alpar@906
|
1 |
/* -*- C++ -*-
|
alpar@921
|
2 |
* src/lemon/full_graph.h - Part of LEMON, a generic C++ optimization library
|
alpar@906
|
3 |
*
|
alpar@1164
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@906
|
5 |
* (Egervary Combinatorial Optimization Research Group, EGRES).
|
alpar@906
|
6 |
*
|
alpar@906
|
7 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
8 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
9 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
10 |
*
|
alpar@906
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
12 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
13 |
* purpose.
|
alpar@906
|
14 |
*
|
alpar@906
|
15 |
*/
|
alpar@591
|
16 |
|
alpar@921
|
17 |
#ifndef LEMON_FULL_GRAPH_H
|
alpar@921
|
18 |
#define LEMON_FULL_GRAPH_H
|
alpar@591
|
19 |
|
deba@983
|
20 |
#include <cmath>
|
deba@983
|
21 |
|
klao@946
|
22 |
|
klao@946
|
23 |
#include <lemon/iterable_graph_extender.h>
|
deba@1039
|
24 |
#include <lemon/alteration_notifier.h>
|
klao@946
|
25 |
#include <lemon/default_map.h>
|
klao@946
|
26 |
|
klao@977
|
27 |
#include <lemon/invalid.h>
|
klao@977
|
28 |
#include <lemon/utility.h>
|
klao@977
|
29 |
|
klao@977
|
30 |
|
alpar@591
|
31 |
///\ingroup graphs
|
alpar@591
|
32 |
///\file
|
alpar@591
|
33 |
///\brief FullGraph and SymFullGraph classes.
|
alpar@591
|
34 |
|
alpar@591
|
35 |
|
alpar@921
|
36 |
namespace lemon {
|
alpar@591
|
37 |
|
alpar@591
|
38 |
/// \addtogroup graphs
|
alpar@591
|
39 |
/// @{
|
alpar@591
|
40 |
|
klao@946
|
41 |
class FullGraphBase {
|
alpar@591
|
42 |
int NodeNum;
|
alpar@591
|
43 |
int EdgeNum;
|
alpar@591
|
44 |
public:
|
deba@782
|
45 |
|
klao@946
|
46 |
typedef FullGraphBase Graph;
|
alpar@591
|
47 |
|
alpar@591
|
48 |
class Node;
|
alpar@591
|
49 |
class Edge;
|
deba@782
|
50 |
|
alpar@591
|
51 |
public:
|
alpar@591
|
52 |
|
klao@946
|
53 |
FullGraphBase() {}
|
klao@946
|
54 |
|
klao@946
|
55 |
|
alpar@591
|
56 |
///Creates a full graph with \c n nodes.
|
klao@946
|
57 |
void construct(int n) { NodeNum = n; EdgeNum = n * n; }
|
alpar@591
|
58 |
///
|
klao@946
|
59 |
// FullGraphBase(const FullGraphBase &_g)
|
klao@946
|
60 |
// : NodeNum(_g.nodeNum()), EdgeNum(NodeNum*NodeNum) { }
|
alpar@591
|
61 |
|
klao@977
|
62 |
typedef True NodeNumTag;
|
klao@977
|
63 |
typedef True EdgeNumTag;
|
klao@977
|
64 |
|
alpar@813
|
65 |
///Number of nodes.
|
alpar@813
|
66 |
int nodeNum() const { return NodeNum; }
|
alpar@813
|
67 |
///Number of edges.
|
alpar@813
|
68 |
int edgeNum() const { return EdgeNum; }
|
alpar@591
|
69 |
|
alpar@813
|
70 |
/// Maximum node ID.
|
alpar@813
|
71 |
|
alpar@813
|
72 |
/// Maximum node ID.
|
alpar@813
|
73 |
///\sa id(Node)
|
deba@980
|
74 |
int maxId(Node = INVALID) const { return NodeNum-1; }
|
alpar@813
|
75 |
/// Maximum edge ID.
|
alpar@813
|
76 |
|
alpar@813
|
77 |
/// Maximum edge ID.
|
alpar@813
|
78 |
///\sa id(Edge)
|
deba@980
|
79 |
int maxId(Edge = INVALID) const { return EdgeNum-1; }
|
alpar@591
|
80 |
|
alpar@986
|
81 |
Node source(Edge e) const { return e.id % NodeNum; }
|
alpar@986
|
82 |
Node target(Edge e) const { return e.id / NodeNum; }
|
alpar@591
|
83 |
|
alpar@591
|
84 |
|
alpar@813
|
85 |
/// Node ID.
|
alpar@813
|
86 |
|
alpar@813
|
87 |
/// The ID of a valid Node is a nonnegative integer not greater than
|
alpar@813
|
88 |
/// \ref maxNodeId(). The range of the ID's is not surely continuous
|
alpar@813
|
89 |
/// and the greatest node ID can be actually less then \ref maxNodeId().
|
alpar@813
|
90 |
///
|
alpar@813
|
91 |
/// The ID of the \ref INVALID node is -1.
|
alpar@813
|
92 |
///\return The ID of the node \c v.
|
klao@946
|
93 |
|
klao@946
|
94 |
static int id(Node v) { return v.id; }
|
alpar@813
|
95 |
/// Edge ID.
|
alpar@813
|
96 |
|
alpar@813
|
97 |
/// The ID of a valid Edge is a nonnegative integer not greater than
|
alpar@813
|
98 |
/// \ref maxEdgeId(). The range of the ID's is not surely continuous
|
alpar@813
|
99 |
/// and the greatest edge ID can be actually less then \ref maxEdgeId().
|
alpar@813
|
100 |
///
|
alpar@813
|
101 |
/// The ID of the \ref INVALID edge is -1.
|
alpar@813
|
102 |
///\return The ID of the edge \c e.
|
klao@946
|
103 |
static int id(Edge e) { return e.id; }
|
alpar@591
|
104 |
|
deba@1106
|
105 |
static Node fromId(int id, Node) { return Node(id);}
|
deba@1106
|
106 |
|
deba@1106
|
107 |
static Edge fromId(int id, Edge) { return Edge(id);}
|
deba@1106
|
108 |
|
alpar@774
|
109 |
/// Finds an edge between two nodes.
|
alpar@774
|
110 |
|
alpar@774
|
111 |
/// Finds an edge from node \c u to node \c v.
|
alpar@774
|
112 |
///
|
alpar@774
|
113 |
/// If \c prev is \ref INVALID (this is the default value), then
|
alpar@774
|
114 |
/// It finds the first edge from \c u to \c v. Otherwise it looks for
|
alpar@774
|
115 |
/// the next edge from \c u to \c v after \c prev.
|
alpar@774
|
116 |
/// \return The found edge or INVALID if there is no such an edge.
|
alpar@774
|
117 |
Edge findEdge(Node u,Node v, Edge prev = INVALID)
|
alpar@774
|
118 |
{
|
klao@946
|
119 |
return prev.id == -1 ? Edge(*this, u.id, v.id) : INVALID;
|
alpar@774
|
120 |
}
|
alpar@774
|
121 |
|
alpar@774
|
122 |
|
alpar@591
|
123 |
class Node {
|
klao@946
|
124 |
friend class FullGraphBase;
|
alpar@591
|
125 |
|
alpar@591
|
126 |
protected:
|
klao@946
|
127 |
int id;
|
klao@946
|
128 |
Node(int _id) { id = _id;}
|
alpar@591
|
129 |
public:
|
alpar@591
|
130 |
Node() {}
|
klao@946
|
131 |
Node (Invalid) { id = -1; }
|
klao@946
|
132 |
bool operator==(const Node node) const {return id == node.id;}
|
klao@946
|
133 |
bool operator!=(const Node node) const {return id != node.id;}
|
klao@946
|
134 |
bool operator<(const Node node) const {return id < node.id;}
|
alpar@591
|
135 |
};
|
alpar@591
|
136 |
|
klao@946
|
137 |
|
klao@946
|
138 |
|
klao@946
|
139 |
class Edge {
|
klao@946
|
140 |
friend class FullGraphBase;
|
klao@946
|
141 |
|
klao@946
|
142 |
protected:
|
alpar@986
|
143 |
int id; // NodeNum * target + source;
|
klao@946
|
144 |
|
klao@946
|
145 |
Edge(int _id) : id(_id) {}
|
klao@946
|
146 |
|
alpar@986
|
147 |
Edge(const FullGraphBase& _graph, int source, int target)
|
alpar@986
|
148 |
: id(_graph.NodeNum * target+source) {}
|
alpar@591
|
149 |
public:
|
klao@946
|
150 |
Edge() { }
|
klao@946
|
151 |
Edge (Invalid) { id = -1; }
|
klao@946
|
152 |
bool operator==(const Edge edge) const {return id == edge.id;}
|
klao@946
|
153 |
bool operator!=(const Edge edge) const {return id != edge.id;}
|
klao@946
|
154 |
bool operator<(const Edge edge) const {return id < edge.id;}
|
alpar@591
|
155 |
};
|
alpar@591
|
156 |
|
klao@946
|
157 |
void first(Node& node) const {
|
klao@946
|
158 |
node.id = NodeNum-1;
|
klao@946
|
159 |
}
|
alpar@591
|
160 |
|
klao@946
|
161 |
static void next(Node& node) {
|
klao@946
|
162 |
--node.id;
|
klao@946
|
163 |
}
|
klao@946
|
164 |
|
klao@946
|
165 |
void first(Edge& edge) const {
|
klao@946
|
166 |
edge.id = EdgeNum-1;
|
klao@946
|
167 |
}
|
klao@946
|
168 |
|
klao@946
|
169 |
static void next(Edge& edge) {
|
klao@946
|
170 |
--edge.id;
|
klao@946
|
171 |
}
|
klao@946
|
172 |
|
klao@946
|
173 |
void firstOut(Edge& edge, const Node& node) const {
|
klao@946
|
174 |
edge.id = EdgeNum + node.id - NodeNum;
|
klao@946
|
175 |
}
|
klao@946
|
176 |
|
klao@946
|
177 |
void nextOut(Edge& edge) const {
|
klao@946
|
178 |
edge.id -= NodeNum;
|
klao@946
|
179 |
if (edge.id < 0) edge.id = -1;
|
klao@946
|
180 |
}
|
klao@946
|
181 |
|
klao@946
|
182 |
void firstIn(Edge& edge, const Node& node) const {
|
klao@946
|
183 |
edge.id = node.id * NodeNum;
|
klao@946
|
184 |
}
|
alpar@591
|
185 |
|
klao@946
|
186 |
void nextIn(Edge& edge) const {
|
klao@946
|
187 |
++edge.id;
|
klao@946
|
188 |
if (edge.id % NodeNum == 0) edge.id = -1;
|
klao@946
|
189 |
}
|
alpar@591
|
190 |
|
alpar@591
|
191 |
};
|
alpar@591
|
192 |
|
klao@946
|
193 |
|
klao@946
|
194 |
typedef AlterableGraphExtender<FullGraphBase> AlterableFullGraphBase;
|
klao@946
|
195 |
typedef IterableGraphExtender<AlterableFullGraphBase> IterableFullGraphBase;
|
deba@980
|
196 |
typedef DefaultMappableGraphExtender<IterableFullGraphBase> MappableFullGraphBase;
|
klao@946
|
197 |
|
alpar@951
|
198 |
///A full graph class.
|
alpar@951
|
199 |
|
alpar@951
|
200 |
///This is a simple and fast directed full graph implementation.
|
alpar@951
|
201 |
///It is completely static, so you can neither add nor delete either
|
alpar@951
|
202 |
///edges or nodes.
|
alpar@951
|
203 |
///Thus it conforms to
|
klao@959
|
204 |
///the \ref concept::StaticGraph "StaticGraph" concept
|
klao@959
|
205 |
///\sa concept::StaticGraph.
|
alpar@951
|
206 |
///
|
alpar@951
|
207 |
///\author Alpar Juttner
|
klao@946
|
208 |
class FullGraph : public MappableFullGraphBase {
|
klao@946
|
209 |
public:
|
klao@946
|
210 |
|
klao@946
|
211 |
FullGraph(int n) { construct(n); }
|
klao@946
|
212 |
};
|
klao@946
|
213 |
|
deba@983
|
214 |
|
alpar@1161
|
215 |
// Base graph class for UndirFullGraph.
|
deba@983
|
216 |
class UndirFullGraphBase {
|
deba@983
|
217 |
int NodeNum;
|
deba@983
|
218 |
int EdgeNum;
|
deba@983
|
219 |
public:
|
deba@983
|
220 |
|
deba@984
|
221 |
typedef UndirFullGraphBase Graph;
|
deba@983
|
222 |
|
deba@983
|
223 |
class Node;
|
deba@983
|
224 |
class Edge;
|
deba@983
|
225 |
|
deba@983
|
226 |
public:
|
deba@983
|
227 |
|
deba@984
|
228 |
UndirFullGraphBase() {}
|
deba@983
|
229 |
|
deba@983
|
230 |
|
deba@983
|
231 |
///Creates a full graph with \c n nodes.
|
deba@983
|
232 |
void construct(int n) { NodeNum = n; EdgeNum = n * (n - 1) / 2; }
|
deba@983
|
233 |
///
|
deba@983
|
234 |
// FullGraphBase(const FullGraphBase &_g)
|
deba@983
|
235 |
// : NodeNum(_g.nodeNum()), EdgeNum(NodeNum*NodeNum) { }
|
deba@983
|
236 |
|
deba@983
|
237 |
typedef True NodeNumTag;
|
deba@983
|
238 |
typedef True EdgeNumTag;
|
deba@983
|
239 |
|
deba@983
|
240 |
///Number of nodes.
|
deba@983
|
241 |
int nodeNum() const { return NodeNum; }
|
deba@983
|
242 |
///Number of edges.
|
deba@983
|
243 |
int edgeNum() const { return EdgeNum; }
|
deba@983
|
244 |
|
deba@983
|
245 |
/// Maximum node ID.
|
deba@983
|
246 |
|
deba@983
|
247 |
/// Maximum node ID.
|
deba@983
|
248 |
///\sa id(Node)
|
deba@983
|
249 |
int maxId(Node = INVALID) const { return NodeNum-1; }
|
deba@983
|
250 |
/// Maximum edge ID.
|
deba@983
|
251 |
|
deba@983
|
252 |
/// Maximum edge ID.
|
deba@983
|
253 |
///\sa id(Edge)
|
deba@983
|
254 |
int maxId(Edge = INVALID) const { return EdgeNum-1; }
|
deba@983
|
255 |
|
alpar@986
|
256 |
Node source(Edge e) const {
|
deba@983
|
257 |
/// \todo we may do it faster
|
deba@983
|
258 |
return ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;
|
deba@983
|
259 |
}
|
deba@983
|
260 |
|
alpar@986
|
261 |
Node target(Edge e) const {
|
alpar@986
|
262 |
int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
|
alpar@986
|
263 |
return e.id - (source) * (source - 1) / 2;
|
deba@983
|
264 |
}
|
deba@983
|
265 |
|
deba@983
|
266 |
|
deba@983
|
267 |
/// Node ID.
|
deba@983
|
268 |
|
deba@983
|
269 |
/// The ID of a valid Node is a nonnegative integer not greater than
|
deba@983
|
270 |
/// \ref maxNodeId(). The range of the ID's is not surely continuous
|
deba@983
|
271 |
/// and the greatest node ID can be actually less then \ref maxNodeId().
|
deba@983
|
272 |
///
|
deba@983
|
273 |
/// The ID of the \ref INVALID node is -1.
|
deba@983
|
274 |
///\return The ID of the node \c v.
|
deba@983
|
275 |
|
deba@983
|
276 |
static int id(Node v) { return v.id; }
|
deba@983
|
277 |
/// Edge ID.
|
deba@983
|
278 |
|
deba@983
|
279 |
/// The ID of a valid Edge is a nonnegative integer not greater than
|
deba@983
|
280 |
/// \ref maxEdgeId(). The range of the ID's is not surely continuous
|
deba@983
|
281 |
/// and the greatest edge ID can be actually less then \ref maxEdgeId().
|
deba@983
|
282 |
///
|
deba@983
|
283 |
/// The ID of the \ref INVALID edge is -1.
|
deba@983
|
284 |
///\return The ID of the edge \c e.
|
deba@983
|
285 |
static int id(Edge e) { return e.id; }
|
deba@983
|
286 |
|
deba@983
|
287 |
/// Finds an edge between two nodes.
|
deba@983
|
288 |
|
deba@983
|
289 |
/// Finds an edge from node \c u to node \c v.
|
deba@983
|
290 |
///
|
deba@983
|
291 |
/// If \c prev is \ref INVALID (this is the default value), then
|
deba@983
|
292 |
/// It finds the first edge from \c u to \c v. Otherwise it looks for
|
deba@983
|
293 |
/// the next edge from \c u to \c v after \c prev.
|
deba@983
|
294 |
/// \return The found edge or INVALID if there is no such an edge.
|
deba@983
|
295 |
Edge findEdge(Node u,Node v, Edge prev = INVALID)
|
deba@983
|
296 |
{
|
deba@983
|
297 |
return prev.id == -1 ? Edge(*this, u.id, v.id) : INVALID;
|
deba@983
|
298 |
}
|
deba@983
|
299 |
|
deba@983
|
300 |
|
deba@983
|
301 |
class Node {
|
alpar@985
|
302 |
friend class UndirFullGraphBase;
|
deba@983
|
303 |
|
deba@983
|
304 |
protected:
|
deba@983
|
305 |
int id;
|
deba@983
|
306 |
Node(int _id) { id = _id;}
|
deba@983
|
307 |
public:
|
deba@983
|
308 |
Node() {}
|
deba@983
|
309 |
Node (Invalid) { id = -1; }
|
deba@983
|
310 |
bool operator==(const Node node) const {return id == node.id;}
|
deba@983
|
311 |
bool operator!=(const Node node) const {return id != node.id;}
|
deba@983
|
312 |
bool operator<(const Node node) const {return id < node.id;}
|
deba@983
|
313 |
};
|
deba@983
|
314 |
|
deba@983
|
315 |
|
deba@983
|
316 |
|
deba@983
|
317 |
class Edge {
|
alpar@985
|
318 |
friend class UndirFullGraphBase;
|
deba@983
|
319 |
|
deba@983
|
320 |
protected:
|
alpar@986
|
321 |
int id; // NodeNum * target + source;
|
deba@983
|
322 |
|
deba@983
|
323 |
Edge(int _id) : id(_id) {}
|
deba@983
|
324 |
|
alpar@986
|
325 |
Edge(const UndirFullGraphBase& _graph, int source, int target)
|
alpar@986
|
326 |
: id(_graph.NodeNum * target+source) {}
|
deba@983
|
327 |
public:
|
deba@983
|
328 |
Edge() { }
|
deba@983
|
329 |
Edge (Invalid) { id = -1; }
|
deba@983
|
330 |
bool operator==(const Edge edge) const {return id == edge.id;}
|
deba@983
|
331 |
bool operator!=(const Edge edge) const {return id != edge.id;}
|
deba@983
|
332 |
bool operator<(const Edge edge) const {return id < edge.id;}
|
deba@983
|
333 |
};
|
deba@983
|
334 |
|
deba@983
|
335 |
void first(Node& node) const {
|
deba@983
|
336 |
node.id = NodeNum-1;
|
deba@983
|
337 |
}
|
deba@983
|
338 |
|
deba@983
|
339 |
static void next(Node& node) {
|
deba@983
|
340 |
--node.id;
|
deba@983
|
341 |
}
|
deba@983
|
342 |
|
deba@983
|
343 |
void first(Edge& edge) const {
|
deba@983
|
344 |
edge.id = EdgeNum-1;
|
deba@983
|
345 |
}
|
deba@983
|
346 |
|
deba@983
|
347 |
static void next(Edge& edge) {
|
deba@983
|
348 |
--edge.id;
|
deba@983
|
349 |
}
|
deba@983
|
350 |
|
deba@983
|
351 |
void firstOut(Edge& edge, const Node& node) const {
|
deba@983
|
352 |
edge.id = node.id != 0 ? node.id * (node.id - 1) / 2 : -1;
|
deba@983
|
353 |
}
|
deba@983
|
354 |
|
deba@983
|
355 |
/// \todo with specialized iterators we can make faster iterating
|
alpar@985
|
356 |
void nextOut(Edge& e) const {
|
alpar@986
|
357 |
int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
|
alpar@986
|
358 |
int target = e.id - (source) * (source - 1) / 2;
|
alpar@986
|
359 |
++target;
|
alpar@986
|
360 |
e.id = target < source ? source * (source - 1) / 2 + target : -1;
|
deba@983
|
361 |
}
|
deba@983
|
362 |
|
deba@983
|
363 |
void firstIn(Edge& edge, const Node& node) const {
|
deba@983
|
364 |
edge.id = node.id * (node.id + 1) / 2 - 1;
|
deba@983
|
365 |
}
|
deba@983
|
366 |
|
alpar@985
|
367 |
void nextIn(Edge& e) const {
|
alpar@986
|
368 |
int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
|
alpar@986
|
369 |
int target = e.id - (source) * (source - 1) / 2; ++target;
|
alpar@986
|
370 |
++source;
|
alpar@986
|
371 |
e.id = source < NodeNum ? source * (source - 1) / 2 + target : -1;
|
deba@983
|
372 |
}
|
deba@983
|
373 |
|
deba@983
|
374 |
};
|
deba@983
|
375 |
|
deba@983
|
376 |
/// \todo UndirFullGraph from the UndirFullGraphBase
|
deba@983
|
377 |
|
deba@983
|
378 |
|
deba@983
|
379 |
|
alpar@591
|
380 |
/// @}
|
alpar@591
|
381 |
|
alpar@921
|
382 |
} //namespace lemon
|
alpar@591
|
383 |
|
alpar@591
|
384 |
|
alpar@921
|
385 |
#endif //LEMON_FULL_GRAPH_H
|