lemon/suurballe.h
author alpar
Tue, 20 Feb 2007 13:01:22 +0000
changeset 2374 b59a17034ffa
parent 2276 1a8a66b6c6ce
child 2376 0ed45a6c74b1
permissions -rw-r--r--
Some two dimensional random distribution added.
They should be revised.
alpar@906
     1
/* -*- C++ -*-
alpar@906
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     8
 *
alpar@906
     9
 * Permission to use, modify and distribute this software is granted
alpar@906
    10
 * provided that this copyright notice appears in all copies. For
alpar@906
    11
 * precise terms see the accompanying LICENSE file.
alpar@906
    12
 *
alpar@906
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    14
 * express or implied, and with no claim as to its suitability for any
alpar@906
    15
 * purpose.
alpar@906
    16
 *
alpar@906
    17
 */
alpar@906
    18
alpar@921
    19
#ifndef LEMON_SUURBALLE_H
alpar@921
    20
#define LEMON_SUURBALLE_H
alpar@899
    21
alpar@899
    22
///\ingroup flowalgs
alpar@899
    23
///\file
alpar@899
    24
///\brief An algorithm for finding k paths of minimal total length.
alpar@899
    25
alpar@899
    26
alpar@921
    27
#include <lemon/maps.h>
alpar@899
    28
#include <vector>
deba@2335
    29
#include <lemon/path.h>
deba@2276
    30
#include <lemon/ssp_min_cost_flow.h>
alpar@899
    31
alpar@921
    32
namespace lemon {
alpar@899
    33
alpar@899
    34
/// \addtogroup flowalgs
alpar@899
    35
/// @{
alpar@899
    36
deba@2276
    37
  ///\brief Implementation of an algorithm for finding k edge-disjoint
deba@2276
    38
  /// paths between 2 nodes of minimal total length
alpar@899
    39
  ///
alpar@921
    40
  /// The class \ref lemon::Suurballe implements
alpar@899
    41
  /// an algorithm for finding k edge-disjoint paths
alpar@899
    42
  /// from a given source node to a given target node in an
alpar@899
    43
  /// edge-weighted directed graph having minimal total weight (length).
alpar@899
    44
  ///
athos@1527
    45
  ///\warning Length values should be nonnegative!
alpar@899
    46
  /// 
alpar@899
    47
  ///\param Graph The directed graph type the algorithm runs on.
alpar@899
    48
  ///\param LengthMap The type of the length map (values should be nonnegative).
alpar@899
    49
  ///
alpar@968
    50
  ///\note It it questionable whether it is correct to call this method after
alpar@1020
    51
  ///%Suurballe for it is just a special case of Edmonds' and Karp's algorithm
alpar@968
    52
  ///for finding minimum cost flows. In fact, this implementation just
deba@2276
    53
  ///wraps the SspMinCostFlow algorithms. The paper of both %Suurballe and
alpar@899
    54
  ///Edmonds-Karp published in 1972, therefore it is possibly right to
alpar@899
    55
  ///state that they are
alpar@899
    56
  ///independent results. Most frequently this special case is referred as
alpar@899
    57
  ///%Suurballe method in the literature, especially in communication
alpar@899
    58
  ///network context.
alpar@899
    59
  ///\author Attila Bernath
alpar@899
    60
  template <typename Graph, typename LengthMap>
alpar@899
    61
  class Suurballe{
alpar@899
    62
alpar@899
    63
alpar@987
    64
    typedef typename LengthMap::Value Length;
alpar@899
    65
    
alpar@899
    66
    typedef typename Graph::Node Node;
alpar@899
    67
    typedef typename Graph::NodeIt NodeIt;
alpar@899
    68
    typedef typename Graph::Edge Edge;
alpar@899
    69
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@899
    70
    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
alpar@899
    71
alpar@899
    72
    typedef ConstMap<Edge,int> ConstMap;
alpar@899
    73
alpar@899
    74
    const Graph& G;
alpar@899
    75
marci@941
    76
    Node s;
marci@941
    77
    Node t;
marci@941
    78
alpar@899
    79
    //Auxiliary variables
alpar@899
    80
    //This is the capacity map for the mincostflow problem
alpar@899
    81
    ConstMap const1map;
alpar@899
    82
    //This MinCostFlow instance will actually solve the problem
deba@2276
    83
    SspMinCostFlow<Graph, LengthMap, ConstMap> min_cost_flow;
alpar@899
    84
alpar@899
    85
    //Container to store found paths
deba@2335
    86
    std::vector<SimplePath<Graph> > paths;
alpar@899
    87
alpar@899
    88
  public :
alpar@899
    89
alpar@899
    90
deba@2276
    91
    /// \brief The constructor of the class.
deba@2276
    92
    ///
deba@2276
    93
    /// \param _G The directed graph the algorithm runs on. 
deba@2276
    94
    /// \param _length The length (weight or cost) of the edges. 
deba@2276
    95
    /// \param _s Source node.
deba@2276
    96
    /// \param _t Target node.
marci@941
    97
    Suurballe(Graph& _G, LengthMap& _length, Node _s, Node _t) : 
marci@941
    98
      G(_G), s(_s), t(_t), const1map(1), 
marci@941
    99
      min_cost_flow(_G, _length, const1map, _s, _t) { }
alpar@899
   100
deba@2276
   101
    /// \brief Runs the algorithm.
alpar@899
   102
    ///
deba@2276
   103
    /// Runs the algorithm.
deba@2276
   104
    /// Returns k if there are at least k edge-disjoint paths from s to t.
deba@2276
   105
    /// Otherwise it returns the number of edge-disjoint paths found 
deba@2276
   106
    /// from s to t.
deba@2276
   107
    ///
deba@2276
   108
    /// \param k How many paths are we looking for?
alpar@899
   109
    ///
marci@941
   110
    int run(int k) {
marci@941
   111
      int i = min_cost_flow.run(k);
alpar@899
   112
alpar@899
   113
      //Let's find the paths
alpar@899
   114
      //We put the paths into stl vectors (as an inner representation). 
alpar@899
   115
      //In the meantime we lose the information stored in 'reversed'.
alpar@899
   116
      //We suppose the lengths to be positive now.
alpar@899
   117
marci@941
   118
      //We don't want to change the flow of min_cost_flow, so we make a copy
alpar@899
   119
      //The name here suggests that the flow has only 0/1 values.
alpar@899
   120
      EdgeIntMap reversed(G); 
alpar@899
   121
alpar@899
   122
      for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) 
marci@941
   123
	reversed[e] = min_cost_flow.getFlow()[e];
alpar@899
   124
      
alpar@899
   125
      paths.clear();
alpar@899
   126
      paths.resize(k);
alpar@899
   127
      for (int j=0; j<i; ++j){
alpar@899
   128
	Node n=s;
alpar@899
   129
alpar@899
   130
	while (n!=t){
alpar@899
   131
klao@946
   132
	  OutEdgeIt e(G, n);
alpar@899
   133
	  
alpar@899
   134
	  while (!reversed[e]){
alpar@899
   135
	    ++e;
alpar@899
   136
	  }
alpar@986
   137
	  n = G.target(e);
deba@2335
   138
	  paths[j].addBack(e);
alpar@899
   139
	  reversed[e] = 1-reversed[e];
alpar@899
   140
	}
alpar@899
   141
	
alpar@899
   142
      }
alpar@899
   143
      return i;
alpar@899
   144
    }
alpar@899
   145
alpar@899
   146
    
deba@2276
   147
    /// \brief Returns the total length of the paths.
deba@2276
   148
    ///
deba@2276
   149
    /// This function gives back the total length of the found paths.
alpar@899
   150
    Length totalLength(){
marci@941
   151
      return min_cost_flow.totalLength();
alpar@899
   152
    }
alpar@899
   153
deba@2276
   154
    /// \brief Returns the found flow.
deba@2276
   155
    ///
deba@2276
   156
    /// This function returns a const reference to the EdgeMap \c flow.
marci@941
   157
    const EdgeIntMap &getFlow() const { return min_cost_flow.flow;}
alpar@899
   158
deba@2276
   159
    /// \brief Returns the optimal dual solution
deba@2276
   160
    ///
deba@2276
   161
    /// This function returns a const reference to the NodeMap \c
deba@2276
   162
    /// potential (the dual solution).
marci@941
   163
    const EdgeIntMap &getPotential() const { return min_cost_flow.potential;}
alpar@899
   164
deba@2276
   165
    /// \brief Checks whether the complementary slackness holds.
deba@2276
   166
    ///
deba@2276
   167
    /// This function checks, whether the given solution is optimal.
deba@2276
   168
    /// Currently this function only checks optimality, doesn't bother
deba@2276
   169
    /// with feasibility.  It is meant for testing purposes.
alpar@899
   170
    bool checkComplementarySlackness(){
marci@941
   171
      return min_cost_flow.checkComplementarySlackness();
alpar@899
   172
    }
alpar@899
   173
deba@2335
   174
    typedef SimplePath<Graph> Path; 
deba@2335
   175
deba@2276
   176
    /// \brief Read the found paths.
alpar@899
   177
    ///
deba@2276
   178
    /// This function gives back the \c j-th path in argument p.
deba@2276
   179
    /// Assumes that \c run() has been run and nothing has changed
deba@2276
   180
    /// since then.
deba@2276
   181
    ///
deba@2276
   182
    /// \warning It is assumed that \c p is constructed to be a path
deba@2276
   183
    /// of graph \c G.  If \c j is not less than the result of
deba@2276
   184
    /// previous \c run, then the result here will be an empty path
deba@2276
   185
    /// (\c j can be 0 as well).
deba@2276
   186
    ///
deba@2276
   187
    /// \param j Which path you want to get from the found paths (in a
deba@2276
   188
    /// real application you would get the found paths iteratively).
deba@2335
   189
    Path path(int j) const {
deba@2335
   190
      return paths[j];
deba@2335
   191
    }
alpar@899
   192
deba@2335
   193
    /// \brief Gives back the number of the paths.
deba@2335
   194
    ///
deba@2335
   195
    /// Gives back the number of the constructed paths.
deba@2335
   196
    int pathNum() const {
deba@2335
   197
      return paths.size();
alpar@899
   198
    }
alpar@899
   199
alpar@899
   200
  }; //class Suurballe
alpar@899
   201
alpar@899
   202
  ///@}
alpar@899
   203
alpar@921
   204
} //namespace lemon
alpar@899
   205
alpar@921
   206
#endif //LEMON_SUURBALLE_H