alpar@906
|
1 |
/* -*- C++ -*-
|
ladanyi@1435
|
2 |
* lemon/suurballe.h - Part of LEMON, a generic C++ optimization library
|
alpar@906
|
3 |
*
|
alpar@1164
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
5 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@906
|
6 |
*
|
alpar@906
|
7 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
8 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
9 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
10 |
*
|
alpar@906
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
12 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
13 |
* purpose.
|
alpar@906
|
14 |
*
|
alpar@906
|
15 |
*/
|
alpar@906
|
16 |
|
alpar@921
|
17 |
#ifndef LEMON_SUURBALLE_H
|
alpar@921
|
18 |
#define LEMON_SUURBALLE_H
|
alpar@899
|
19 |
|
alpar@899
|
20 |
///\ingroup flowalgs
|
alpar@899
|
21 |
///\file
|
alpar@899
|
22 |
///\brief An algorithm for finding k paths of minimal total length.
|
alpar@899
|
23 |
|
alpar@899
|
24 |
|
alpar@921
|
25 |
#include <lemon/maps.h>
|
alpar@899
|
26 |
#include <vector>
|
alpar@921
|
27 |
#include <lemon/min_cost_flow.h>
|
alpar@899
|
28 |
|
alpar@921
|
29 |
namespace lemon {
|
alpar@899
|
30 |
|
alpar@899
|
31 |
/// \addtogroup flowalgs
|
alpar@899
|
32 |
/// @{
|
alpar@899
|
33 |
|
alpar@899
|
34 |
///\brief Implementation of an algorithm for finding k edge-disjoint paths between 2 nodes
|
alpar@899
|
35 |
/// of minimal total length
|
alpar@899
|
36 |
///
|
alpar@921
|
37 |
/// The class \ref lemon::Suurballe implements
|
alpar@899
|
38 |
/// an algorithm for finding k edge-disjoint paths
|
alpar@899
|
39 |
/// from a given source node to a given target node in an
|
alpar@899
|
40 |
/// edge-weighted directed graph having minimal total weight (length).
|
alpar@899
|
41 |
///
|
athos@1527
|
42 |
///\warning Length values should be nonnegative!
|
alpar@899
|
43 |
///
|
alpar@899
|
44 |
///\param Graph The directed graph type the algorithm runs on.
|
alpar@899
|
45 |
///\param LengthMap The type of the length map (values should be nonnegative).
|
alpar@899
|
46 |
///
|
alpar@968
|
47 |
///\note It it questionable whether it is correct to call this method after
|
alpar@1020
|
48 |
///%Suurballe for it is just a special case of Edmonds' and Karp's algorithm
|
alpar@968
|
49 |
///for finding minimum cost flows. In fact, this implementation just
|
alpar@899
|
50 |
///wraps the MinCostFlow algorithms. The paper of both %Suurballe and
|
alpar@899
|
51 |
///Edmonds-Karp published in 1972, therefore it is possibly right to
|
alpar@899
|
52 |
///state that they are
|
alpar@899
|
53 |
///independent results. Most frequently this special case is referred as
|
alpar@899
|
54 |
///%Suurballe method in the literature, especially in communication
|
alpar@899
|
55 |
///network context.
|
alpar@899
|
56 |
///\author Attila Bernath
|
alpar@899
|
57 |
template <typename Graph, typename LengthMap>
|
alpar@899
|
58 |
class Suurballe{
|
alpar@899
|
59 |
|
alpar@899
|
60 |
|
alpar@987
|
61 |
typedef typename LengthMap::Value Length;
|
alpar@899
|
62 |
|
alpar@899
|
63 |
typedef typename Graph::Node Node;
|
alpar@899
|
64 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@899
|
65 |
typedef typename Graph::Edge Edge;
|
alpar@899
|
66 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
alpar@899
|
67 |
typedef typename Graph::template EdgeMap<int> EdgeIntMap;
|
alpar@899
|
68 |
|
alpar@899
|
69 |
typedef ConstMap<Edge,int> ConstMap;
|
alpar@899
|
70 |
|
alpar@899
|
71 |
const Graph& G;
|
alpar@899
|
72 |
|
marci@941
|
73 |
Node s;
|
marci@941
|
74 |
Node t;
|
marci@941
|
75 |
|
alpar@899
|
76 |
//Auxiliary variables
|
alpar@899
|
77 |
//This is the capacity map for the mincostflow problem
|
alpar@899
|
78 |
ConstMap const1map;
|
alpar@899
|
79 |
//This MinCostFlow instance will actually solve the problem
|
marci@941
|
80 |
MinCostFlow<Graph, LengthMap, ConstMap> min_cost_flow;
|
alpar@899
|
81 |
|
alpar@899
|
82 |
//Container to store found paths
|
alpar@899
|
83 |
std::vector< std::vector<Edge> > paths;
|
alpar@899
|
84 |
|
alpar@899
|
85 |
public :
|
alpar@899
|
86 |
|
alpar@899
|
87 |
|
marci@941
|
88 |
/*! \brief The constructor of the class.
|
alpar@899
|
89 |
|
marci@941
|
90 |
\param _G The directed graph the algorithm runs on.
|
marci@941
|
91 |
\param _length The length (weight or cost) of the edges.
|
marci@941
|
92 |
\param _s Source node.
|
marci@941
|
93 |
\param _t Target node.
|
marci@941
|
94 |
*/
|
marci@941
|
95 |
Suurballe(Graph& _G, LengthMap& _length, Node _s, Node _t) :
|
marci@941
|
96 |
G(_G), s(_s), t(_t), const1map(1),
|
marci@941
|
97 |
min_cost_flow(_G, _length, const1map, _s, _t) { }
|
alpar@899
|
98 |
|
alpar@899
|
99 |
///Runs the algorithm.
|
alpar@899
|
100 |
|
alpar@899
|
101 |
///Runs the algorithm.
|
alpar@899
|
102 |
///Returns k if there are at least k edge-disjoint paths from s to t.
|
marci@941
|
103 |
///Otherwise it returns the number of edge-disjoint paths found
|
marci@941
|
104 |
///from s to t.
|
alpar@899
|
105 |
///
|
alpar@899
|
106 |
///\param k How many paths are we looking for?
|
alpar@899
|
107 |
///
|
marci@941
|
108 |
int run(int k) {
|
marci@941
|
109 |
int i = min_cost_flow.run(k);
|
alpar@899
|
110 |
|
alpar@899
|
111 |
//Let's find the paths
|
alpar@899
|
112 |
//We put the paths into stl vectors (as an inner representation).
|
alpar@899
|
113 |
//In the meantime we lose the information stored in 'reversed'.
|
alpar@899
|
114 |
//We suppose the lengths to be positive now.
|
alpar@899
|
115 |
|
marci@941
|
116 |
//We don't want to change the flow of min_cost_flow, so we make a copy
|
alpar@899
|
117 |
//The name here suggests that the flow has only 0/1 values.
|
alpar@899
|
118 |
EdgeIntMap reversed(G);
|
alpar@899
|
119 |
|
alpar@899
|
120 |
for(typename Graph::EdgeIt e(G); e!=INVALID; ++e)
|
marci@941
|
121 |
reversed[e] = min_cost_flow.getFlow()[e];
|
alpar@899
|
122 |
|
alpar@899
|
123 |
paths.clear();
|
alpar@899
|
124 |
paths.resize(k);
|
alpar@899
|
125 |
for (int j=0; j<i; ++j){
|
alpar@899
|
126 |
Node n=s;
|
alpar@899
|
127 |
|
alpar@899
|
128 |
while (n!=t){
|
alpar@899
|
129 |
|
klao@946
|
130 |
OutEdgeIt e(G, n);
|
alpar@899
|
131 |
|
alpar@899
|
132 |
while (!reversed[e]){
|
alpar@899
|
133 |
++e;
|
alpar@899
|
134 |
}
|
alpar@986
|
135 |
n = G.target(e);
|
alpar@899
|
136 |
paths[j].push_back(e);
|
alpar@899
|
137 |
reversed[e] = 1-reversed[e];
|
alpar@899
|
138 |
}
|
alpar@899
|
139 |
|
alpar@899
|
140 |
}
|
alpar@899
|
141 |
return i;
|
alpar@899
|
142 |
}
|
alpar@899
|
143 |
|
alpar@899
|
144 |
|
marci@941
|
145 |
///Returns the total length of the paths.
|
alpar@899
|
146 |
|
alpar@899
|
147 |
///This function gives back the total length of the found paths.
|
alpar@899
|
148 |
Length totalLength(){
|
marci@941
|
149 |
return min_cost_flow.totalLength();
|
alpar@899
|
150 |
}
|
alpar@899
|
151 |
|
alpar@899
|
152 |
///Returns the found flow.
|
alpar@899
|
153 |
|
alpar@899
|
154 |
///This function returns a const reference to the EdgeMap \c flow.
|
marci@941
|
155 |
const EdgeIntMap &getFlow() const { return min_cost_flow.flow;}
|
alpar@899
|
156 |
|
alpar@899
|
157 |
/// Returns the optimal dual solution
|
alpar@899
|
158 |
|
alpar@899
|
159 |
///This function returns a const reference to the NodeMap
|
alpar@899
|
160 |
///\c potential (the dual solution).
|
marci@941
|
161 |
const EdgeIntMap &getPotential() const { return min_cost_flow.potential;}
|
alpar@899
|
162 |
|
alpar@899
|
163 |
///Checks whether the complementary slackness holds.
|
alpar@899
|
164 |
|
alpar@899
|
165 |
///This function checks, whether the given solution is optimal.
|
alpar@899
|
166 |
///Currently this function only checks optimality,
|
athos@1527
|
167 |
///doesn't bother with feasibility.
|
alpar@899
|
168 |
///It is meant for testing purposes.
|
alpar@899
|
169 |
bool checkComplementarySlackness(){
|
marci@941
|
170 |
return min_cost_flow.checkComplementarySlackness();
|
alpar@899
|
171 |
}
|
alpar@899
|
172 |
|
alpar@899
|
173 |
///Read the found paths.
|
alpar@899
|
174 |
|
alpar@899
|
175 |
///This function gives back the \c j-th path in argument p.
|
athos@1527
|
176 |
///Assumes that \c run() has been run and nothing has changed since then.
|
alpar@899
|
177 |
/// \warning It is assumed that \c p is constructed to
|
alpar@899
|
178 |
///be a path of graph \c G.
|
alpar@899
|
179 |
///If \c j is not less than the result of previous \c run,
|
alpar@899
|
180 |
///then the result here will be an empty path (\c j can be 0 as well).
|
alpar@899
|
181 |
///
|
alpar@921
|
182 |
///\param Path The type of the path structure to put the result to (must meet lemon path concept).
|
athos@1527
|
183 |
///\param p The path to put the result to.
|
athos@1527
|
184 |
///\param j Which path you want to get from the found paths (in a real application you would get the found paths iteratively).
|
alpar@899
|
185 |
template<typename Path>
|
alpar@899
|
186 |
void getPath(Path& p, size_t j){
|
alpar@899
|
187 |
|
alpar@899
|
188 |
p.clear();
|
alpar@899
|
189 |
if (j>paths.size()-1){
|
alpar@899
|
190 |
return;
|
alpar@899
|
191 |
}
|
alpar@899
|
192 |
typename Path::Builder B(p);
|
alpar@899
|
193 |
for(typename std::vector<Edge>::iterator i=paths[j].begin();
|
alpar@899
|
194 |
i!=paths[j].end(); ++i ){
|
alpar@899
|
195 |
B.pushBack(*i);
|
alpar@899
|
196 |
}
|
alpar@899
|
197 |
|
alpar@899
|
198 |
B.commit();
|
alpar@899
|
199 |
}
|
alpar@899
|
200 |
|
alpar@899
|
201 |
}; //class Suurballe
|
alpar@899
|
202 |
|
alpar@899
|
203 |
///@}
|
alpar@899
|
204 |
|
alpar@921
|
205 |
} //namespace lemon
|
alpar@899
|
206 |
|
alpar@921
|
207 |
#endif //LEMON_SUURBALLE_H
|