alpar@222
|
1 |
// -*- C++ -*-
|
alpar@222
|
2 |
/*
|
alpar@222
|
3 |
*template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> >
|
alpar@222
|
4 |
*
|
alpar@222
|
5 |
*Constructor:
|
alpar@222
|
6 |
*
|
alpar@222
|
7 |
*Dijkstra(Graph G, LengthMap length)
|
alpar@222
|
8 |
*
|
alpar@222
|
9 |
*
|
alpar@222
|
10 |
*Methods:
|
alpar@222
|
11 |
*
|
alpar@222
|
12 |
*void run(Node s)
|
alpar@222
|
13 |
*
|
alpar@222
|
14 |
*T dist(Node v) : After run(s) was run, it returns the distance from s to v.
|
alpar@222
|
15 |
* Returns T() if v is not reachable from s.
|
alpar@222
|
16 |
*
|
alpar@222
|
17 |
*Edge pred(Node v) : After run(s) was run, it returns the last
|
alpar@222
|
18 |
* edge of a shortest s-v path. It is INVALID for s and for
|
alpar@222
|
19 |
* the nodes not reachable from s.
|
alpar@222
|
20 |
*
|
alpar@222
|
21 |
*bool reached(Node v) : After run(s) was run, it is true iff v is
|
alpar@222
|
22 |
* reachable from s
|
alpar@222
|
23 |
*
|
alpar@222
|
24 |
*/
|
alpar@222
|
25 |
|
alpar@222
|
26 |
#ifndef HUGO_DIJKSTRA_H
|
alpar@222
|
27 |
#define HUGO_DIJKSTRA_H
|
alpar@222
|
28 |
|
alpar@222
|
29 |
#include <fib_heap.h>
|
alpar@222
|
30 |
#include <invalid.h>
|
alpar@222
|
31 |
|
alpar@222
|
32 |
namespace hugo {
|
alpar@222
|
33 |
|
alpar@222
|
34 |
//Alpar: Changed the order of the parameters
|
alpar@224
|
35 |
|
alpar@224
|
36 |
///Dijkstra algorithm class.
|
alpar@224
|
37 |
|
alpar@224
|
38 |
///This class provides an efficient implementation of Dijkstra algorithm.
|
alpar@224
|
39 |
///The edge lengths are passed to the algorithm using a
|
alpar@224
|
40 |
///\ref ReadMapSkeleton "readable map",
|
alpar@224
|
41 |
///so it is easy to change it to any kind of length.
|
alpar@224
|
42 |
///
|
alpar@224
|
43 |
///The type of the length is determined by the \c ValueType of the length map.
|
alpar@224
|
44 |
///
|
alpar@224
|
45 |
///It is also posible to change the underlying priority heap.
|
alpar@224
|
46 |
///
|
alpar@224
|
47 |
///\param Graph The graph type the algorithm runs on.
|
alpar@224
|
48 |
///\param LengthMap This read-only EdgeMap determines the
|
alpar@224
|
49 |
///lengths of the edges. It is read once for each edge, so the map
|
alpar@224
|
50 |
///may involve in relatively time consuming process to compute the edge
|
alpar@224
|
51 |
///length if it is necessary.
|
alpar@224
|
52 |
///\param Heap The heap type used by the Dijkstra
|
alpar@224
|
53 |
///algorithm. The default
|
alpar@224
|
54 |
///is using \ref BinHeap "binary heap".
|
alpar@222
|
55 |
template <typename Graph,
|
alpar@222
|
56 |
typename LengthMap=typename Graph::EdgeMap<int>,
|
alpar@224
|
57 |
typename Heap=BinHeap<typename Graph::Node,
|
alpar@222
|
58 |
typename LengthMap::ValueType,
|
alpar@222
|
59 |
typename Graph::NodeMap<int> > >
|
alpar@222
|
60 |
class Dijkstra{
|
alpar@222
|
61 |
public:
|
alpar@222
|
62 |
typedef typename LengthMap::ValueType ValueType;
|
alpar@224
|
63 |
typedef typename Graph::NodeMap<Edge> PredMap;
|
alpar@224
|
64 |
typedef typename Graph::NodeMap<Node> PredNodeMap;
|
alpar@224
|
65 |
typedef typename Graph::NodeMap<ValueType> DistMap;
|
alpar@222
|
66 |
|
alpar@222
|
67 |
private:
|
alpar@222
|
68 |
typedef typename Graph::Node Node;
|
alpar@222
|
69 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@222
|
70 |
typedef typename Graph::Edge Edge;
|
alpar@222
|
71 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
alpar@222
|
72 |
|
alpar@222
|
73 |
const Graph& G;
|
alpar@222
|
74 |
const LengthMap& length;
|
alpar@222
|
75 |
PredMap predecessor;
|
alpar@222
|
76 |
//In place of reach:
|
alpar@222
|
77 |
PredNodeMap pred_node;
|
alpar@222
|
78 |
DistMap distance;
|
alpar@222
|
79 |
//I don't like this:
|
alpar@222
|
80 |
// //FIXME:
|
alpar@222
|
81 |
// typename Graph::NodeMap<bool> reach;
|
alpar@222
|
82 |
// //typename Graph::NodeMap<int> reach;
|
alpar@222
|
83 |
|
alpar@222
|
84 |
public :
|
alpar@222
|
85 |
|
alpar@222
|
86 |
/*
|
alpar@222
|
87 |
The distance of the nodes is 0.
|
alpar@222
|
88 |
*/
|
alpar@222
|
89 |
Dijkstra(Graph& _G, LengthMap& _length) :
|
alpar@222
|
90 |
G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
|
alpar@222
|
91 |
|
alpar@222
|
92 |
|
alpar@222
|
93 |
void run(Node s);
|
alpar@222
|
94 |
|
alpar@224
|
95 |
///The distance of a node from the source.
|
alpar@224
|
96 |
|
alpar@224
|
97 |
///Returns the distance of a node from the source.
|
alpar@224
|
98 |
///\pre \ref run() must be called before using this function.
|
alpar@224
|
99 |
///\warning If node \c v in unreachable from \c s the return value
|
alpar@224
|
100 |
///of this funcion is undefined.
|
alpar@222
|
101 |
ValueType dist(Node v) const { return distance[v]; }
|
alpar@224
|
102 |
///Returns the edges of the shortest path tree.
|
alpar@224
|
103 |
|
alpar@224
|
104 |
///For a node \c v it returns the last edge of the shortest path
|
alpar@224
|
105 |
///from \c s to \c v or INVALID if \c v is unreachable from \c s.
|
alpar@224
|
106 |
///\pre \ref run() must be called before using this function.
|
alpar@222
|
107 |
Edge pred(Node v) const { return predecessor[v]; }
|
alpar@224
|
108 |
///Returns the nodes of the shortest paths.
|
alpar@224
|
109 |
|
alpar@224
|
110 |
///For a node \c v it returns the last but one node of the shortest path
|
alpar@224
|
111 |
///from \c s to \c v or INVALID if \c v is unreachable from \c s.
|
alpar@224
|
112 |
///\pre \ref run() must be called before using this function.
|
alpar@222
|
113 |
Node predNode(Node v) const { return pred_node[v]; }
|
alpar@222
|
114 |
|
alpar@224
|
115 |
///Returns a reference to the NodeMap of distances.
|
alpar@224
|
116 |
|
alpar@224
|
117 |
///\pre \ref run() must be called before using this function.
|
alpar@224
|
118 |
///
|
alpar@222
|
119 |
const DistMap &distMap() const { return distance;}
|
alpar@224
|
120 |
///Returns a reference to the shortest path tree map.
|
alpar@224
|
121 |
|
alpar@224
|
122 |
///Returns a reference to the NodeMap of the edges of the
|
alpar@224
|
123 |
///shortest path tree.
|
alpar@224
|
124 |
///\pre \ref run() must be called before using this function.
|
alpar@222
|
125 |
const PredMap &predMap() const { return predecessor;}
|
alpar@224
|
126 |
///Returns a reference to the map of nodes of shortest paths.
|
alpar@224
|
127 |
|
alpar@224
|
128 |
///Returns a reference to the NodeMap of the last but one nodes of the
|
alpar@224
|
129 |
///shortest paths.
|
alpar@224
|
130 |
///\pre \ref run() must be called before using this function.
|
alpar@222
|
131 |
const PredNodeMap &predNodeMap() const { return pred_node;}
|
alpar@222
|
132 |
|
alpar@222
|
133 |
// bool reached(Node v) { return reach[v]; }
|
alpar@224
|
134 |
|
alpar@224
|
135 |
///Chech if a node is reachable from \c s.
|
alpar@224
|
136 |
|
alpar@224
|
137 |
///Returns \c true if \c v is reachable from \c s.
|
alpar@224
|
138 |
///\warning \c s is reported to be unreached!
|
alpar@224
|
139 |
///\todo Is this what we want?
|
alpar@224
|
140 |
///\pre \ref run() must be called before using this function.
|
alpar@222
|
141 |
///
|
alpar@222
|
142 |
bool reached(Node v) { return G.valid(predecessor[v]); }
|
alpar@222
|
143 |
|
alpar@222
|
144 |
};
|
alpar@222
|
145 |
|
alpar@222
|
146 |
|
alpar@224
|
147 |
// **********************************************************************
|
alpar@224
|
148 |
// IMPLEMENTATIONS
|
alpar@224
|
149 |
// **********************************************************************
|
alpar@222
|
150 |
|
alpar@224
|
151 |
///Runs Dijkstra algorithm from node \c s.
|
alpar@224
|
152 |
|
alpar@224
|
153 |
///This method runs the Dijkstra algorithm from node \c s in order to
|
alpar@224
|
154 |
///compute the
|
alpar@224
|
155 |
///shortest path to each node. The algorithm computes
|
alpar@224
|
156 |
///- The shortest path tree.
|
alpar@224
|
157 |
///- The distance of each node.
|
alpar@222
|
158 |
template <typename Graph, typename LengthMap, typename Heap >
|
alpar@222
|
159 |
void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
|
alpar@222
|
160 |
|
alpar@222
|
161 |
NodeIt u;
|
alpar@222
|
162 |
for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
|
alpar@222
|
163 |
predecessor.set(u,INVALID);
|
alpar@224
|
164 |
pred_node.set(u,INVALID);
|
alpar@222
|
165 |
// If a node is unreacheable, then why should be the dist=0?
|
alpar@222
|
166 |
// distance.set(u,0);
|
alpar@222
|
167 |
// reach.set(u,false);
|
alpar@222
|
168 |
}
|
alpar@222
|
169 |
|
alpar@222
|
170 |
//We don't need it at all.
|
alpar@222
|
171 |
// //FIXME:
|
alpar@222
|
172 |
// typename Graph::NodeMap<bool> scanned(G,false);
|
alpar@222
|
173 |
// //typename Graph::NodeMap<int> scanned(G,false);
|
alpar@222
|
174 |
typename Graph::NodeMap<int> heap_map(G,-1);
|
alpar@222
|
175 |
|
alpar@222
|
176 |
Heap heap(heap_map);
|
alpar@222
|
177 |
|
alpar@222
|
178 |
heap.push(s,0);
|
alpar@222
|
179 |
// reach.set(s, true);
|
alpar@222
|
180 |
|
alpar@222
|
181 |
while ( !heap.empty() ) {
|
alpar@222
|
182 |
|
alpar@222
|
183 |
Node v=heap.top();
|
alpar@222
|
184 |
ValueType oldvalue=heap[v];
|
alpar@222
|
185 |
heap.pop();
|
alpar@222
|
186 |
distance.set(v, oldvalue);
|
alpar@222
|
187 |
|
alpar@222
|
188 |
for(OutEdgeIt e(G,v); G.valid(e); G.next(e)) {
|
alpar@222
|
189 |
Node w=G.head(e);
|
alpar@222
|
190 |
|
alpar@222
|
191 |
switch(heap.state(w)) {
|
alpar@222
|
192 |
case Heap::PRE_HEAP:
|
alpar@222
|
193 |
// reach.set(w,true);
|
alpar@222
|
194 |
heap.push(w,oldvalue+length[e]);
|
alpar@222
|
195 |
predecessor.set(w,e);
|
alpar@222
|
196 |
pred_node.set(w,v);
|
alpar@222
|
197 |
break;
|
alpar@222
|
198 |
case Heap::IN_HEAP:
|
alpar@222
|
199 |
if ( oldvalue+length[e] < heap[w] ) {
|
alpar@222
|
200 |
heap.decrease(w, oldvalue+length[e]);
|
alpar@222
|
201 |
predecessor.set(w,e);
|
alpar@222
|
202 |
pred_node.set(w,v);
|
alpar@222
|
203 |
}
|
alpar@222
|
204 |
break;
|
alpar@222
|
205 |
case Heap::POST_HEAP:
|
alpar@222
|
206 |
break;
|
alpar@222
|
207 |
}
|
alpar@222
|
208 |
}
|
alpar@222
|
209 |
}
|
alpar@222
|
210 |
}
|
alpar@222
|
211 |
|
alpar@222
|
212 |
} //END OF NAMESPACE HUGO
|
alpar@222
|
213 |
|
alpar@222
|
214 |
#endif
|
alpar@222
|
215 |
|
alpar@222
|
216 |
|