778
|
1092 |
typedef _Iterator Iterator;
|
deba@1778
|
1093 |
|
deba@2091
|
1094 |
typedef typename _Functor::argument_type Key;
|
deba@1778
|
1095 |
typedef bool Value;
|
deba@1778
|
1096 |
|
deba@2091
|
1097 |
typedef _Functor Functor;
|
deba@2091
|
1098 |
|
deba@1778
|
1099 |
/// Constructor
|
deba@2091
|
1100 |
StoreBoolMap(Iterator it, const Functor& functor = Functor())
|
deba@2091
|
1101 |
: _begin(it), _end(it), _functor(functor) {}
|
deba@1778
|
1102 |
|
deba@1778
|
1103 |
/// Gives back the given first setted iterator.
|
deba@1778
|
1104 |
Iterator begin() const {
|
deba@1778
|
1105 |
return _begin;
|
deba@1778
|
1106 |
}
|
deba@1778
|
1107 |
|
deba@1778
|
1108 |
/// Gives back the iterator after the last setted.
|
deba@1778
|
1109 |
Iterator end() const {
|
deba@1778
|
1110 |
return _end;
|
deba@1778
|
1111 |
}
|
deba@1778
|
1112 |
|
deba@1778
|
1113 |
/// Setter function of the map
|
deba@1778
|
1114 |
void set(const Key& key, Value value) {
|
deba@1778
|
1115 |
if (value) {
|
deba@2091
|
1116 |
*_end++ = _functor(key);
|
deba@1778
|
1117 |
}
|
deba@1778
|
1118 |
}
|
deba@1778
|
1119 |
|
deba@1778
|
1120 |
private:
|
deba@1778
|
1121 |
Iterator _begin, _end;
|
deba@2091
|
1122 |
Functor _functor;
|
deba@1778
|
1123 |
};
|
deba@1778
|
1124 |
|
alpar@1808
|
1125 |
/// \brief Writable bool map for store each true assigned elements in
|
deba@1778
|
1126 |
/// a back insertable container.
|
deba@1778
|
1127 |
///
|
alpar@1808
|
1128 |
/// Writable bool map for store each true assigned elements in a back
|
deba@1778
|
1129 |
/// insertable container. It will push back all the true setted keys into
|
deba@2091
|
1130 |
/// the container. It can be used to retrieve the items into a standard
|
deba@2091
|
1131 |
/// container. The next example shows how can you store the undirected
|
deba@2091
|
1132 |
/// edges in a vector with prim algorithm.
|
deba@2091
|
1133 |
///
|
deba@2091
|
1134 |
///\code
|
deba@2091
|
1135 |
/// vector<UEdge> span_tree_uedges;
|
deba@2091
|
1136 |
/// BackInserterBoolMap<vector<UEdge> > inserter_map(span_tree_uedges);
|
deba@2091
|
1137 |
/// prim(ugraph, cost, inserter_map);
|
deba@2091
|
1138 |
///\endcode
|
deba@2091
|
1139 |
template <typename Container,
|
deba@2091
|
1140 |
typename Functor =
|
deba@2091
|
1141 |
_maps_bits::Identity<typename Container::value_type> >
|
deba@1778
|
1142 |
class BackInserterBoolMap {
|
deba@1778
|
1143 |
public:
|
deba@1778
|
1144 |
typedef typename Container::value_type Key;
|
deba@1778
|
1145 |
typedef bool Value;
|
deba@1778
|
1146 |
|
deba@1778
|
1147 |
/// Constructor
|
deba@2091
|
1148 |
BackInserterBoolMap(Container& _container,
|
deba@2091
|
1149 |
const Functor& _functor = Functor())
|
deba@2091
|
1150 |
: container(_container), functor(_functor) {}
|
deba@1778
|
1151 |
|
deba@1778
|
1152 |
/// Setter function of the map
|
deba@1778
|
1153 |
void set(const Key& key, Value value) {
|
deba@1778
|
1154 |
if (value) {
|
deba@2091
|
1155 |
container.push_back(functor(key));
|
deba@1778
|
1156 |
}
|
deba@1778
|
1157 |
}
|
deba@1778
|
1158 |
|
deba@1778
|
1159 |
private:
|
deba@2091
|
1160 |
Container& container;
|
deba@2091
|
1161 |
Functor functor;
|
deba@1778
|
1162 |
};
|
deba@1778
|
1163 |
|
alpar@1808
|
1164 |
/// \brief Writable bool map for store each true assigned elements in
|
deba@1778
|
1165 |
/// a front insertable container.
|
deba@1778
|
1166 |
///
|
alpar@1808
|
1167 |
/// Writable bool map for store each true assigned elements in a front
|
deba@1778
|
1168 |
/// insertable container. It will push front all the true setted keys into
|
deba@2091
|
1169 |
/// the container. For example see the BackInserterBoolMap.
|
deba@2091
|
1170 |
template <typename Container,
|
deba@2091
|
1171 |
typename Functor =
|
deba@2091
|
1172 |
_maps_bits::Identity<typename Container::value_type> >
|
deba@1778
|
1173 |
class FrontInserterBoolMap {
|
deba@1778
|
1174 |
public:
|
deba@1778
|
1175 |
typedef typename Container::value_type Key;
|
deba@1778
|
1176 |
typedef bool Value;
|
deba@1778
|
1177 |
|
deba@1778
|
1178 |
/// Constructor
|
deba@2091
|
1179 |
FrontInserterBoolMap(Container& _container,
|
deba@2091
|
1180 |
const Functor& _functor = Functor())
|
deba@2091
|
1181 |
: container(_container), functor(_functor) {}
|
deba@1778
|
1182 |
|
deba@1778
|
1183 |
/// Setter function of the map
|
deba@1778
|
1184 |
void set(const Key& key, Value value) {
|
deba@1778
|
1185 |
if (value) {
|
deba@1778
|
1186 |
container.push_front(key);
|
deba@1778
|
1187 |
}
|
deba@1778
|
1188 |
}
|
deba@1778
|
1189 |
|
deba@1778
|
1190 |
private:
|
deba@1778
|
1191 |
Container& container;
|
deba@2091
|
1192 |
Functor functor;
|
deba@1778
|
1193 |
};
|
deba@1778
|
1194 |
|
alpar@1808
|
1195 |
/// \brief Writable bool map for store each true assigned elements in
|
deba@1778
|
1196 |
/// an insertable container.
|
deba@1778
|
1197 |
///
|
alpar@1808
|
1198 |
/// Writable bool map for store each true assigned elements in an
|
deba@1778
|
1199 |
/// insertable container. It will insert all the true setted keys into
|
deba@2091
|
1200 |
/// the container. If you want to store the cut edges of the strongly
|
deba@2091
|
1201 |
/// connected components in a set you can use the next code:
|
deba@2091
|
1202 |
///
|
deba@2091
|
1203 |
///\code
|
deba@2091
|
1204 |
/// set<Edge> cut_edges;
|
deba@2091
|
1205 |
/// InserterBoolMap<set<Edge> > inserter_map(cut_edges);
|
deba@2091
|
1206 |
/// stronglyConnectedCutEdges(graph, cost, inserter_map);
|
deba@2091
|
1207 |
///\endcode
|
deba@2091
|
1208 |
template <typename Container,
|
deba@2091
|
1209 |
typename Functor =
|
deba@2091
|
1210 |
_maps_bits::Identity<typename Container::value_type> >
|
deba@1778
|
1211 |
class InserterBoolMap {
|
deba@1778
|
1212 |
public:
|
deba@1778
|
1213 |
typedef typename Container::value_type Key;
|
deba@1778
|
1214 |
typedef bool Value;
|
deba@1778
|
1215 |
|
deba@1778
|
1216 |
/// Constructor
|
deba@2091
|
1217 |
InserterBoolMap(Container& _container, typename Container::iterator _it,
|
deba@2091
|
1218 |
const Functor& _functor = Functor())
|
deba@2091
|
1219 |
: container(_container), it(_it), functor(_functor) {}
|
deba@2091
|
1220 |
|
deba@2091
|
1221 |
/// Constructor
|
deba@2091
|
1222 |
InserterBoolMap(Container& _container, const Functor& _functor = Functor())
|
deba@2091
|
1223 |
: container(_container), it(_container.end()), functor(_functor) {}
|
deba@1778
|
1224 |
|
deba@1778
|
1225 |
/// Setter function of the map
|
deba@1778
|
1226 |
void set(const Key& key, Value value) {
|
deba@1778
|
1227 |
if (value) {
|
deba@2091
|
1228 |
it = container.insert(it, key);
|
deba@2091
|
1229 |
++it;
|
deba@1778
|
1230 |
}
|
deba@1778
|
1231 |
}
|
deba@1778
|
1232 |
|
deba@1778
|
1233 |
private:
|
deba@2091
|
1234 |
Container& container;
|
deba@2091
|
1235 |
typename Container::iterator it;
|
deba@2091
|
1236 |
Functor functor;
|
deba@1778
|
1237 |
};
|
deba@1778
|
1238 |
|
deba@1778
|
1239 |
/// \brief Fill the true setted elements with a given value.
|
deba@1778
|
1240 |
///
|
alpar@1808
|
1241 |
/// Writable bool map for fill the true setted elements with a given value.
|
deba@1778
|
1242 |
/// The value can be setted
|
deba@1778
|
1243 |
/// the container.
|
deba@2091
|
1244 |
///
|
deba@2091
|
1245 |
/// The next code finds the connected components of the undirected graph
|
deba@2091
|
1246 |
/// and stores it in the \c comp map:
|
deba@2091
|
1247 |
///\code
|
deba@2091
|
1248 |
/// typedef UGraph::NodeMap<int> ComponentMap;
|
deba@2091
|
1249 |
/// ComponentMap comp(ugraph);
|
deba@2091
|
1250 |
/// typedef FillBoolMap<UGraph::NodeMap<int> > ComponentFillerMap;
|
deba@2091
|
1251 |
/// ComponentFillerMap filler(comp, 0);
|
deba@2091
|
1252 |
///
|
deba@2091
|
1253 |
/// Dfs<UGraph>::DefProcessedMap<ComponentFillerMap>::Create dfs(ugraph);
|
deba@2091
|
1254 |
/// dfs.processedMap(filler);
|
deba@2091
|
1255 |
/// dfs.init();
|
deba@2091
|
1256 |
/// for (NodeIt it(ugraph); it != INVALID; ++it) {
|
deba@2091
|
1257 |
/// if (!dfs.reached(it)) {
|
deba@2091
|
1258 |
/// dfs.addSource(it);
|
deba@2091
|
1259 |
/// dfs.start();
|
deba@2091
|
1260 |
/// ++filler.fillValue();
|
deba@2091
|
1261 |
/// }
|
deba@2091
|
1262 |
/// }
|
deba@2091
|
1263 |
///\endcode
|
deba@2091
|
1264 |
|
deba@1778
|
1265 |
template <typename Map>
|
deba@1778
|
1266 |
class FillBoolMap {
|
deba@1778
|
1267 |
public:
|
deba@1778
|
1268 |
typedef typename Map::Key Key;
|
deba@1778
|
1269 |
typedef bool Value;
|
deba@1778
|
1270 |
|
deba@1778
|
1271 |
/// Constructor
|
deba@1778
|
1272 |
FillBoolMap(Map& _map, const typename Map::Value& _fill)
|
deba@1778
|
1273 |
: map(_map), fill(_fill) {}
|
deba@1778
|
1274 |
|
deba@1778
|
1275 |
/// Constructor
|
deba@1778
|
1276 |
FillBoolMap(Map& _map)
|
deba@1778
|
1277 |
: map(_map), fill() {}
|
deba@1778
|
1278 |
|
deba@1778
|
1279 |
/// Gives back the current fill value
|
deba@2091
|
1280 |
const typename Map::Value& fillValue() const {
|
deba@2091
|
1281 |
return fill;
|
deba@2091
|
1282 |
}
|
deba@2091
|
1283 |
|
deba@2091
|
1284 |
/// Gives back the current fill value
|
deba@2091
|
1285 |
typename Map::Value& fillValue() {
|
deba@1778
|
1286 |
return fill;
|
deba@1778
|
1287 |
}
|
deba@1778
|
1288 |
|
deba@1778
|
1289 |
/// Sets the current fill value
|
deba@1778
|
1290 |
void fillValue(const typename Map::Value& _fill) {
|
deba@1778
|
1291 |
fill = _fill;
|
deba@1778
|
1292 |
}
|
deba@1778
|
1293 |
|
deba@1778
|
1294 |
/// Setter function of the map
|
deba@1778
|
1295 |
void set(const Key& key, Value value) {
|
deba@1778
|
1296 |
if (value) {
|
deba@1778
|
1297 |
map.set(key, fill);
|
deba@1778
|
1298 |
}
|
deba@1778
|
1299 |
}
|
deba@1778
|
1300 |
|
deba@1778
|
1301 |
private:
|
deba@1778
|
1302 |
Map& map;
|
deba@1778
|
1303 |
typename Map::Value fill;
|
deba@1778
|
1304 |
};
|
deba@1778
|
1305 |
|
deba@1778
|
1306 |
|
alpar@1808
|
1307 |
/// \brief Writable bool map which stores for each true assigned elements
|
deba@1778
|
1308 |
/// the setting order number.
|
deba@1778
|
1309 |
///
|
alpar@1808
|
1310 |
/// Writable bool map which stores for each true assigned elements
|
deba@2091
|
1311 |
/// the setting order number. It make easy to calculate the leaving
|
deba@2091
|
1312 |
/// order of the nodes in the \ref dfs "Dfs" algorithm.
|
deba@2091
|
1313 |
///
|
deba@2091
|
1314 |
///\code
|
deba@2091
|
1315 |
/// typedef Graph::NodeMap<int> OrderMap;
|
deba@2091
|
1316 |
/// OrderMap order(graph);
|
deba@2091
|
1317 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
|
deba@2091
|
1318 |
/// OrderSetterMap setter(order);
|
deba@2091
|
1319 |
/// Dfs<Graph>::DefProcessedMap<OrderSetterMap>::Create dfs(graph);
|
deba@2091
|
1320 |
/// dfs.processedMap(setter);
|
deba@2091
|
1321 |
/// dfs.init();
|
deba@2091
|
1322 |
/// for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@2091
|
1323 |
/// if (!dfs.reached(it)) {
|
deba@2091
|
1324 |
/// dfs.addSource(it);
|
deba@2091
|
1325 |
/// dfs.start();
|
deba@2091
|
1326 |
/// }
|
deba@2091
|
1327 |
/// }
|
deba@2091
|
1328 |
///\endcode
|
deba@2091
|
1329 |
///
|
deba@2091
|
1330 |
/// The discovering order can be stored a little harder because the
|
deba@2091
|
1331 |
/// ReachedMap should be readable in the dfs algorithm but the setting
|
deba@2091
|
1332 |
/// order map is not readable. Now we should use the fork map:
|
deba@2091
|
1333 |
///
|
deba@2091
|
1334 |
///\code
|
deba@2091
|
1335 |
/// typedef Graph::NodeMap<int> OrderMap;
|
deba@2091
|
1336 |
/// OrderMap order(graph);
|
deba@2091
|
1337 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
|
deba@2091
|
1338 |
/// OrderSetterMap setter(order);
|
deba@2091
|
1339 |
/// typedef Graph::NodeMap<bool> StoreMap;
|
deba@2091
|
1340 |
/// StoreMap store(graph);
|
deba@2091
|
1341 |
///
|
deba@2091
|
1342 |
/// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
|
deba@2091
|
1343 |
/// ReachedMap reached(store, setter);
|
deba@2091
|
1344 |
///
|
deba@2091
|
1345 |
/// Dfs<Graph>::DefReachedMap<ReachedMap>::Create dfs(graph);
|
deba@2091
|
1346 |
/// dfs.reachedMap(reached);
|
deba@2091
|
1347 |
/// dfs.init();
|
deba@2091
|
1348 |
/// for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@2091
|
1349 |
/// if (!dfs.reached(it)) {
|
deba@2091
|
1350 |
/// dfs.addSource(it);
|
deba@2091
|
1351 |
/// dfs.start();
|
deba@2091
|
1352 |
/// }
|
deba@2091
|
1353 |
/// }
|
deba@2091
|
1354 |
///\endcode
|
deba@1778
|
1355 |
template <typename Map>
|
deba@1778
|
1356 |
class SettingOrderBoolMap {
|
deba@1778
|
1357 |
public:
|
deba@1778
|
1358 |
typedef typename Map::Key Key;
|
deba@1778
|
1359 |
typedef bool Value;
|
deba@1778
|
1360 |
|
deba@1778
|
1361 |
/// Constructor
|
deba@1778
|
1362 |
SettingOrderBoolMap(Map& _map)
|
deba@1778
|
1363 |
: map(_map), counter(0) {}
|
deba@1778
|
1364 |
|
deba@1778
|
1365 |
/// Number of setted keys.
|
deba@1778
|
1366 |
int num() const {
|
deba@1778
|
1367 |
return counter;
|
deba@1778
|
1368 |
}
|
deba@1778
|
1369 |
|
deba@1778
|
1370 |
/// Setter function of the map
|
deba@1778
|
1371 |
void set(const Key& key, Value value) {
|
deba@1778
|
1372 |
if (value) {
|
deba@1778
|
1373 |
map.set(key, counter++);
|
deba@1778
|
1374 |
}
|
deba@1778
|
1375 |
}
|
deba@1778
|
1376 |
|
deba@1778
|
1377 |
private:
|
deba@1778
|
1378 |
Map& map;
|
deba@1778
|
1379 |
int counter;
|
deba@1778
|
1380 |
};
|
deba@1778
|
1381 |
|
alpar@1041
|
1382 |
/// @}
|
klao@286
|
1383 |
}
|
alpar@1041
|
1384 |
|
alpar@921
|
1385 |
#endif // LEMON_MAPS_H
|